1
|
Tanno B, Fratini E, Leonardi S, Novelli F, Pisano V, Mancuso M, Pazzaglia S. Dissecting the Impact of Genetic Background on Oncogenic Response to Radiation Exposure in the Ptch1+/- Mouse Model. Cells 2024; 13:1912. [PMID: 39594660 PMCID: PMC11593216 DOI: 10.3390/cells13221912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Medulloblastoma (MB) is a common primary brain cancer in children. The sonic hedgehog (SHH) pathway is indispensable for the normal development of the cerebellum, and MB is often caused by persistent SHH activation owing to mutations in pathway components. Patched1 (PTCH1) is the primary receptor for the SHH ligand and a negative regulator of the SHH signal transduction pathway. Mice heterozygous for the Ptch1 gene (Ptch1+/-) are predisposed to MB development. Irradiation of newborn Ptch1+/- mice dramatically increases MB occurrence. A genetic background carrying the Ptch1 mutation significantly influences the risk of developing MB. This study aims to investigate the genetic background-related mechanisms that regulate radiation-induced cellular response and oncogenesis in the cerebellum. We employed multiple approaches, including: (a) analysis of cellular radiosensitivity in granule cell precursors (GCPs), the MB cells of origin, derived from Ptch1 mice with a genetic background that is sensitive (CD1) or resistant (C57Bl/6) to the induction of radiogenic MB; (b) identification of genes differentially expressed in spontaneous and radiation-induced MBs from these two mouse strains; (c) bioinformatic analysis to correlate the expression of radiation-induced genes with survival in MB patients; and (d) examining the expression of these genes in ex vivo MBs induced by single or repeated radiation doses. We have identified a potential gene expression signature-Trp53bp1, Bax, Cyclin D1, p21, and Nanog-that influences tumor response. In ex vivo cultured spontaneous MBs, the expression levels of these genes increase after irradiation in CD1 mice, but not in mice with a C57Bl/6 genetic background, suggesting that this signature could predict tumor response to radiation therapy and help develop strategies for targeting DNA damage repair in tumors. A detailed understanding of the mechanisms behind genetic background-related susceptibility to radiation-induced oncogenic responses is crucial for translational research.
Collapse
Affiliation(s)
- Barbara Tanno
- Division of Biotechnologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (S.L.); (F.N.); (V.P.); (M.M.)
| | | | | | | | | | | | - Simonetta Pazzaglia
- Division of Biotechnologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (S.L.); (F.N.); (V.P.); (M.M.)
| |
Collapse
|
2
|
Zhou H, Wang YX, Wu M, Lan X, Xiang D, Cai R, Ma Q, Miao J, Fang X, Wang J, Luo D, He Z, Cui Y, Liang P, Wang Y, Bian XW. FANCD2 deficiency sensitizes SHH medulloblastoma to radiotherapy via ferroptosis. J Pathol 2024; 262:427-440. [PMID: 38229567 DOI: 10.1002/path.6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Radiotherapy is one of the standard therapeutic regimens for medulloblastoma (MB). Tumor cells utilize DNA damage repair (DDR) mechanisms to survive and develop resistance during radiotherapy. It has been found that targeting DDR sensitizes tumor cells to radiotherapy in several types of cancer, but whether and how DDR pathways are involved in the MB radiotherapy response remain to be determined. Single-cell RNA sequencing was carried out on 38 MB tissues, followed by expression enrichment assays. Fanconi anemia group D2 gene (FANCD2) expression was evaluated in MB samples and public MB databases. The function of FANCD2 in MB cells was examined using cell counting assays (CCK-8), clone formation, lactate dehydrogenase activity, and in mouse orthotopic models. The FANCD2-related signaling pathway was investigated using assays of peroxidation, a malondialdehyde assay, a reduced glutathione assay, and using FerroOrange to assess intracellular iron ions (Fe2+ ). Here, we report that FANCD2 was highly expressed in the malignant sonic hedgehog (SHH) MB subtype (SHH-MB). FANCD2 played an oncogenic role and predicted worse prognosis in SHH-MB patients. Moreover, FANCD2 knockdown markedly suppressed viability, mobility, and growth of SHH-MB cells and sensitized SHH-MB cells to irradiation. Mechanistically, FANCD2 deficiency led to an accumulation of Fe2+ due to increased divalent metal transporter 1 expression and impaired glutathione peroxidase 4 activity, which further activated ferroptosis and reduced proliferation of SHH-MB cells. Using an orthotopic mouse model, we observed that radiotherapy combined with silencing FANCD2 significantly inhibited the growth of SHH-MB cell-derived tumors in vivo. Our study revealed FANCD2 as a potential therapeutic target in SHH-MB and silencing FANCD2 could sensitize SHH-MB cells to radiotherapy via inducing ferroptosis. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hong Zhou
- School of Medicine, Chongqing University, Chongqing, PR China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Min Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Dongfang Xiang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Xuanyu Fang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Junjie Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Dan Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Zhicheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Jinfeng Laboratory, Institute of Advanced Pathology, Chongqing, PR China
| | - Xiu-Wu Bian
- School of Medicine, Chongqing University, Chongqing, PR China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Jinfeng Laboratory, Institute of Advanced Pathology, Chongqing, PR China
| |
Collapse
|
3
|
Lico C, Tanno B, Marchetti L, Novelli F, Giardullo P, Arcangeli C, Pazzaglia S, Podda MS, Santi L, Bernini R, Baschieri S, Mancuso M. Tomato Bushy Stunt Virus Nanoparticles as a Platform for Drug Delivery to Shh-Dependent Medulloblastoma. Int J Mol Sci 2021; 22:10523. [PMID: 34638864 PMCID: PMC8509062 DOI: 10.3390/ijms221910523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB) is a primary central nervous system tumor affecting mainly young children. New strategies of drug delivery are urgent to treat MB and, in particular, the SHH-dependent subtype-the most common in infants-in whom radiotherapy is precluded due to the severe neurological side effects. Plant virus nanoparticles (NPs) represent an innovative solution for this challenge. Tomato bushy stunt virus (TBSV) was functionally characterized as a carrier for drug targeted delivery to a murine model of Shh-MB. The TBSV NPs surface was genetically engineered with peptides for brain cancer cell targeting, and the modified particles were produced on a large scale using Nicotiana benthamiana plants. Tests on primary cultures of Shh-MB cells allowed us to define the most efficient peptides able to induce specific uptake of TBSV. Immunofluorescence and molecular dynamics simulations supported the hypothesis that the specific targeting of the NPs was mediated by the interaction of the peptides with their natural partners and reinforced by the presentation in association with the virus. In vitro experiments demonstrated that the delivery of Doxorubicin through the chimeric TBSV allowed reducing the dose of the chemotherapeutic agent necessary to induce a significant decrease in tumor cells viability. Moreover, the systemic administration of TBSV NPs in MB symptomatic mice, independently of sex, confirmed the ability of the virus to reach the tumor in a specific manner. A significant advantage in the recognition of the target appeared when TBSV NPs were functionalized with the CooP peptide. Overall, these results open new perspectives for the use of TBSV as a vehicle for the targeted delivery of chemotherapeutics to MB in order to reduce early and late toxicity.
Collapse
Affiliation(s)
- Chiara Lico
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy;
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Luca Marchetti
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Flavia Novelli
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Paola Giardullo
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Caterina Arcangeli
- Laboratory of Health and Environment, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (C.A.); (M.S.P.)
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Maurizio S. Podda
- Laboratory of Health and Environment, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (C.A.); (M.S.P.)
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (L.S.); (R.B.)
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (L.S.); (R.B.)
| | - Selene Baschieri
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy;
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| |
Collapse
|
4
|
Bahmad HF, Poppiti RJ. Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets. J Clin Pathol 2020; 73:243-249. [PMID: 32034059 DOI: 10.1136/jclinpath-2019-206246] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is the most common malignant primary intracranial neoplasm diagnosed in childhood. Although numerous efforts have been made during the past few years to exploit novel targeted therapies for this aggressive neoplasm, there still exist substantial hitches hindering successful management of MB. Lately, progress in cancer biology has shown evidence that a subpopulation of cells within the tumour, namely cancer stem cells (CSCs), are thought to be responsible for the resistance to most chemotherapeutic agents and radiation therapy, accounting for cancer recurrence. Hence, it is crucial to identify the molecular signatures and genetic aberrations that characterise those CSCs and develop therapies that specifically target them. In this review, we aim to give an overview of the main genetic and molecular cues that depict MB-CSCs and provide a synopsis of the novel therapeutic approaches that specifically target this population of cells to attain enhanced antitumorous effects and therefore overcome resistance to therapy.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Robert J Poppiti
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA .,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
5
|
Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun 2020; 11:334. [PMID: 31953387 PMCID: PMC6969052 DOI: 10.1038/s41467-019-14058-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/14/2019] [Indexed: 12/12/2022] Open
Abstract
Stomach and intestinal stem cells are located in discrete niches called the isthmus and crypt, respectively. Recent studies have demonstrated a surprisingly conserved role for Wnt signaling in gastrointestinal development. Although intestinal stromal cells secrete Wnt ligands to promote stem cell renewal, the source of stomach Wnt ligands is still unclear. Here, by performing single cell analysis, we identify gastrointestinal stromal cell populations with transcriptome signatures that are conserved between the stomach and intestine. In close proximity to epithelial cells, these perictye-like cells highly express telocyte and pericyte markers as well as Wnt ligands, and they are enriched for Hh signaling. By analyzing mice activated for Hh signaling, we show a conserved mechanism of GLI2 activation of Wnt ligands. Moreover, genetic inhibition of Wnt secretion in perictye-like stromal cells or stromal cells more broadly demonstrates their essential roles in gastrointestinal regeneration and development, respectively, highlighting a redundancy in gastrointestinal stem cell niches.
Collapse
|
6
|
Human Medulloblastoma Cell Lines: Investigating on Cancer Stem Cell-Like Phenotype. Cancers (Basel) 2020; 12:cancers12010226. [PMID: 31963405 PMCID: PMC7016648 DOI: 10.3390/cancers12010226] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite the progress of new treatments, the risk of recurrence, morbidity, and death remains significant and the long-term adverse effects in survivors are substantial. The fraction of cancer stem-like cells (CSCs) because of their self-renewal ability and multi-lineage differentiation potential is critical for tumor initiation, growth, and resistance to therapies. For the development of new CSC-targeted therapies, further in-depth studies are needed using enriched and stable MB-CSCs populations. This work, aimed at identifying the amount of CSCs in three available human cell lines (DAOY, D341, and D283), describes different approaches based on the expression of stemness markers. First, we explored potential differences in gene and protein expression patterns of specific stem cell markers. Then, in order to identify and discriminate undifferentiated from differentiated cells, MB cells were characterized using a physical characterization method based on a high-frequency dielectrophoresis approach. Finally, we compared their tumorigenic potential in vivo, through engrafting in nude mice. Concordantly, our findings identified the D283 human cell line as an ideal model of CSCs, providing important evidence on the use of a commercial human MB cell line for the development of new strategic CSC-targeting therapies.
Collapse
|
7
|
Nanog Signaling Mediates Radioresistance in ALDH-Positive Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20051151. [PMID: 30845764 PMCID: PMC6429380 DOI: 10.3390/ijms20051151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, cancer stem cells (CSCs) have been identified as the major cause of both chemotherapy and radiotherapy resistance. Evidence from experimental studies applying both in vitro and in vivo preclinical models suggests that CSCs survive after conventional therapy protocols. Several mechanisms are proposed to be involved in CSC resistance to radiotherapy. Among them, stimulated DNA double-strand break (DSB) repair capacity in association with aldehyde dehydrogenase (ALDH) activity seems to be the most prominent mechanism. However, thus far, the pathway through which ALDH activity stimulates DSB repair is not known. Therefore, in the present study, we investigated the underlying signaling pathway by which ALDH activity stimulates DSB repair and can lead to radioresistance of breast cancer cell lines in vitro. When compared with ALDH-negative cells, ALDH-positive cells presented significantly enhanced cell survival after radiation exposure. This enhanced cell survival was associated with stimulated Nanog, BMI1 and Notch1 protein expression, as well as stimulated Akt activity. By applying overexpression and knockdown approaches, we clearly demonstrated that Nanog expression is associated with enhanced ALDH activity and cellular radioresistance, as well as stimulated DSB repair. Akt and Notch1 targeting abrogated the Nanog-mediated radioresistance and stimulated ALDH activity. Overall, we demonstrate that Nanog signaling induces tumor cell radioresistance and stimulates ALDH activity, most likely through activation of the Notch1 and Akt pathways.
Collapse
|