1
|
de Deus JL, Amorim MR, da Silva Junior RMP, Jesus AA, de Barcellos Filho PCG, Cárnio EC, Cunha AOS, Leão RM, Branco LG. Inhaled molecular hydrogen reduces hippocampal neuroinflammation, glial reactivity and ameliorates memory impairment during systemic inflammation. Brain Behav Immun Health 2023; 31:100654. [PMID: 37449286 PMCID: PMC10336161 DOI: 10.1016/j.bbih.2023.100654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Sepsis is associated with numerous physiological and biochemical abnormalities that result in a life-threatening condition. The involvement of the Central Nervous System (CNS) during sepsis has received considerable attention, especially the hippocampus which plays a key role in the learning and memory processes. The increased interest in this limbic region during systemic inflammation (SI) is related to the number of sepsis survivor patients who have cognitive impairments. A single injection of lipopolysaccharide (LPS)-induced systemic inflammation is the most commonly used murine endotoxemia model because it replicates several pathophysiological changes observed in severe sepsis. Molecular hydrogen (H2) has been used as an anti-inflammatory therapeutic strategy to prevent neuroinflammation. However, the mechanisms by which inhaled H2 mitigate memory loss during SI remains unknown. To understand how H2 acts in the hippocampus, the current study focused on specific mechanisms that may be involved in reducing neuroinflammation in rats during SI. We hypothesized that inhaled H2 decreases LPS-induced hippocampal pro-inflammatory cytokines surges and this effect is associated with reduced memory loss. Using different and integrative approaches, i.e., from hippocampal cells electrophysiology to animal behavior, we report that inhaled H2 decreased LPS-induced peripheral and hippocampal inflammation, decreased microglial and astrocytic activation, lessen memory loss without affecting long-term potentiation (LTP). To our knowledge, this is the first evidence showing that inhaled H2 reduces hippocampal microglial and glial cells inflammation, which may be associated with a reduced memory impairment induced by SI.
Collapse
Affiliation(s)
- Júnia Lara de Deus
- Department of Basic and Oral Biology, Dental School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Mateus Ramos Amorim
- Department of Basic and Oral Biology, Dental School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Aline Alves Jesus
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | | | - Evelin Capellari Cárnio
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | - Ricardo Maurício Leão
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Luiz G.S. Branco
- Department of Basic and Oral Biology, Dental School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
2
|
Singh A, Smith PF, Zheng Y. Targeting the Limbic System: Insights into Its Involvement in Tinnitus. Int J Mol Sci 2023; 24:9889. [PMID: 37373034 DOI: 10.3390/ijms24129889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Tinnitus is originally derived from the Latin verb tinnire, which means "to ring". Tinnitus, a complex disorder, is a result of sentient cognizance of a sound in the absence of an external auditory stimulus. It is reported in children, adults, and older populations. Patients suffering from tinnitus often present with hearing loss, anxiety, depression, and sleep disruption in addition to a hissing and ringing in the ear. Surgical interventions and many other forms of treatment have been only partially effective due to heterogeneity in tinnitus patients and a lack of understanding of the mechanisms of tinnitus. Although researchers across the globe have made significant progress in understanding the underlying mechanisms of tinnitus over the past few decades, tinnitus is still deemed to be a scientific enigma. This review summarises the role of the limbic system in tinnitus development and provides insight into the development of potential target-specific tinnitus therapies.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
3
|
Pak S, Choi G, Roy J, Poon CH, Lee J, Cho D, Lee M, Lim LW, Bao S, Yang S, Yang S. Altered synaptic plasticity of the longitudinal dentate gyrus network in noise-induced anxiety. iScience 2022; 25:104364. [PMID: 35620435 PMCID: PMC9127171 DOI: 10.1016/j.isci.2022.104364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022] Open
Abstract
Anxiety is characteristic comorbidity of noise-induced hearing loss (NIHL), which causes physiological changes within the dentate gyrus (DG), a subfield of the hippocampus that modulates anxiety. However, which DG circuit underlies hearing loss-induced anxiety remains unknown. We utilize an NIHL mouse model to investigate short- and long-term synaptic plasticity in DG networks. The recently discovered longitudinal DG-DG network is a collateral of DG neurons synaptically connected with neighboring DG neurons and displays robust synaptic efficacy and plasticity. Furthermore, animals with NIHL demonstrate increased anxiety-like behaviors similar to a response to chronic restraint stress. These behaviors are concurrent with enhanced synaptic responsiveness and suppressed short- and long-term synaptic plasticity in the longitudinal DG-DG network but not in the transverse DG-CA3 connection. These findings suggest that DG-related anxiety is typified by synaptic alteration in the longitudinal DG-DG network. Traumatic noise-induced hearing loss enhances anxiety-like behaviors The longitudinal DG-DG network displays robust synaptic efficacy and plasticity Abnormal anxiety is associated with synaptic alterations of the DG-DG network DG-related brain disorders might stem from dysfunctional DG-DG networks
Collapse
|
4
|
Manohar S, Chen GD, Ding D, Liu L, Wang J, Chen YC, Chen L, Salvi R. Unexpected Consequences of Noise-Induced Hearing Loss: Impaired Hippocampal Neurogenesis, Memory, and Stress. Front Integr Neurosci 2022; 16:871223. [PMID: 35619926 PMCID: PMC9127992 DOI: 10.3389/fnint.2022.871223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Noise-induced hearing loss (NIHL), caused by direct damage to the cochlea, reduces the flow of auditory information to the central nervous system, depriving higher order structures, such as the hippocampus with vital sensory information needed to carry out complex, higher order functions. Although the hippocampus lies outside the classical auditory pathway, it nevertheless receives acoustic information that influence its activity. Here we review recent results that illustrate how NIHL and other types of cochlear hearing loss disrupt hippocampal function. The hippocampus, which continues to generate new neurons (neurogenesis) in adulthood, plays an important role in spatial navigation, memory, and emotion. The hippocampus, which contains place cells that respond when a subject enters a specific location in the environment, integrates information from multiple sensory systems, including the auditory system, to develop cognitive spatial maps to aid in navigation. Acute exposure to intense noise disrupts the place-specific firing patterns of hippocampal neurons, "spatially disorienting" the cells for days. More traumatic sound exposures that result in permanent NIHL chronically suppresses cell proliferation and neurogenesis in the hippocampus; these structural changes are associated with long-term spatial memory deficits. Hippocampal neurons, which contain numerous glucocorticoid hormone receptors, are part of a complex feedback network connected to the hypothalamic-pituitary (HPA) axis. Chronic exposure to intense intermittent noise results in prolonged stress which can cause a persistent increase in corticosterone, a rodent stress hormone known to suppress neurogenesis. In contrast, a single intense noise exposure sufficient to cause permanent hearing loss produces only a transient increase in corticosterone hormone. Although basal corticosterone levels return to normal after the noise exposure, glucocorticoid receptors (GRs) in the hippocampus remain chronically elevated. Thus, NIHL disrupts negative feedback from the hippocampus to the HPA axis which regulates the release of corticosterone. Preclinical studies suggest that the noise-induced changes in hippocampal place cells, neurogenesis, spatial memory, and glucocorticoid receptors may be ameliorated by therapeutic interventions that reduce oxidative stress and inflammation. These experimental results may provide new insights on why hearing loss is a risk factor for cognitive decline and suggest methods for preventing this decline.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Lijie Liu
- Department of Physiology, Medical College, Southeast University, Nanjing, China
| | - Jian Wang
- School of Communication Science and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Auditory Research Laboratory, University of Science and Technology of China, Hefei, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
5
|
MicroRNA Dysregulation in the Hippocampus of Rats with Noise-Induced Hearing Loss. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1377195. [PMID: 34527169 PMCID: PMC8437592 DOI: 10.1155/2021/1377195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Although hippocampal changes due to noise-induced hearing loss have been suggested, little is known about the miRNA levels due to these hippocampal changes. Three-week-old Sprague-Dawley rats were divided into noise and control groups (n = 20 per group). The noise group rats were exposed to white Gaussian noise (115 dB SPL, 4 hours per day) for three days. One day after noise exposure, the hippocampi of rats were harvested and miRNA expressions were analyzed using the Affymetrix miRNA 4.0 microarray (n = 6 per group). The predicted target genes of each miRNA were retrieved, and the pathways related to the predicted target genes were analyzed. miR-758-5p, miR-210-5p, miR-370-5p, miR-652-5p, miR-3544, miR-128-1-5p, miR-665, miR-188-5p, and miR-874-5p expression increased in the hippocampal tissue of the noise group compared to that in the control group. The overlapping predicted target genes included Bend4, Creb1, Adcy6, Creb5, Kcnj9, and Pten. The pathways related to these genes were the estrogen signaling pathway, vasopressin-regulated water reabsorption, thyroid hormone synthesis, aldosterone synthesis and secretion, insulin secretion, circadian entrainment, insulin resistance, cholinergic synapse, dopaminergic synapse, cGMP-PKG signaling pathway, cAMP signaling pathway, PI3K-Akt signaling pathway, TNF signaling pathway, and AMPK signaling pathway. miR-448-3p, miR204-5p, and miR-204-3p expression decreased in the hippocampal tissue of the noise group compared to that in the control group. The overlapping predicted target genes of these three miRNAs were Rps6kas, Nfactc3, Rictor, Spred1, Cdh4, Cdh6, Dvl3, and Rcyt1b. Pathway analysis suggested that the Wnt signaling pathway is related to Dvl3 and Nfactc3. Noise-induced hearing loss dysregulates miR-758-5p, miR210-5p, miR370-5p, miR-652-5p, miR-3544, miR-128-1-5p, miR-665, miR-188-5p, miR-874-5p, miR-448-3p, miR-204-5p, miR-204-3p, and miR-140-5p expression in the hippocampus. These miRNAs have been predicted to be associated with hormonal, inflammatory, and synaptic pathways.
Collapse
|
6
|
Chatterjee D, Hegde S, Thaut M. Neural plasticity: The substratum of music-based interventions in neurorehabilitation. NeuroRehabilitation 2021; 48:155-166. [PMID: 33579881 DOI: 10.3233/nre-208011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The plastic nature of the human brain lends itself to experience and training-based structural changes leading to functional recovery. Music, with its multimodal activation of the brain, serves as a useful model for neurorehabilitation through neuroplastic changes in dysfunctional or impaired networks. Neurologic Music Therapy (NMT) contributes to the field of neurorehabilitation using this rationale. OBJECTIVE The purpose of this article is to present a discourse on the concept of neuroplasticity and music-based neuroplasticity through the techniques of NMT in the domain of neurological rehabilitation. METHODS The article draws on observations and findings made by researchers in the areas of neuroplasticity, music-based neuroplastic changes, NMT in neurological disorders and the implication of further research in this field. RESULTS A commentary on previous research reveal that interventions based on the NMT paradigm have been successfully used to train neural networks using music-based tasks and paradigms which have been explained to have cross-modal effects on sensorimotor, language and cognitive and affective functions. CONCLUSIONS Multimodal gains using music-based interventions highlight the brain plasticity inducing function of music. Individual differences do play a predictive role in neurological gains associated with such interventions. This area deserves further exploration and application-based studies.
Collapse
Affiliation(s)
- Diya Chatterjee
- Senior Research Fellow, Music Cognition Laboratory, Department of Clinical Psychology, NIMHANS, India
| | - Shantala Hegde
- Associate Professor and Wellcome DBT India Alliance Intermediate Fellow, Clinical Neuropsychology and Cognitive Neurosciences Center and Music Cognition Laboratory, Department of Clinical Psychology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Michael Thaut
- Music and Health Science Research Collaboratory and Faculty of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
de Deus JL, Amorim MR, Ribeiro AB, Barcellos-Filho PCG, Ceballos CC, Branco LGS, Cunha AOS, Leão RM. Loss of Brain-Derived Neurotrophic Factor Mediates Inhibition of Hippocampal Long-Term Potentiation by High-Intensity Sound. Cell Mol Neurobiol 2021; 41:751-763. [PMID: 32445041 DOI: 10.1007/s10571-020-00881-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/16/2020] [Indexed: 01/15/2023]
Abstract
Exposure to noise produces cognitive and emotional disorders, and recent studies have shown that auditory stimulation or deprivation affects hippocampal function. Previously, we showed that exposure to high-intensity sound (110 dB, 1 min) strongly inhibits Schaffer-CA1 long-term potentiation (LTP). Here we investigated possible mechanisms involved in this effect. We found that exposure to 110 dB sound activates c-fos expression in hippocampal CA1 and CA3 neurons. Although sound stimulation did not affect glutamatergic or GABAergic neurotransmission in CA1, it did depress the level of brain-derived neurotrophic factor (BDNF), which is involved in promoting hippocampal synaptic plasticity. Moreover, perfusion of slices with BDNF rescued LTP in animals exposed to sound stimulation, whereas BDNF did not affect LTP in sham-stimulated rats. Furthermore, LM22A4, a TrkB receptor agonist, also rescued LTP from sound-stimulated animals. Our results indicate that depression of hippocampal BDNF mediates the inhibition of LTP produced by high-intensity sound stimulation.
Collapse
Affiliation(s)
- Júnia L de Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-904, Brazil
| | - Mateus R Amorim
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-904, Brazil
| | - Aline B Ribeiro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Procópio C G Barcellos-Filho
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - César C Ceballos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luiz Guilherme S Branco
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-904, Brazil
| | - Alexandra O S Cunha
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Ricardo M Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
8
|
Nadhimi Y, Llano DA. Does hearing loss lead to dementia? A review of the literature. Hear Res 2020; 402:108038. [PMID: 32814645 DOI: 10.1016/j.heares.2020.108038] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
Recent studies have revealed a correlation between aging-related hearing loss and the likelihood of developing Alzheimer Disease. However, it is not yet known if the correlation simply reflects the fact that these two disorders share common risk factors or whether there is a causal link between them. The answer to this question carries therapeutic implications. Unfortunately, it is not possible to study the question of causality between aging-related hearing loss and dementia in human subjects. Here, we evaluate the research surrounding induced-hearing loss in animal models on non-auditory cognition to help infer if there is any causal evidence linking hearing loss and a more general dementia. We find ample evidence that induction of hearing loss in animals produces cognitive decline, particularly hippocampal dysfunction. The data suggest that noise-exposure produces a toxic milieu in the hippocampus consisting of a spike in glucocorticoid levels, elevations of mediators of oxidative stress and excitotoxicity, which as a consequence induce cessation of neurogenesis, synaptic loss and tau hyperphosphorylation. These data suggest that hearing loss can lead to pathological hallmarks similar to those seen in Alzheimer's Disease and other dementias. However, the rodent data do not establish that hearing loss on its own can induce a progressive degenerative dementing illness. Therefore, we conclude that an additional "hit", such as aging, APOE genotype, microvascular disease or others, may be necessary to trigger an ongoing degenerative process such as Alzheimer Disease.
Collapse
Affiliation(s)
- Yosra Nadhimi
- Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, USA
| | - Daniel A Llano
- Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carle Neuroscience Institute, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.
| |
Collapse
|
9
|
Cunha AOS, de Deus JL, Ceballos CC, Leão RM. Increased hippocampal GABAergic inhibition after long-term high-intensity sound exposure. PLoS One 2019; 14:e0210451. [PMID: 31067215 PMCID: PMC6505933 DOI: 10.1371/journal.pone.0210451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Exposure to loud sounds is related to harmful mental and systemic effects. The hippocampal function can be affected to either high-intensity sound exposure or long-term sound deprivation. We previously showed that hippocampal long-term potentiation (LTP) is inhibited after ten days of daily exposure to 2 minutes of high-intensity noise (110 dB), in the hippocampi of Wistar rats. Here we investigated how the glutamatergic and GABAergic neurotransmission mediated by ionotropic receptors is affected by the same protocol of high-intensity sound exposure. We found that while the glutamatergic transmission both by AMPA/kainate and NMDA receptors in the Schaffer-CA1 synapses is unaffected by long-term exposure to high-intensity sound, the amplitude of the inhibitory GABAergic currents is potentiated, but not the frequency of both spontaneous and miniature currents. We conclude that after prolonged exposure to short periods of high-intensity sound, GABAergic transmission is potentiated in the hippocampal CA1 pyramidal neurons. This effect could be an essential factor for the reduced LTP in the hippocampi of these animals after high-intensity sound exposure. We conclude that prolonged exposure to high- intensity sound could affect hippocampal inhibitory transmission and consequently, its function.
Collapse
Affiliation(s)
| | - Junia L. de Deus
- Department of Physiology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cesar C. Ceballos
- Department of Physiology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo M. Leão
- Department of Physiology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
10
|
Cunha AOS, Ceballos CC, de Deus JL, Pena RFDO, de Oliveira JAC, Roque AC, Garcia-Cairasco N, Leão RM. Intrinsic and synaptic properties of hippocampal CA1 pyramidal neurons of the Wistar Audiogenic Rat (WAR) strain, a genetic model of epilepsy. Sci Rep 2018; 8:10412. [PMID: 29991737 PMCID: PMC6039528 DOI: 10.1038/s41598-018-28725-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/27/2018] [Indexed: 11/12/2022] Open
Abstract
Despite the many studies focusing on epilepsy, a lot of the basic mechanisms underlying seizure susceptibility are mainly unclear. Here, we studied cellular electrical excitability, as well as excitatory and inhibitory synaptic neurotransmission of CA1 pyramidal neurons from the dorsal hippocampus of a genetic model of epilepsy, the Wistar Audiogenic Rat (WARs) in which limbic seizures appear after repeated audiogenic stimulation. We examined intrinsic properties of neurons, as well as EPSCs evoked by Schaffer-collateral stimulation in slices from WARs and Wistar parental strain. We also analyzed spontaneous IPSCs and quantal miniature inhibitory events. Our data show that even in the absence of previous seizures, GABAergic neurotransmission is reduced in the dorsal hippocampus of WARs. We observed a decrease in the frequency of IPSCs and mIPSCs. Moreover, mIPSCs of WARs had faster rise times, indicating that they probably arise from more proximal synapses. Finally, intrinsic membrane properties, firing and excitatory neurotransmission mediated by both NMDA and non-NMDA receptors are similar to the parental strain. Since GABAergic inhibition towards CA1 pyramidal neurons is reduced in WARs, the inhibitory network could be ineffective to prevent the seizure-dependent spread of hyperexcitation. These functional changes could make these animals more susceptible to the limbic seizures observed during the audiogenic kindling.
Collapse
Affiliation(s)
| | - Cesar Celis Ceballos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júnia Lara de Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rodrigo Felipe de Oliveira Pena
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Antonio Carlos Roque
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Maurício Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Cunha AOS, Ceballos CC, de Deus JL, Leão RM. Long-term high-intensity sound stimulation inhibits h current (I h ) in CA1 pyramidal neurons. Eur J Neurosci 2018; 47:1401-1413. [PMID: 29779233 DOI: 10.1111/ejn.13954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022]
Abstract
Afferent neurotransmission to hippocampal pyramidal cells can lead to long-term changes to their intrinsic membrane properties and affect many ion currents. One of the most plastic neuronal currents is the hyperpolarization-activated cationic current (Ih ), which changes in CA1 pyramidal cells in response to many types of physiological and pathological processes, including auditory stimulation. Recently, we demonstrated that long-term potentiation (LTP) in rat hippocampal Schaffer-CA1 synapses is depressed by high-intensity sound stimulation. Here, we investigated whether a long-term high-intensity sound stimulation could affect intrinsic membrane properties of rat CA1 pyramidal neurons. Our results showed that Ih is depressed by long-term high-intensity sound exposure (1 min of 110 dB sound, applied two times per day for 10 days). This resulted in a decreased resting membrane potential, increased membrane input resistance and time constant, and decreased action potential threshold. In addition, CA1 pyramidal neurons from sound-exposed animals fired more action potentials than neurons from control animals; however, this effect was not caused by a decreased Ih . On the other hand, a single episode (1 min) of 110 dB sound stimulation which also inhibits hippocampal LTP did not affect Ih and firing in pyramidal neurons, suggesting that effects on Ih are long-term responses to high-intensity sound exposure. Our results show that prolonged exposure to high-intensity sound affects intrinsic membrane properties of hippocampal pyramidal neurons, mainly by decreasing the amplitude of Ih .
Collapse
Affiliation(s)
| | - Cesar Celis Ceballos
- Department of Physiology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Junia Lara de Deus
- Department of Physiology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|