1
|
Hanajima Y, Iwahashi N, Kirigaya J, Horii M, Minamimoto Y, Gohbara M, Abe T, Okada K, Matsuzawa Y, Kosuge M, Ebina T, Hibi K. Prognostic importance of glycemic variability on left ventricular reverse remodeling after the first episode of ST-segment elevation myocardial infarction. Cardiovasc Diabetol 2023; 22:202. [PMID: 37542320 PMCID: PMC10403862 DOI: 10.1186/s12933-023-01931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effect of glycemic variability (GV), determined using a continuous glucose monitoring system (CGMS), on left ventricular reverse remodeling (LVRR) after ST-segment elevation myocardial infarction (STEMI). METHODS A total of 201 consecutive patients with STEMI who underwent reperfusion therapy within 12 h of onset were enrolled. GV was measured using a CGMS and determined as the mean amplitude of glycemic excursion (MAGE). Left ventricular volumetric parameters were measured using cardiac magnetic resonance imaging (CMRI). LVRR was defined as an absolute decrease in the LV end-systolic volume index of > 10% from 1 week to 7 months after admission. Associations were also examined between GV and LVRR and between LVRR and the incidence of major adverse cardiovascular events (MACE; cardiovascular death, acute coronary syndrome recurrence, non-fatal stroke, and heart failure hospitalization). RESULTS The prevalence of LVRR was 28% (n = 57). The MAGE was independent predictor of LVRR (odds ratio [OR] 0.98, p = 0.002). Twenty patients experienced MACE during the follow-up period (median, 65 months). The incidence of MACE was lower in patients with LVRR than in those without (2% vs. 13%, p = 0.016). CONCLUSION Low GV, determined using a CGMS, was significantly associated with LVRR, which might lead to a good prognosis. Further studies are needed to validate the importance of GV in LVRR in patients with STEMI.
Collapse
Affiliation(s)
- Yohei Hanajima
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Noriaki Iwahashi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan.
| | - Jin Kirigaya
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Mutsuo Horii
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Yugo Minamimoto
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Masaomi Gohbara
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Takeru Abe
- Department of Quality and Safety in Healthcare, Yokohama City University Medical Center, Yokohama, Japan
| | - Kozo Okada
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Yasushi Matsuzawa
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Masami Kosuge
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Toshiaki Ebina
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Kiyoshi Hibi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
- Department of Cardiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
2
|
Beijnink CW, Khan JN, Hirsch A, Narula J, Rodwell L, van Rossum AC, van Royen N, McCann GP, Nijveldt R. Transmural Extent of Hyperenhancement in ST-Segment Elevation Myocardial Infarction: An Unreliable Measure of Acute Viability. JACC. ADVANCES 2023; 2:100328. [PMID: 38938236 PMCID: PMC11198311 DOI: 10.1016/j.jacadv.2023.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
| | | | | | | | | | | | | | | | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| |
Collapse
|
3
|
Park H, Kang DY, Ahn JM, Yang DH, Koo HJ, Kang JW, Lee PH, Lee SE, Kim MS, Kang SJ, Park DW, Lee SW, Kim YH, Lee CW, Kim HJ, Kim JB, Jung SH, Choo SJ, Chung CH, Lee JW, Kim JJ, Park SW, Park SJ. Myocardial Scar and Revascularization on Mortality in Ischemic Cardiomyopathy (from the Late Gadolinium Enhancement Cardiac Magnetic Resonance Study). Am J Cardiol 2023; 192:212-220. [PMID: 36848690 DOI: 10.1016/j.amjcard.2023.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 02/27/2023]
Abstract
Myocardial viability test to guide revascularization remains uncertain in patients with ischemic cardiomyopathy. We evaluated the different impacts of revascularization on cardiac mortality according to the extent of myocardial scar assessed by cardiac magnetic resonance (CMR) with late gadolinium enhancement (LGE) in patients with ischemic cardiomyopathy. A total of 404 consecutive patients with significant coronary artery disease and an ejection fraction ≤35% were assessed by LGE-CMR before revascularization. Of them, 306 patients underwent revascularization and 98 patients received medical treatment alone. The primary outcome was cardiac death. During a median follow-up of 6.3 years, cardiac death occurred in 158 patients (39.1%). Revascularization was associated with a significantly lower risk of cardiac death than medical treatment alone in the overall population (adjusted hazard ratio [aHR] 0.29, 95% confidence interval (CI) 0.19 to 0.45, p <0.001). There was a significant interaction between the number of segments with >75% transmural LGE and revascularization on the risk of cardiac death (p = 0.037 for interaction). In patients with limited myocardial scar (<6 segments with >75% transmural LGE, n = 354), revascularization had a significantly lower risk of cardiac death than medical treatment alone (aHR 0.24, 95% CI 0.15 to 0.37, p <0.001); in patients with extensive myocardial scar (≥6 segments with >75% transmural LGE, n = 50), there was no significant difference between revascularization and medical treatment alone regarding the risk of cardiac death (aHR 1.33, 95% CI 0.46 to 3.80, p = 0.60). In conclusion, the assessment of myocardial scar by LGE-CMR may be helpful in the decision-making process for revascularization in patients with ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Hanbit Park
- Department of Cardiology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Gangwon-do, Republic of Korea
| | - Do-Yoon Kang
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung-Min Ahn
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Dong Hyun Yang
- Department of Radiology and Research Institute of Radiology, Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Hyun Jung Koo
- Department of Radiology and Research Institute of Radiology, Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon-Won Kang
- Department of Radiology and Research Institute of Radiology, Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Pil Hyung Lee
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Eun Lee
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Seok Kim
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo-Jin Kang
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Duk-Woo Park
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Whan Lee
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Hak Kim
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Cheol Whan Lee
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho Jin Kim
- Division of Cardiac Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Bum Kim
- Division of Cardiac Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Jung
- Division of Cardiac Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Suk Jung Choo
- Division of Cardiac Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Cheol-Hyun Chung
- Division of Cardiac Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae-Won Lee
- Division of Cardiac Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae-Joong Kim
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong-Wook Park
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Jung Park
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Cardiac magnetic resonance feature tracking global and segmental strain in acute and chronic ST-elevation myocardial infarction. Sci Rep 2022; 12:22644. [PMID: 36587037 PMCID: PMC9805431 DOI: 10.1038/s41598-022-26968-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Strain is an important imaging parameter to determine myocardial deformation. This study sought to 1) assess changes in left ventricular strain and ejection fraction (LVEF) from acute to chronic ST-elevation myocardial infarction (STEMI) and 2) analyze strain as a predictor of late gadolinium enhancement (LGE). 32 patients with STEMI and 18 controls prospectively underwent cardiac magnetic resonance imaging. Patients were scanned 8 [Formula: see text] 5 days and six months after infarction (± 1.4 months). Feature tracking was performed and LVEF was calculated. LGE was determined visually and quantitatively on short-axis images and myocardial segments were grouped according to the LGE pattern (negative, non-transmural and transmural). Global strain was impaired in patients compared to controls, but improved within six months after STEMI (longitudinal strain from -14 ± 4 to -16 ± 4%, p < 0.001; radial strain from 38 ± 11 to 42 ± 13%, p = 0.006; circumferential strain from -15 ± 4 to -16 ± 4%, p = 0.023). Patients with microvascular obstruction showed especially attenuated strain results. Regional strain persisted impaired in LGE-positive segments. Circumferential strain could best distinguish between LGE-negative and -positive segments (AUC 0.73- 0.77). Strain improves within six months after STEMI, but remains impaired in LGE-positive segments. Strain may serve as an imaging biomarker to analyze myocardial viability. Especially circumferential strain could predict LGE.
Collapse
|
5
|
Almeida AG, Carpenter JP, Cameli M, Donal E, Dweck MR, Flachskampf FA, Maceira AM, Muraru D, Neglia D, Pasquet A, Plein S, Gerber BL. Multimodality imaging of myocardial viability: an expert consensus document from the European Association of Cardiovascular Imaging (EACVI). Eur Heart J Cardiovasc Imaging 2021; 22:e97-e125. [PMID: 34097006 DOI: 10.1093/ehjci/jeab053] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
In clinical decision making, myocardial viability is defined as myocardium in acute or chronic coronary artery disease and other conditions with contractile dysfunction but maintained metabolic and electrical function, having the potential to improve dysfunction upon revascularization or other therapy. Several pathophysiological conditions may coexist to explain this phenomenon. Cardiac imaging may allow identification of myocardial viability through different principles, with the purpose of prediction of therapeutic response and selection for treatment. This expert consensus document reviews current insight into the underlying pathophysiology and available methods for assessing viability. In particular the document reviews contemporary viability imaging techniques, including stress echocardiography, single photon emission computed tomography, positron emission tomography, cardiovascular magnetic resonance, and computed tomography and provides clinical recommendations for how to standardize these methods in terms of acquisition and interpretation. Finally, it presents clinical scenarios where viability assessment is clinically useful.
Collapse
Affiliation(s)
- Ana G Almeida
- Faculty of Medicine, Lisbon University, University Hospital Santa Maria/CHLN, Portugal
| | - John-Paul Carpenter
- Cardiology Department, University Hospitals Dorset, NHS Foundation Trust, Poole Hospital, Longfleet Road, Poole, Dorset BH15 2JB, United Kingdom
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 16, Siena, Italy
| | - Erwan Donal
- Department of Cardiology, CHU Rennes, Inserm, LTSI-UMR 1099, Université de Rennes 1, Rennes F-35000, France
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, The University of Edinburgh & Edinburgh Heart Centre, Chancellors Building Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Frank A Flachskampf
- Dept. of Med. Sciences, Uppsala University, and Cardiology and Clinical Physiology, Uppsala University Hospital, Akademiska, 751 85 Uppsala, Sweden
| | - Alicia M Maceira
- Cardiovascular Imaging Unit, Ascires Biomedical Group Colon St, 1, Valencia 46004, Spain; Department of Medicine, Health Sciences School, CEU Cardenal Herrera University, Lluís Vives St. 1, 46115 Alfara del Patriarca, Valencia, Spain
| | - Denisa Muraru
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149, Milan, Italy
| | - Danilo Neglia
- Fondazione Toscana G. Monasterio-Via G. Moruzzi 1, Pisa, Italy
| | - Agnès Pasquet
- Service de Cardiologie, Département Cardiovasculaire, Cliniques Universitaires St. Luc, and Division CARD, Institut de Recherche Expérimental et Clinique (IREC), UCLouvain, Av Hippocrate 10, B-1200 Brussels, Belgium
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | - Bernhard L Gerber
- Department of Biomedical Imaging Science, Leeds, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
6
|
Mangion K, Loughrey CM, Auger DA, McComb C, Lee MM, Corcoran D, McEntegart M, Davie A, Good R, Lindsay M, Eteiba H, Rocchiccioli P, Watkins S, Hood S, Shaukat A, Haig C, Epstein FH, Berry C. Displacement Encoding With Stimulated Echoes Enables the Identification of Infarct Transmurality Early Postmyocardial Infarction. J Magn Reson Imaging 2020; 52:1722-1731. [PMID: 32720405 DOI: 10.1002/jmri.27295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Segmental extent of infarction assessed by late gadolinium enhancement (LGE) imaging early post-ST-segment elevation myocardial infarction (STEMI) has utility in predicting left ventricular functional recovery. HYPOTHESIS We hypothesized that segmental circumferential strain with displacement encoding with stimulated echoes (DENSE) would be a stronger predictor of infarct transmurality than feature-tracking strain, and noninferior to extracellular volume fraction (ECV). STUDY TYPE Prospective. POPULATION Fifty participants (mean ± SD, 59 ± 9 years, 40 [80%] male) underwent cardiac MRI on day 1 post-STEMI. FIELD-STRENGTH/SEQUENCES 1.5T/cine, DENSE, T1 mapping, ECV, LGE. ASSESSMENT Two observers assessed segmental percentage LGE extent, presence of microvascular obstruction (MVO), circumferential and radial strain with DENSE and feature-tracking, T1 relaxation times, and ECV. STATISTICAL TESTS Normality was tested using the Shapiro-Wilk test. Skewed distributions were analyzed utilizing Mann-Whitney or Kruskal-Wallis tests and normal distributed data using independent t-tests. Diagnostic cutoff values were identified using the Youden index. The difference in area under the curve was compared using the z-statistic. RESULTS Segmental circumferential strain with DENSE was associated with the extent of infarction ≥50% (AUC [95% CI], cutoff value = 0.9 [0.8, 0.9], -10%) similar to ECV (AUC = 0.8 [0.8, 0.9], 37%) (P = 0.117) and superior to feature-tracking circumferential strain (AUC = 0.7[0.7, 0.8], -19%) (P < 0.05). For the detection of segmental infarction ≥75%, circumferential strain with DENSE (AUC = 0.9 [0.8, 0.9], -10%) was noninferior to ECV (AUC = 0.8 [0.7, 0.9], 42%) (P = 0.132) and superior to feature-tracking (AUC = 0.7 [0.7, 0.8], -13%) (P < 0.05). For MVO detection, circumferential strain with DENSE (AUC = 0.8 [0.8, 0.9], -12%) was superior to ECV (AUC = 0.8 [0.7, 0.8] 34%) (P < 0.05) and feature-tracking (AUC = 0.7 [0.6, 0.7] -21%) (P < 0.05). DATA CONCLUSION Circumferential strain with DENSE is a functional measure of infarct severity and may remove the need for gadolinium contrast agents in some circumstances. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 5 J. MAGN. RESON. IMAGING 2020;52:1722-1731.
Collapse
Affiliation(s)
- Kenneth Mangion
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Daniel A Auger
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Christie McComb
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,Clinical Physics, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Matthew M Lee
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - David Corcoran
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Margaret McEntegart
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Andrew Davie
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Richard Good
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Mitchell Lindsay
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Hany Eteiba
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Paul Rocchiccioli
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Stuart Watkins
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Stuart Hood
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Aadil Shaukat
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Caroline Haig
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Left ventricular systolic dysfunction because of coronary artery disease is common, and ascertaining which patients will benefit from revascularization can be challenging. Viability testing is an accepted means by which to base this decision, with multiple noninvasive imaging modalities available for this purpose. This review aims to highlight the key role of cardiac magnetic resonance in myocardial viability assessment, with a focus on its unique strengths over other imaging modalities. RECENT FINDINGS Transmural extent of hyperenhancement with late gadolinium imaging has been shown to be greater acutely in ST elevation myocardial infarction patients undergoing primary percutaneous coronary intervention and regress at follow-up studies. An explanation for this reported phenomenon and an argument against redefining CMR viability criteria in the acute setting will be offered. SUMMARY Although not universally available, cardiac magnetic resonance is an exceptionally powerful and well tolerated imaging modality that should be considered when viability testing will influence patient management. Although observational outcomes data suggest a promising prognostic role for viability, randomized studies in this area are needed.
Collapse
|
8
|
Hausenloy DJ, Lim MX, Chan MHH, Paradies V, Francis R, Kotecha T, Knight DS, Fontana M, Kellman P, Moon JC, Bulluck H. Interrogation of the infarcted and salvaged myocardium using multi-parametric mapping cardiovascular magnetic resonance in reperfused ST-segment elevation myocardial infarction patients. Sci Rep 2019; 9:9056. [PMID: 31227761 PMCID: PMC6588689 DOI: 10.1038/s41598-019-45449-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
We used multi-parametric cardiovascular magnetic resonance (CMR) mapping to interrogate the myocardium following ST-segment elevation myocardial infarction (STEMI). Forty-eight STEMI patients underwent CMR at 4 ± 2 days. One matching short-axis slice of native T1 map, T2 map, late gadolinium enhancement (LGE), and automated extracellular volume fraction (ECV) maps per patient were analyzed. Manual regions-of-interest were drawn within the infarcted, the salvaged and the remote myocardium. A subgroup analysis was performed in those without MVO and with ≤75% transmural extent of infarct. For the whole cohort, T1, T2 and ECV in both the infarcted and the salvaged myocardium were significantly higher than in the remote myocardium. T1 and T2 could not differentiate between the salvaged and the infarcted myocardium, but ECV was significantly higher in the latter. In the subgroup analysis of 15 patients, similar findings were observed for T1 and T2. However, there was only a trend towards ECVsalvage being higher than ECVremote. In the clinical setting, current native T1 and T2 methods with the specific voxel sizes at 1.5 T could not differentiate between the infarcted and salvaged myocardium, whereas ECV could differentiate between the two. ECV was also higher in the salvaged myocardium when compared to the remote myocardium.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, United Kingdom.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Mei Xing Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore
| | - Mervyn H H Chan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore
| | - Valeria Paradies
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Rohin Francis
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, United Kingdom.,National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Tushar Kotecha
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Daniel S Knight
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Marianna Fontana
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Peter Kellman
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | - James C Moon
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Heerajnarain Bulluck
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, United Kingdom. .,Golden Jubilee National Hospital, Clydebank, Glasgow, United Kingdom.
| |
Collapse
|
9
|
Dastidar AG, Harries I, Pontecorboli G, Bruno VD, De Garate E, Moret C, Baritussio A, Johnson TW, McAlindon E, Bucciarelli-Ducci C. Native T1 mapping to detect extent of acute and chronic myocardial infarction: comparison with late gadolinium enhancement technique. Int J Cardiovasc Imaging 2018; 35:517-527. [DOI: 10.1007/s10554-018-1467-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/10/2018] [Indexed: 12/28/2022]
|