1
|
Gayrard V, Viguie C, Cabaton N, Person E, Zalko D, Grandin F, Berrebi A, Metsu D, Toutain PL, Picard-Hagen N. Importance of relative binding of bisphenol A and bisphenol S to plasma proteins for predicting their in vivo potencies. Toxicol Appl Pharmacol 2023; 466:116477. [PMID: 36940861 DOI: 10.1016/j.taap.2023.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Many studies suggest that the potential impact of bisphenol S (BPS) as an endocrine disruptor is comparable to that of bisphenol A (BPA). However, in vitro-to-in vivo and from animal to human extrapolations require knowledge of the plasma free fraction of the active endocrine compounds. The present study aimed to characterise BPA and BPS binding to plasma proteins both in humans and different animal species. The plasma protein binding of BPA and BPS was assessed by equilibrium dialysis in plasma from adult female mice, rats, monkeys, early and late pregnant women as well as paired cord blood, early and late pregnant sheep and foetal sheep. The fraction of free BPA was independent of plasma concentrations and ranged between 4% and 7% in adults. This fraction was 2 to 3.5 times lower than that of BPS in all species except sheep, ranging from 3% to 20%. Plasma binding of BPA and BPS was not affected by the stage of pregnancy, BPA and BPS free fractions representing about 4% and 9% during early and late human pregnancy, respectively. These fractions were lower than the free fractions of BPA (7%) and BPS (12%) in cord blood. Our results suggest that similarly to BPA, BPS is extensively bound to proteins, mainly albumin. The higher fraction of free BPS compared to BPA may have implications for human exposure assessment since BPS free plasma concentrations are expected to be 2 to 3.5 times higher than that of BPA for similar plasma concentration.
Collapse
Affiliation(s)
- Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Catherine Viguie
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nicolas Cabaton
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Elodie Person
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Daniel Zalko
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Flore Grandin
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Alain Berrebi
- Service de Gynécologie Obstétrique, Hôpital Paule de Viguier, CHU de Toulouse, 330 avenue de Grande Bretagne, 31059 Toulouse, France
| | - David Metsu
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Pierre-Louis Toutain
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France; The Royal Veterinary College, University of London, London, United Kingdom
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
2
|
Guignard D, Canlet C, Tremblay-Franco M, Chaillou E, Gautier R, Gayrard V, Picard-Hagen N, Schroeder H, Jourdan F, Zalko D, Viguié C, Cabaton NJ. Gestational exposure to bisphenol A induces region-specific changes in brain metabolomic fingerprints in sheep. ENVIRONMENT INTERNATIONAL 2022; 165:107336. [PMID: 35700571 DOI: 10.1016/j.envint.2022.107336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Fetal brain development depends on maternofetal thyroid function. In rodents and sheep, perinatal BPA exposure is associated with maternal and/or fetal thyroid disruption and alterations in central nervous system development as demonstrated by metabolic modulations in the encephala of mice. We hypothesized that a gestational exposure to a low dose of BPA affects maternofetal thyroid function and fetal brain development in a region-specific manner. Pregnant ewes, a relevant model for human thyroid and brain development, were exposed to BPA (5 µg/kg bw/d, sc). The thyroid status of ewes during gestation and term fetuses at delivery was monitored. Fetal brain development was assessed by metabolic fingerprints at birth in 10 areas followed by metabolic network-based analysis. BPA treatment was associated with a significant time-dependent decrease in maternal TT4 serum concentrations. For 8 fetal brain regions, statistical models allowed discriminating BPA-treated from control lambs. Metabolic network computational analysis revealed that prenatal exposure to BPA modulated several metabolic pathways, in particular excitatory and inhibitory amino-acid, cholinergic, energy and lipid homeostasis pathways. These pathways might contribute to BPA-related neurobehavioral and cognitive disorders. Discrimination was particularly clear for the dorsal hippocampus, the cerebellar vermis, the dorsal hypothalamus, the caudate nucleus and the lateral part of the frontal cortex. Compared with previous results in rodents, the use of a larger animal model allowed to examine specific brain areas, and generate evidence of the distinct region-specific effects of fetal BPA exposure on the brain metabolome. These modifications occur concomitantly to subtle maternal thyroid function alteration. The functional link between such moderate thyroid changes and fetal brain metabolomic fingerprints remains to be determined as well as the potential implication of other modes of action triggered by BPA such as estrogenic ones. Our results pave the ways for new scientific strategies aiming at linking environmental endocrine disruption and altered neurodevelopment.
Collapse
Affiliation(s)
- Davy Guignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Elodie Chaillou
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Roselyne Gautier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Véronique Gayrard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Henri Schroeder
- Université de Lorraine, INSERM U1256, NGERE, Nutrition Génétique et Exposition aux Risques Environnementaux, 54000 Nancy, France
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Catherine Viguié
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicolas J Cabaton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
3
|
Loup B, Poumerol E, Jouneau L, Fowler PA, Cotinot C, Mandon-Pépin B. BPA disrupts meiosis I in oogonia by acting on pathways including cell cycle regulation, meiosis initiation and spindle assembly. Reprod Toxicol 2022; 111:166-177. [PMID: 35667523 DOI: 10.1016/j.reprotox.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
The negative in utero effects of bisphenol A (BPA) on female reproduction are of concern since the ovarian reserve of primordial follicles is constituted during the fetal period. This time-window is difficult to access, particularly in humans. Animal models and explant culture systems are, therefore, vital tools for investigating EDC impacts on primordial germ cells (PGCs). Here, we investigated the effects of BPA on prophase I meiosis in the fetal sheep ovary. We established an in vitro model of early gametogenesis through retinoic acid (RA)-induced differentiation of sheep PGCs that progressed through meiosis. Using this system, we demonstrated that BPA (3×10-7 M & 3×10-5M) exposure for 20 days disrupted meiotic initiation and completion in sheep oogonia and induced transcriptomic modifications of exposed explants. After exposure to the lowest concentrations of BPA (3×10-7M), only 2 probes were significantly up-regulated corresponding to NR2F1 and TMEM167A transcripts. In contrast, after exposure to 3×10-5M BPA, 446 probes were deregulated, 225 were down- and 221 were up-regulated following microarray analysis. Gene Ontology (GO) annotations of differentially expressed genes revealed that pathways mainly affected were involved in cell-cycle phase transition, meiosis and spindle assembly. Differences in key gene expression within each pathway were validated by qRT-PCR. This study provides a novel model for direct examination of the molecular pathways of environmental toxicants on early female gametogenesis and novel insights into the mechanisms by which BPA affects meiosis I. BPA exposure could thereby disrupt ovarian reserve formation by inhibiting meiotic progression of oocytes I and consequently by increasing atresia of primordial follicles containing defective oocytes.
Collapse
Affiliation(s)
- Benoit Loup
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Elodie Poumerol
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Corinne Cotinot
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | | |
Collapse
|
4
|
Gély CA, Lacroix MZ, Morin M, Vayssière C, Gayrard V, Picard-Hagen N. Comparison of the materno-fetal transfer of fifteen structurally related bisphenol analogues using an ex vivo human placental perfusion model. CHEMOSPHERE 2021; 276:130213. [PMID: 34088095 DOI: 10.1016/j.chemosphere.2021.130213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/14/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Regulatory measures and public concerns regarding bisphenol A (BPA) have led to its replacement by a variety of alternatives in consumer products. Due to their structural similarity to BPA, these alternatives are under surveillance, however, for potential endocrine disruption. Understanding the materno-fetal transfer of these BPA-related alternatives across the placenta is therefore crucial to assess prenatal exposure risks. The objective of the study was to assess and compare the placental transfer of a set of 15 selected bisphenols (BPs) (BP 4-4, BPA, BPAF, BPAP, 3-3 BPA, BPB, BPBP, BPC, BPE, BPF, BPFL, BPM, BPP, BPS and BPZ) using the ex vivo human placental perfusion model. The UHPLC-MS/MS method for simultaneous quantification of these BPs in perfusion media, within a concentration range of 0.003-5 μM, was able to measure placenta transfer rates as low as 0.6%-4%. Despite their structural similarities, these BPs differed greatly in placental transport efficiency. The placental transfer rates of BP4-4, BPAP, BPE, BPF, 3-3BPA, BPB, BPA were similar to that of antipyrine, indicating that their main transport mechanism was passive diffusion. By contrast, the placental transfer rates of BPFL and BPS were very limited, and intermediate for BPBP, BPZ, BPC, BPM, BPP and BPAF, suggesting weak diffusional permeability and/or that their passage might involve efflux transport. These placental transfer data will be particularly useful for predicting the fetal exposure of this important class of emerging contaminants.
Collapse
Affiliation(s)
- Clémence A Gély
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | - Mathieu Morin
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France.
| | - Christophe Vayssière
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France; UMR 1027 INSERM, Team SPHERE, Université de Toulouse, France.
| | - Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
5
|
Gély CA, Huesca A, Picard-Hagen N, Toutain PL, Berrebi A, Gauderat G, Gayrard V, Lacroix MZ. A new LC/MS method for specific determination of human systemic exposure to bisphenol A, F and S through their metabolites: Application to cord blood samples. ENVIRONMENT INTERNATIONAL 2021; 151:106429. [PMID: 33636497 DOI: 10.1016/j.envint.2021.106429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Due to restriction of the use of BPA, several structural analogues such as BPS and BPF have been proposed for its replacement in many consumer products. This has increased the prevalence of BPS and BPF in urine from tested cohorts. However, these substitutes have similar endocrine disrupting properties to BPA, particularly on reproductive and metabolic functions, which suggests that fetal exposure to these analogues could be of concern for human health. Bisphenols (BPs) are mainly metabolized to glucuronides (BP-Gs), which are considered as inactive but provide a relevant marker of fetal exposure during pregnancy. In most instances, these metabolites are indirectly quantified after hydrolysis and measurement of the corresponding native BPs, which may lead to bias due to spurious BPs contamination during blood collection and/or analyses. We have developed a new method for direct quantification of BP-Gs, which has the advantage of not being affected by errors related to the presence of BPs. First, BP-Gs were extracted from plasma by anion exchange solid phase extraction. They were then labelled with dansyl chloride, using experimentally-optimized incubation conditions, after which the dansyl derivatives were injected into an on-line SPE-UHPLC/MS/MS system. The performance of the method, in terms of sensitivity, precision and accuracy, was evaluated in plasma over a concentration range of 0.05-5 ng/mL. The intra- and inter-day CV% precision were lower than 20% with accuracies ranging from 93% to 115%. The limit of quantification was set at 0.05 ng/mL. The method was then applied to measure BP-Gs in forty-four cord plasma samples. Although no BPF-G was found, BPA-G and BPS-G was determined in almost half of the cord plasma samples with concentration ranges nd-0.089 ng/mL and nd-0.586 ng/mL, respectively.
Collapse
Affiliation(s)
- C A Gély
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France; ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - A Huesca
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France.
| | - N Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - P L Toutain
- The Royal Veterinary College, University of London, London, United Kingdom.
| | - A Berrebi
- Hôpital Paule de Viguier, Service de Gynécologie Obstétrique, CHU Toulouse, F-31059 Toulouse, France.
| | - G Gauderat
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - V Gayrard
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - M Z Lacroix
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France.
| |
Collapse
|
6
|
Lifetime dietary exposure to bisphenol A in the general population and during pregnancy: Foetal exposure and health risk assessment. Int J Hyg Environ Health 2021; 234:113733. [PMID: 33740565 DOI: 10.1016/j.ijheh.2021.113733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022]
Abstract
Bisphenol A is a well-known chemical substance triggering reprotoxic and endocrine disruptor effects. Pregnancy is considered as a critical period of exposure to BPA because of the foetal sensitivity to endocrine disruption. Because of its wide use in food packaging, BPA is found in common foods and in infant formulae. We used a lifetime approach to simulate dietary exposure trajectories of a French population and to assess the associated health risk. Moreover, a semi-physiological based toxicokinetic model was used to simulate the maternal-foetal exchanges of BPA during pregnancy. Metabolism was taken into account by considering the glucuronidation of BPA by the foetal-placental unit, as well as the reactivation of BPA-glucuronide into BPA in the foetal compartment. From maternal critical daily exposures defined by ANSES based on effects for different endpoints of BPA in the unborn child (i.e. 0.083, 0.17, 0.29 and 0.33 μg/kg bw/d, respectively based on effects on mammary gland, brain and behaviour, metabolism and obesity and female reproductive system), resulting concentrations of BPA in the foetal compartment were estimated and health risk was assessed for the sub-population of unborn children. This work leads to the conclusion that while a health risk due to dietary exposures of the general population can be excluded, this is not the case for the sub-population of pregnant women, in view of the levels of foetal exposure to BPA.
Collapse
|
7
|
Viguié C, Chaillou E, Gayrard V, Picard-Hagen N, Fowler PA. Toward a better understanding of the effects of endocrine disrupting compounds on health: Human-relevant case studies from sheep models. Mol Cell Endocrinol 2020; 505:110711. [PMID: 31954824 DOI: 10.1016/j.mce.2020.110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/25/2022]
Abstract
There are many challenges to overcome in order to properly understand both the exposure to, and effects of, endocrine disruptors (EDs). This is particularly true with respect to fetal life where ED exposures are a major issue requiring toxicokinetic studies of materno-fetal exchange and identification of pathophysiological consequences. The sheep, a large, monotocous, species, is very suitable for in utero fetal catheterization allowing a modelling approach predictive of human fetal exposure. Predicting adverse effects of EDs on human health is frequently impeded by the wide interspecies differences in the regulation of endocrine functions and their effects on biological processes. Because of its similarity to humans as regards gestational and thyroid physiologies and brain ontogeny, the sheep constitutes a highly appropriate model to move one step further on thyroid disruptor hazard assessment. As a grazing animal, the sheep has also proven to be useful in the evaluation of the consequences of chronic environmental exposure to "real-life" complex mixtures at different stages of the reproductive life cycle.
Collapse
Affiliation(s)
- Catherine Viguié
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France.
| | - Elodie Chaillou
- PRC, INRAE Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Véronique Gayrard
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
8
|
Vyas AK, Veiga-Lopez A, Ye W, Abi Salloum B, Abbott DH, Yang S, Liao C, Kannan K, Padmanabhan V. Developmental programming: Sex-specific programming of growth upon prenatal bisphenol A exposure. J Appl Toxicol 2019; 39:1516-1531. [PMID: 31338854 DOI: 10.1002/jat.3836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
In both human and animals, in utero exposure to bisphenol A (BPA), an endocrine-disrupting chemical used in the production of plastics and epoxy resins, has been shown to affect offspring reproductive and metabolic health during adult life. We hypothesized that the effect of prenatal exposure to environmentally relevant doses of BPA will be evident during fetal organogenesis and fetal/postnatal growth trajectory. Pregnant ewes were administered BPA subcutaneously from 30 to 90 days of gestation (term 147 days). Fetal organ weight, anthropometric measures, maternal/fetal hormones and postnatal growth trajectory were measured in both sexes. Gestational BPA administration resulted in higher accumulation in male than female fetuses only at fetal day 65, with minimal impact on fetal/maternal steroid milieu in both sexes at both time points. BPA-treated male fetuses were heavier than BPA-treated female fetuses at fetal day 90 whereas this sex difference was not evident in the control group. At the organ level, liver weight was reduced in prenatal BPA-treated female fetuses, while heart and thyroid gland weights were increased in BPA-treated male fetuses relative to their sex-matched control groups. Prenatal BPA treatment also altered the postnatal growth trajectory in a sex-specific manner. Males grew slower during the early postnatal period and caught up later. Females, in contrast, demonstrated the opposite growth trend. Prenatal BPA-induced changes in fetal organ differentiation and early life growth strongly implicate translational relevance of in utero contributions to reproductive and metabolic defects previously reported in adult female offspring.
Collapse
Affiliation(s)
- Arpita Kalla Vyas
- College of Medicine, California Northstate University, Elk Grove, California
| | | | - Wen Ye
- Biostatistics Department, School of Public Health, Ann Arbor, Michigan
| | | | - David H Abbott
- Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Chunyang Liao
- New York State Department of Health, Wadsworth Center, Albany, New York
| | | | | |
Collapse
|
9
|
Gounden V, Zain Warasally M, Magwai T, Naidoo R, Chuturgoon A. A pilot study: Bisphenol-A and Bisphenol-A glucuronide levels in mother and child pairs in a South African population. Reprod Toxicol 2019; 89:93-99. [PMID: 31302198 DOI: 10.1016/j.reprotox.2019.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
Exposure to Bisphenol A (BPA) during early development particularly in- utero has been linked to a wide range of pathology. The aim of this study was to determine serum levels of BPA and its naturally occurring metabolite BPA-glucuronide (BPA-g) in South African mother-child pairs. METHOD Third-trimester serum maternal samples and matching cord blood samples were analysed for BPA and BPA-g using LC-MS/MS. RESULTS Ninety maternal and child pairs were analysed. BPA was detectable in more than 25% of maternal and cord blood samples. Spearman correlation demonstrated significant positive correlation between maternal and child BPA and BPA-g levels with correlation coefficients of 0.892 and 0.744, respectively. A significant positive association between cord BPA levels and child birth-weight (p = 0.02) as well as with maternal BMI (p = 0.04) was noted. CONCLUSION This is the first study to describe the presence of detectable BPA levels using LC-MS/MS methodology in a South African population.
Collapse
Affiliation(s)
- Verena Gounden
- Department of Chemical Pathology, University of KwaZulu-Natal and National Health Laboratory Services, Inkosi Albert Luthuli Central Hospital, Durban, South Africa.
| | - Mohamed Zain Warasally
- Department of Chemical Pathology, National Health Laboratory Services, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Thabo Magwai
- Department of Chemical Pathology, National Health Laboratory Services, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Rajen Naidoo
- Department of Occupational Health, University of KwaZulu-Natal, Durban, South Africa
| | - Anil Chuturgoon
- Department of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Gayrard V, Lacroix MZ, Grandin FC, Collet SH, Mila H, Viguié C, Gély CA, Rabozzi B, Bouchard M, Léandri R, Toutain PL, Picard-Hagen N. Oral Systemic Bioavailability of Bisphenol A and Bisphenol S in Pigs. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:77005. [PMID: 31313948 PMCID: PMC6792350 DOI: 10.1289/ehp4599] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Given its hormonal activity, bisphenol S (BPS) as a substitute for bisphenol A (BPA) could actually increase the risk of endocrine disruption if its toxicokinetic (TK) properties, namely its oral availability and systemic persistency, were higher than those of BPA. OBJECTIVES The TK behavior of BPA and BPS was investigated by administering the two compounds by intravenous and oral routes in piglet, a known valid model for investigating oral TK. METHODS Experiments were conducted in piglets to evaluate the kinetics of BPA, BPS, and their glucuronoconjugated metabolites in plasma and urine after intravenous administration of BPA, BPS, and BPS glucuronide (BPSG) and gavage administration of BPA and BPS. A population semiphysiologically based TK model describing the disposition of BPA and BPS and their glucuronides was built from these data to estimate the key TK parameters that drive the internal exposure to active compounds. RESULTS The data indicated that almost all the BPS oral dose was absorbed and transported into the liver where only 41% of BPS was glucuronidated, leading to a systemic bioavailability of 57.4%. In contrast, only 77% of the oral dose of BPA was absorbed and underwent an extensive first-pass glucuronidation either in the gut (44%) or in the liver (53%), thus accounting for the low systemic bioavailability of BPA (0.50%). Due to the higher systemic availability of BPS, in comparison with BPA, and its lower plasma clearance (3.5 times lower), the oral BPS systemic exposure was on average about 250 times higher than for BPA for an equal oral molar dose of the two compounds. CONCLUSION Given the similar digestive tracts of pigs and humans, our results suggest that replacing BPA with BPS will likely lead to increased internal exposure to an endocrine-active compound that would be of concern for human health. https://doi.org/10.1289/EHP4599.
Collapse
Affiliation(s)
- Véronique Gayrard
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Marlène Z Lacroix
- Therapeutic Innovations and Resistance (INTHERES), Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Flore C Grandin
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Séverine H Collet
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Hanna Mila
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Catherine Viguié
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Clémence A Gély
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Blandine Rabozzi
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Michèle Bouchard
- Département de santé environnementale et santé au travail, Institut de recherche en santé publique de l'Université de Montréal (IRSPUM), Université de Montréal, Montréal, Canada
| | - Roger Léandri
- EA 3694 Human Fertility Research Group, Toulouse University Hospital, Toulouse, France
| | - Pierre-Louis Toutain
- Therapeutic Innovations and Resistance (INTHERES), Université de Toulouse, INRA, ENVT, Toulouse, France
- The Royal Veterinary College, University of London, London, United Kingdom
| | - Nicole Picard-Hagen
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| |
Collapse
|
11
|
Sarigiannis DA, Karakitsios S, Dominguez-Romero E, Papadaki K, Brochot C, Kumar V, Schuhmacher M, Sy M, Mielke H, Greiner M, Mengelers M, Scheringer M. Physiology-based toxicokinetic modelling in the frame of the European Human Biomonitoring Initiative. ENVIRONMENTAL RESEARCH 2019; 172:216-230. [PMID: 30818231 DOI: 10.1016/j.envres.2019.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Given the opportunities provided by internal dosimetry modelling in the interpretation of human biomonitoring (HBM) data, the assessment of the links between exposure to chemicals and observed HBM data can be effectively supported by PBTK modelling. This paper gives a comprehensive review of available human PBTK models for compounds selected as a priority by the European Human Biomonitoring Initiative (HBM4EU). We highlight their advantages and deficiencies and suggest steps for advanced internal dose modelling. The review of the available PBTK models highlighted the conceptual differences between older models compared to the ones developed recently, reflecting commensurate differences in research questions. Due to the lack of coordinated strategies for deriving useful biomonitoring data for toxicokinetic properties, significant problems in model parameterisation still remain; these are further increased by the lack of human toxicokinetic data due to ethics issues. Finally, questions arise as well as to the extent they are really representative of interindividual variability. QSARs for toxicokinetic properties is a complementary approach for PBTK model parameterisation, especially for data poor chemicals. This approach could be expanded to model chemico-biological interactions such as intestinal absorption and renal clearance; this could serve the development of more complex generic PBTK models that could be applied to newly derived chemicals. Another gap identified is the framework for mixture interaction terms among compounds that could eventually interact in metabolism. From the review it was concluded that efforts should be shifted toward the development of generic multi-compartmental and multi-route models, supported by targeted biomonitoring coupled with parameterisation by both QSAR approach and experimental (in-vivo and in-vitro) data for newly developed and data poor compounds.
Collapse
Affiliation(s)
- Dimosthenis A Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece.
| | - Spyros Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | | | - Krystalia Papadaki
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bano U, Memon S, Shahani MY, Shaikh P, Gul S. Epigenetic effects of in utero bisphenol A administration: Diabetogenic and atherogenic changes in mice offspring. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:521-528. [PMID: 31217932 PMCID: PMC6556512 DOI: 10.22038/ijbms.2019.29909.7357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Bisphenol A (BPA) that is a monomer of plastic products may possibly interfere with epigenetics and be involved in onset and progression of several diseases. This study was aimed to detect the epigenetic effects of in utero BPA exposure in mice offspring. MATERIALS AND METHODS All experiments were performed according to the national guidelines for laboratory animals and after ethical approval. Thirty adult BALB/c female mice were divided into 3 equal groups, G1 (controls), G2 (ethanol 0.10 ml/100ml of PBS so that final concentration would be 0.01%) vehicle control and G3 (BPA 10 mg/kg). Chemicals were given twice a week throughout the pregnancy. Once delivered at term, female offspring were observed for body weight, behavior and movements. Blood glucose, serum insulin, cholesterol and high-density lipoprotein cholesterol (HDLc) were measured at 5 and 15 months postnatal. Animals were sacrificed at 15 months and pancreas, kidney, adipose tissue and uterine tissue were taken and stained with either Hematoxylin and eosin (H & E) or immunostaining and examined under light microscope. RESULTS Offspring of group G3 revealed abnormal changes of body weight, behavior and movements. Blood glucose, serum insulin, cholesterol and HDLc were high in group G3 offspring compared to controls. H & E staining showed changes in the parenchyma of pancreas, kidneys and uterus, which were confirmed by staining with anti- islet-1, kidney-specific (Ksp) cadherin, and anti- MLH antibody. CONCLUSION In utero exposure of BPA exerts diabetogenic and atherogenic effects with less parenchymal tissue in endocrine pancreas, kidney and uterus.
Collapse
Affiliation(s)
- Umbreen Bano
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Samreen Memon
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan,Corresponding author: Samreen Memon. Department of Anatomy, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan. Tel/Fax: +92-229213352;
| | - Muhammad Yaqoob Shahani
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Pashmina Shaikh
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Sameena Gul
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
13
|
Grandin FC, Lacroix MZ, Gayrard V, Gauderat G, Mila H, Toutain PL, Picard-Hagen N. Bisphenol S instead of Bisphenol A: Toxicokinetic investigations in the ovine materno-feto-placental unit. ENVIRONMENT INTERNATIONAL 2018; 120:584-592. [PMID: 30212803 DOI: 10.1016/j.envint.2018.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol S (BPS) is widely used as a substitute for Bisphenol A in consumer products. Despite its potential endocrine-disrupting effects and widespread exposure, toxicokinetic data, particularly during the critical period of pregnancy, are not available for BPS. The objectives of our study were to evaluate the mechanisms determining fetal exposure to BPS and to BPS glucuronide (BPSG) and to compare them with those prevailing for BPA. The disposition of BPS and BPSG was evaluated in the materno-fetal unit of the catheterized pregnant ewe model, following intravenous administrations of BPS and BPSG to mothers and their fetuses. In a second experiment, the rate of BPS accumulation in the fetal compartment was determined under steady-state conditions after repeated intravenous BPS administrations to the mother. In the maternal compartment, BPS was mainly metabolized into BPSG and totally eliminated in urine. Only 0.40% of the maternal dose was transferred to the fetus. However, once in the fetal compartment, 26% of the fetal dose was rapidly eliminated through placental transfer, while 46% of BPS was metabolized into BPSG which remained trapped in the fetal compartment. Thus, the elimination of BPSG from the fetal compartment required its back-conversion into bioactive BPS, leading to an 87% enhancement of the fetal BPS exposure. Our findings demonstrate that, despite the low materno-fetal placental transfer of BPS, this substitute for BPA is able to accumulate in the fetal compartment after repeated maternal exposure, leading to chronic fetal exposure to BPS in a range of concentrations similar to those of BPA.
Collapse
Affiliation(s)
- Flore C Grandin
- Toxalim, INRA (Institut National de la Recherche Agronomique), Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France.
| | | | - Véronique Gayrard
- Toxalim, INRA (Institut National de la Recherche Agronomique), Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France.
| | - Glenn Gauderat
- Toxalim, INRA (Institut National de la Recherche Agronomique), Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Hanna Mila
- Toxalim, INRA (Institut National de la Recherche Agronomique), Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France.
| | | | - Nicole Picard-Hagen
- Toxalim, INRA (Institut National de la Recherche Agronomique), Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France.
| |
Collapse
|
14
|
Hecht M, Veigure R, Couchman L, S Barker CI, Standing JF, Takkis K, Evard H, Johnston A, Herodes K, Leito I, Kipper K. Utilization of data below the analytical limit of quantitation in pharmacokinetic analysis and modeling: promoting interdisciplinary debate. Bioanalysis 2018; 10:1229-1248. [PMID: 30033744 DOI: 10.4155/bio-2018-0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traditionally, bioanalytical laboratories do not report actual concentrations for samples with results below the LOQ (BLQ) in pharmacokinetic studies. BLQ values are outside the method calibration range established during validation and no data are available to support the reliability of these values. However, ignoring BLQ data can contribute to bias and imprecision in model-based pharmacokinetic analyses. From this perspective, routine use of BLQ data would be advantageous. We would like to initiate an interdisciplinary debate on this important topic by summarizing the current concepts and use of BLQ data by regulators, pharmacometricians and bioanalysts. Through introducing the limit of detection and evaluating its variability, BLQ data could be released and utilized appropriately for pharmacokinetic research.
Collapse
Affiliation(s)
- Max Hecht
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Rūta Veigure
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Lewis Couchman
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Charlotte I S Barker
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Paediatric Infectious Diseases Unit, St George's University Hospitals NHS Foundation Trust, London, SW17 0RE, UK
| | - Joseph F Standing
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Kalev Takkis
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Hanno Evard
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Atholl Johnston
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Clinical Pharmacology, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Koit Herodes
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Ivo Leito
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Karin Kipper
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|