1
|
MacNair CR, Rutherford ST, Tan MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 2024; 22:262-275. [PMID: 38082064 DOI: 10.1038/s41579-023-00993-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
Resistance threatens to render antibiotics - which are essential for modern medicine - ineffective, thus posing a threat to human health. The discovery of novel classes of antibiotics able to overcome resistance has been stalled for decades, with the developmental pipeline relying almost entirely on variations of existing chemical scaffolds. Unfortunately, this approach has been unable to keep pace with resistance evolution, necessitating new therapeutic strategies. In this Review, we highlight recent efforts to discover non-traditional antimicrobials, specifically describing the advantages and limitations of antimicrobial peptides and macrocycles, antibodies, bacteriophages and antisense oligonucleotides. These approaches have the potential to stem the tide of resistance by expanding the physicochemical property space and target spectrum occupied by currently approved antibiotics.
Collapse
Affiliation(s)
- Craig R MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
2
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
3
|
Seixas AMM, Gomes SC, Silva C, Moreira LM, Leitão JH, Sousa SA. A Polyclonal Antibody against a Burkholderia cenocepacia OmpA-like Protein Strongly Impairs Pseudomonas aeruginosa and B. multivorans Virulence. Vaccines (Basel) 2024; 12:207. [PMID: 38400190 PMCID: PMC10892634 DOI: 10.3390/vaccines12020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Despite advances in therapies, bacterial chronic respiratory infections persist as life-threatening to patients suffering from cystic fibrosis (CF). Pseudomonas aeruginosa and bacteria of the Burkholderia cepacia complex are among the most difficult of these infections to treat, due to factors like their resistance to multiple antibiotics and ability to form biofilms. The lack of effective antimicrobial strategies prompted our search for alternative immunotherapies that can effectively control and reduce those infections among CF patients. Previous work from our group showed that the anti-BCAL2645 goat polyclonal antibody strongly inhibited Burkholderia cenocepacia to adhere and invade cultured epithelial cells. In this work, we showed that the polyclonal antibody anti-BCAL2645 also strongly inhibited the ability of P. aeruginosa to form biofilms, and to adhere and invade the human bronchial epithelial cell line CFBE41o-. The polyclonal antibody also inhibited, to a lesser extent, the ability of B. multivorans to adhere and invade the human bronchial epithelial cell line CFBE41o. We also show that the ability of B. cenocepacia, P. aeruginosa and B. multivorans to kill larvae of the Galleria mellonella model of infection was impaired when bacteria were incubated with the anti-BCAL2645 antibody prior to the infection. Our findings show that an antibody against BCAL2645 possesses a significant potential for the development of new immunotherapies against these three important bacterial species capable of causing devastating and often lethal infections among CF patients.
Collapse
Affiliation(s)
- António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sara C. Gomes
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carolina Silva
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Leonilde M. Moreira
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Tran TMT, Addison RS, Davis RA, Rehm BHA. Bromotyrosine-Derived Metabolites from a Marine Sponge Inhibit Pseudomonas aeruginosa Biofilms. Int J Mol Sci 2023; 24:10204. [PMID: 37373352 DOI: 10.3390/ijms241210204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pseudomonas aeruginosa forms stable biofilms, providing a major barrier for multiple classes of antibiotics and severely impairing treatment of infected patients. The biofilm matrix of this Gram-negative bacterium is primarily composed of three major exopolysaccharides: alginate, Psl, and Pel. Here, we studied the antibiofilm properties of sponge-derived natural products ianthelliformisamines A-C and their combinations with clinically used antibiotics. Wild-type P. aeruginosa strain and its isogenic exopolysaccharide-deficient mutants were employed to determine the interference of the compounds with biofilm matrix components. We identified that ianthelliformisamines A and B worked synergistically with ciprofloxacin to kill planktonic and biofilm cells. Ianthelliformisamines A and B reduced the minimum inhibitory concentration (MIC) of ciprofloxacin to 1/3 and 1/4 MICs, respectively. In contrast, ianthelliformisamine C (MIC = 53.1 µg/mL) alone exhibited bactericidal effects dose-dependently on both free-living and biofilm populations of wild-type PAO1, PAO1ΔpslA (Psl deficient), PDO300 (alginate overproducing and mimicking clinical isolates), and PDO300Δalg8 (alginate deficient). Interestingly, the biofilm of the clinically relevant mucoid variant PDO300 was more susceptible to ianthelliformisamine C than strains with impaired polysaccharide synthesis. Ianthelliformisamines exhibited low cytotoxicity towards HEK293 cells in the resazurin viability assay. Mechanism of action studies showed that ianthelliformisamine C inhibited the efflux pump of P. aeruginosa. Metabolic stability analyses indicated that ianthelliformisamine C is stable and ianthelliformisamines A and B are rapidly degraded. Overall, these findings suggest that the ianthelliformisamine chemotype could be a promising candidate for the treatment of P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Tam M T Tran
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Russell S Addison
- Preclinical ADME/PK, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Rohan A Davis
- NatureBank, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
5
|
Gillmann KM, Temme JS, Marglous S, Brown CE, Gildersleeve JC. Anti-glycan monoclonal antibodies: Basic research and clinical applications. Curr Opin Chem Biol 2023; 74:102281. [PMID: 36905763 PMCID: PMC10732169 DOI: 10.1016/j.cbpa.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 03/12/2023]
Abstract
Anti-glycan monoclonal antibodies have important applications in human health and basic research. Therapeutic antibodies that recognize cancer- or pathogen-associated glycans have been investigated in numerous clinical trials, resulting in two FDA-approved biopharmaceuticals. Anti-glycan antibodies are also utilized to diagnose, prognosticate, and monitor disease progression, as well as to study the biological roles and expression of glycans. High-quality anti-glycan mAbs are still in limited supply, highlighting the need for new technologies for anti-glycan antibody discovery. This review discusses anti-glycan monoclonal antibodies with applications to basic research, diagnostics, and therapeutics, focusing on recent advances in mAbs targeting cancer- and infectious disease-associated glycans.
Collapse
Affiliation(s)
- Kara M Gillmann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
6
|
Chung J, Eisha S, Park S, Morris AJ, Martin I. How Three Self-Secreted Biofilm Exopolysaccharides of Pseudomonas aeruginosa, Psl, Pel, and Alginate, Can Each Be Exploited for Antibiotic Adjuvant Effects in Cystic Fibrosis Lung Infection. Int J Mol Sci 2023; 24:ijms24108709. [PMID: 37240055 DOI: 10.3390/ijms24108709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In cystic fibrosis (CF), pulmonary infection with Pseudomonas aeruginosa is a cause of increased morbidity and mortality, especially in patients for whom infection becomes chronic and there is reliance on long-term suppressive therapies. Current antimicrobials, though varied mechanistically and by mode of delivery, are inadequate not only due to their failure to eradicate infection but also because they do not halt the progression of lung function decline over time. One of the reasons for this failure is thought to be the biofilm mode of growth of P. aeruginosa, wherein self-secreted exopolysaccharides (EPSs) provide physical protection against antibiotics and an array of niches with resulting metabolic and phenotypic heterogeneity. The three biofilm-associated EPSs secreted by P. aeruginosa (alginate, Psl, and Pel) are each under investigation and are being exploited in ways that potentiate antibiotics. In this review, we describe the development and structure of P. aeruginosa biofilms before examining each EPS as a potential therapeutic target for combating pulmonary infection with P. aeruginosa in CF, with a particular focus on the current evidence for these emerging therapies and barriers to bringing these therapies into clinic.
Collapse
Affiliation(s)
- Jonathan Chung
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Shafinaz Eisha
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Subin Park
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Amanda J Morris
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Isaac Martin
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
7
|
Balducci E, Papi F, Capialbi DE, Del Bino L. Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int J Mol Sci 2023; 24:ijms24044030. [PMID: 36835442 PMCID: PMC9965654 DOI: 10.3390/ijms24044030] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides.
Collapse
Affiliation(s)
| | | | - Daniela Eloisa Capialbi
- GSK, 53100 Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
8
|
O'Leary MK, Ahmed A, Alabi CA. Development of Host-Cleavable Antibody-Bactericide Conjugates against Extracellular Pathogens. ACS Infect Dis 2023; 9:322-329. [PMID: 36626184 DOI: 10.1021/acsinfecdis.2c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Novel antimicrobial agents with potent bactericidal activity are needed to treat infections caused by multidrug-resistant (MDR) extracellular pathogens, such as Pseudomonas aeruginosa. Antimicrobial peptides (AMPs) and peptidomimetics are promising alternatives to traditional antibiotics, but their therapeutic use is limited due to the lack of specificity and resulting off-target effects. The incorporation of an antibody into the drug design would alleviate these challenges by localizing the AMP to the target bacterial cells. Antibody-drug conjugates (ADCs) have already achieved clinical success as anticancer therapeutics, due to the ability of the antibody to deliver the payload directly to the cancer cells. This strategy involves the selective delivery of highly cytotoxic drugs to the target cells, which enables a broad therapeutic window. This platform can be translated to the treatment of infections, whereby an antibody is used to deliver an antimicrobial agent to the bacterial antigen. Herein, we propose the development of an antibody-bactericide conjugate (ABC) in which the antibacterial oligothioetheramide (oligoTEA), BDT-4G, is coupled to an anti-P. aeruginosa antibody via a cleavable linker. The drug BDT-4G was chosen based on its efficacy against a range of P. aeruginosa isolates and its ability to evade mechanisms conferring resistance to the last-resort agent polymyxin B. We demonstrate that the ABC binds to the bacterial cell surface, and following cleavage of the peptide linker, the oligoTEA payload is released and exhibits antipseudomonal activity.
Collapse
Affiliation(s)
- Meghan K O'Leary
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Asraa Ahmed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Sorieul C, Dolce M, Romano MR, Codée J, Adamo R. Glycoconjugate vaccines against antimicrobial resistant pathogens. Expert Rev Vaccines 2023; 22:1055-1078. [PMID: 37902243 DOI: 10.1080/14760584.2023.2274955] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is responsible for the death of millions worldwide and stands as a major threat to our healthcare systems, which are heavily reliant on antibiotics to fight bacterial infections. The development of vaccines against the main pathogens involved is urgently required as prevention remains essential against the rise of AMR. AREAS COVERED A systematic research review was conducted on MEDLINE database focusing on the six AMR pathogens defined as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli), which are considered critical or high priority pathogens by the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). The analysis was intersecated with the terms carbohydrate, glycoconjugate, bioconjugate, glyconanoparticle, and multiple presenting antigen system vaccines. EXPERT OPINION Glycoconjugate vaccines have been successful in preventing meningitis and pneumoniae, and there are high expectations that they will play a key role in fighting AMR. We herein discuss the recent technological, preclinical, and clinical advances, as well as the challenges associated with the development of carbohydrate-based vaccines against leading AMR bacteria, with focus on the ESKAPE pathogens. The need of innovative clinical and regulatory approaches to tackle these targets is also highlighted.
Collapse
Affiliation(s)
- Charlotte Sorieul
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marta Dolce
- GSK, Via Fiorentina 1, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
10
|
Powell LC, Cullen JK, Boyle GM, De Ridder T, Yap PY, Xue W, Pierce CJ, Pritchard MF, Menzies GE, Abdulkarim M, Adams JYM, Stokniene J, Francis LW, Gumbleton M, Johns J, Hill KE, Jones AV, Parsons PG, Reddell P, Thomas DW. Topical, immunomodulatory epoxy-tiglianes induce biofilm disruption and healing in acute and chronic skin wounds. Sci Transl Med 2022; 14:eabn3758. [DOI: 10.1126/scitranslmed.abn3758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The management of antibiotic-resistant, bacterial biofilm infections in chronic skin wounds is an increasing clinical challenge. Despite advances in diagnosis, many patients do not derive benefit from current anti-infective/antibiotic therapies. Here, we report a novel class of naturally occurring and semisynthetic epoxy-tiglianes, derived from the Queensland blushwood tree (
Fontainea picrosperma)
, and demonstrate their antimicrobial activity (modifying bacterial growth and inducing biofilm disruption), with structure/activity relationships established against important human pathogens. In vitro, the lead candidate EBC-1013 stimulated protein kinase C (PKC)–dependent neutrophil reactive oxygen species (ROS) induction and NETosis and increased expression of wound healing–associated cytokines, chemokines, and antimicrobial peptides in keratinocytes and fibroblasts. In vivo, topical EBC-1013 induced rapid resolution of infection with increased matrix remodeling in acute thermal injuries in calves. In chronically infected diabetic mouse wounds, treatment induced cytokine/chemokine production, inflammatory cell recruitment, and complete healing (in six of seven wounds) with ordered keratinocyte differentiation. These results highlight a nonantibiotic approach involving contrasting, orthogonal mechanisms of action combining targeted biofilm disruption and innate immune induction in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Lydia C. Powell
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
- Centre for Nanohealth, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Jason K. Cullen
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Glen M. Boyle
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tom De Ridder
- QBiotics Group Limited Yungaburra, Queensland 4884, Australia
| | - Pei-Yi Yap
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Wenya Xue
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Carly J. Pierce
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Manon F. Pritchard
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | | | - Muthanna Abdulkarim
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Jennifer Y. M. Adams
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Joana Stokniene
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Lewis W. Francis
- Centre for Nanohealth, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Jenny Johns
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Katja E. Hill
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Adam V. Jones
- Oral Pathology, Cardiff and Vale University Health Board , Cardiff CF14 4XY, UK
| | - Peter G. Parsons
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Paul Reddell
- QBiotics Group Limited Yungaburra, Queensland 4884, Australia
| | - David W. Thomas
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| |
Collapse
|
11
|
Narasimman M, Ory J, Bartra SS, Plano GV, Ramasamy R. Evaluation of Bacteria in a Novel In Vitro Biofilm Model of Penile Prosthesis. J Sex Med 2022; 19:1024-1031. [PMID: 35414488 DOI: 10.1016/j.jsxm.2022.03.602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Delayed infection, thought to be due to gradual biofilm formation, remains a feared complication after inflatable penile prosthesis (IPP) insertion. Understanding and preventing biofilm formation is necessary to prevent infections. AIM To develop an in vitro model and compare growth of biofilm by different bacteria on IPPs and evaluate the anti-infective efficacy of the Coloplast Titan and AMS 700 InhibiZone. METHODS Sterile IPPs (Coloplast) were cut into rings and incubated with S. epidermidis, S. aureus, P. aeruginosa, A. baumannii, or K. pneumoniae cultures in tryptic soy broth (TSB) (4 hour) to ensure adequate bacteria attachment, and then in only TSB (120 hours) to allow for biofilm formation. Rings were fixed with ethanol and biofilm measured by spectrophotometer (OD570) after crystal violet staining. This methodology was repeated for S. epidermidis and P. aeruginosa with Coloplast rings dipped in 10 ml of a 10 mg/ml Rifampin, 1 mg/ml Gentamicin, and deionized water solution and undipped AMS InhibiZone rings. Crystal violet assay (OD570) was repeated after incubation within bacteria (2 hour), and then only TSB (120 hours). OUTCOMES The primary outcome of the study was OD570 readings, indirectly measuring biofilm mass on implant rings. RESULTS S. epidermidis, S. aureus, A. baumannii, P. aeruginosa, and K. pneumoniae all formed significant biofilm. P. aeruginosa showed the strongest predilection to grow biofilm on IPPs. P. aeruginosa also formed significant biofilm on antibiotic-treated Coloplast and AMS rings, while S. epidermidis was inhibited. No significant difference was found in biofilm inhibition between the implants. CLINICAL TRANSLATION Our findings suggest gram-negative bacteria may form biofilm more proficiently and quickly on IPPs than gram-positive organisms. Commonly used antibiotic treatments on IPPs may be effective against S. epidermidis but not against P. aeruginosa biofilm formation. STRENGTHS & LIMITATIONS This is the first study comparing biofilm formation by different bacteria organisms on IPPs and the inhibitive ability of Coloplast and AMS implants against biofilm formation. Clinical data on organisms responsible for infected IPPs is needed to determine the clinical relevance of our findings. CONCLUSION Our novel in vitro model of biofilm formation of IPPs evaluated the effect of a gentamicin/rifampin antibiotic dip on Coloplast Titan implants and the anti-infective capacity of the minocycline/rifampin precoated AMS 700 InhibiZone against S. epidermidis and P. aeruginosa. P. aeruginosa was able to grow on both antibiotic-treated implants, with no significant difference, and should continue to be a specific target of investigation to reduce delayed post-operative IPP infections. Narasimman M, Ory J, Bartra SS, et al. Evaluation of Bacteria in a Novel In Vitro Biofilm Model of Penile Prosthesis. J Sex Med 2022;19:1024-1031.
Collapse
Affiliation(s)
- Manish Narasimman
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jesse Ory
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Urology, Dalhousie University, Halifax, Canada
| | - Sara Schesser Bartra
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gregory V Plano
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
12
|
Wang H, Chen D, Lu H. Anti-bacterial monoclonal antibodies: next generation therapy against superbugs. Appl Microbiol Biotechnol 2022; 106:3957-3972. [PMID: 35648146 DOI: 10.1007/s00253-022-11989-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
Abstract
Prior to the nineteenth century, infectious disease was one of the leading causes of death. Human life expectancy has roughly doubled over the past century as a result of the development of antibiotics and vaccines. However, the emergence of antibiotic-resistant superbugs brings new challenges. The side effects of broad-spectrum antibiotics, such as causing antimicrobial resistance and destroying the normal flora, often limit their applications. Furthermore, the development of new antibiotics has lagged far behind the emergence and spread of antibiotic resistance. On the other hand, the genome complexity of bacteria makes it difficult to create effective vaccines. Therefore, novel therapeutic agents in supplement to antibiotics and vaccines are urgently needed to improve the treatment of infections. In recent years, monoclonal antibodies (mAbs) have achieved remarkable clinical success in a variety of fields. In the treatment of infectious diseases, mAbs can play functions through multiple mechanisms, including toxins neutralization, virulence factors inhibition, complement-mediated killing activity, and opsonic phagocytosis. Toxins and bacterial surface components are good targets to generate antibodies against. The U.S. FDA has approved three monoclonal antibody drugs, and there are numerous candidates in the preclinical or clinical trial stages. This article reviews recent advances in the research and development of anti-bacterial monoclonal antibody drugs in order to provide a valuable reference for future studies in this area. KEY POINTS: • Novel drugs against antibiotic-resistant superbugs are urgently required • Monoclonal antibodies can treat bacterial infections through multiple mechanisms • There are many anti-bacterial monoclonal antibodies developed in recent years and some candidates have entered the preclinical or clinical stages of development.
Collapse
Affiliation(s)
- Hui Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
13
|
Mucoid Pseudomonas aeruginosa Can Produce Calcium-Gelled Biofilms Independent of the Matrix Components Psl and CdrA. J Bacteriol 2022; 204:e0056821. [PMID: 35416688 PMCID: PMC9112934 DOI: 10.1128/jb.00568-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilms are aggregates of microorganisms embedded in an extracellular matrix comprised largely of exopolysaccharides (EPSs), nucleic acids, and proteins. Pseudomonas aeruginosa is an opportunistic human pathogen that is also a model organism for studying biofilms in the laboratory. Here, we define a novel program of biofilm development used by mucoid (alginate-overproducing) P. aeruginosa in the presence of elevated calcium. Calcium cations cross-link negatively charged alginate polymers, resulting in individual cells being suspended in an alginate gel. The formation of this type of structurally distinct biofilm is not reliant on the canonical biofilm EPS components Psl and Pel or the matrix protein CdrA. We also observed that mucoid P. aeruginosa biofilm cells do not have the typical elevated levels of the secondary messenger cyclic di-GMP (c-di-GMP), as expected of biofilm cells, nor does the overproduction of alginate rely on high c-di-GMP. This contrasts with nonmucoid biofilms in which the production of the matrix components Psl, Pel, and CdrA is positively regulated by elevated c-di-GMP. We further demonstrate that calcium-gelled alginate biofilms impede the penetration of the antibiotic tobramycin, thus protecting the biofilm community from antibiotic-mediated killing. Finally, we show that bacterial aggregates with a dispersed cell arrangement like laboratory-grown calcium-alginate biofilm structures are present in explanted cystic fibrosis (CF) lung samples. Our findings illustrate the diverse nature of biofilm formation and structure in P. aeruginosa. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa produces a complex biofilm matrix comprised of exopolysaccharides (EPSs), nucleic acids, and proteins. P. aeruginosa biofilm formation canonically depends on a variable combination of the exopolysaccharides Psl and Pel and the matrix protein CdrA. We demonstrate that mucoid P. aeruginosa, which overproduces the EPS alginate, possesses an entirely alternate and calcium-dependent method of biofilm formation. These mucoid biofilm structures do not require Psl, Pel, or CdrA, and they display a unique organization of individually suspended cells similar to bacterial aggregates observed in cystic fibrosis airways. Furthermore, calcium-gelled mucoid biofilms impede the penetration and killing action of the antibiotic tobramycin, illustrating their potential clinical significance. Our findings highlight the compositional and structural variety of P. aeruginosa biofilm aggregates.
Collapse
|
14
|
Fleming D, Niese B, Redman W, Vanderpool E, Gordon V, Rumbaugh KP. Contribution of Pseudomonas aeruginosa Exopolysaccharides Pel and Psl to Wound Infections. Front Cell Infect Microbiol 2022; 12:835754. [PMID: 35463635 PMCID: PMC9021892 DOI: 10.3389/fcimb.2022.835754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Biofilms are the cause of most chronic bacterial infections. Living within the biofilm matrix, which is made of extracellular substances, including polysaccharides, proteins, eDNA, lipids and other molecules, provides microorganisms protection from antimicrobials and the host immune response. Exopolysaccharides are major structural components of bacterial biofilms and are thought to be vital to numerous aspects of biofilm formation and persistence, including adherence to surfaces, coherence with other biofilm-associated cells, mechanical stability, protection against desiccation, binding of enzymes, and nutrient acquisition and storage, as well as protection against antimicrobials, host immune cells and molecules, and environmental stressors. However, the contribution of specific exopolysaccharide types to the pathogenesis of biofilm infection is not well understood. In this study we examined whether the absence of the two main exopolysaccharides produced by the biofilm former Pseudomonas aeruginosa would affect wound infection in a mouse model. Using P. aeruginosa mutants that do not produce the exopolysaccharides Pel and/or Psl we observed that the severity of wound infections was not grossly affected; both the bacterial load in the wounds and the wound closure rates were unchanged. However, the size and spatial distribution of biofilm aggregates in the wound tissue were significantly different when Pel and Psl were not produced, and the ability of the mutants to survive antibiotic treatment was also impaired. Taken together, our data suggest that while the production of Pel and Psl do not appear to affect P. aeruginosa pathogenesis in mouse wound infections, they may have an important implication for bacterial persistence in vivo.
Collapse
Affiliation(s)
- Derek Fleming
- Department of Surgery, Texas Tech University Health Sciences, Lubbock, TX, United States
| | - Brandon Niese
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin TX, United States
| | - Whitni Redman
- Department of Surgery, Texas Tech University Health Sciences, Lubbock, TX, United States
| | - Emily Vanderpool
- Department of Surgery, Texas Tech University Health Sciences, Lubbock, TX, United States
| | - Vernita Gordon
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin TX, United States
- Interdisciplinary Life Sciences Graduate Programs, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, United States
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences, Lubbock, TX, United States
- Burn Center for Research Excellence, Texas Tech University Health Sciences, Lubbock, TX, United States
| |
Collapse
|
15
|
Morris AJ, Jackson L, Cw Yau Y, Reichhardt C, Beaudoin T, Uwumarenogie S, Guttman KM, Lynne Howell P, Parsek MR, Hoffman LR, Nguyen D, DiGiandomenico A, Guttman DS, Wozniak DJ, Waters VJ. The role of Psl in the failure to eradicate Pseudomonas aeruginosa biofilms in children with cystic fibrosis. NPJ Biofilms Microbiomes 2021; 7:63. [PMID: 34349133 PMCID: PMC8338932 DOI: 10.1038/s41522-021-00234-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
The exopolysaccharide Psl contributes to biofilm structure and antibiotic tolerance and may play a role in the failure to eradicate Pseudomonas aeruginosa from cystic fibrosis (CF) airways. The study objective was to determine whether there were any differences in Psl in P. aeruginosa isolates that were successfully eradicated compared to those that persisted, despite inhaled tobramycin treatment, in children with CF. Initial P. aeruginosa isolates were collected from children with CF undergoing eradication treatment, grown as biofilms and labeled with 3 anti-Psl monoclonal antibodies (Cam003/Psl0096, WapR001, WapR016) before confocal microscopy visualization. When grown as biofilms, P. aeruginosa isolates from children who failed antibiotic eradication therapy, had significantly increased Psl0096 binding compared to isolates from those who cleared P. aeruginosa. This was confirmed in P. aeruginosa isolates from the SickKids Eradication Cohort as well as the Early Pseudomonas Infection Control (EPIC) trial. Increased anti-Psl antibody binding was associated with bacterial aggregation and tobramycin tolerance. The biofilm matrix represents a potential therapeutic target to improve P. aeruginosa eradication treatment.
Collapse
Affiliation(s)
- Amanda J Morris
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Lindsay Jackson
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Yvonne Cw Yau
- Division of Microbiology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Trevor Beaudoin
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie Uwumarenogie
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Kevin M Guttman
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Lucas R Hoffman
- Departments of Pediatrics and Microbiology, University of Washington, Seattle, WA, USA
| | - Dao Nguyen
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Antonio DiGiandomenico
- Discovery Microbiome, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, Ohio State University, Columbus, OH, USA
| | - Valerie J Waters
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada. .,Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada. .,Department of Pediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Ruhal R, Kataria R. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol Res 2021; 251:126829. [PMID: 34332222 DOI: 10.1016/j.micres.2021.126829] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
The Gram-positive and Gram-negative bacteria are attributable to matrix-enclosed aggregates known as biofilms. Biofilms are root cause of industrial biofouling and characterized by antimicrobial resistance during infections. Many biofilm studies examine specific Gram type cultures, whereas nearly all biofilm communities in nature comprise both Gram-negative and Gram-positive bacteria. Thus, a greater understanding of the conserved themes in biofilm formation is required for common therapeutics. We tried to focus on common components which exist at each stage of biofilm development and regulation. The Lipopolysaccharides (LPS) and cell wall glyco-polymers of Gram-negative and Gram-positive bacteria seem to play similar roles during initial adhesion. The inhibition of the polymerization of amyloid-like proteins might impact the biofilms of both Gram-type bacteria. Enzymatic degradation of matrix components by glycoside hydrolase and DNase (nuclease) may disrupt both Gram-type biofilms. An additional common feature is the presence of membrane vesicles, and the potential of these vesicles requires further investigation. Genetic regulation by c-di-GMP is prominent in Gram-negative bacteria. However, quorum sensing (QS) may play a common regulation during biofilms dispersal. These studies are significant not only for common therapeutic against mixed biofilms, but for better understanding of bacterial interactions within natural or host infection environment as well.
Collapse
Affiliation(s)
- Rohit Ruhal
- Regional Centre for Biotechnology, Faridabad, India.
| | - Rashmi Kataria
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
17
|
Kwong K, Benedetti A, Yau Y, Waters V, Nguyen D. Failed eradication therapy of new onset Pseudomonas aeruginosa infections in cystic fibrosis children is associated with bacterial resistance to neutrophil functions. J Infect Dis 2021; 225:1886-1895. [PMID: 33606875 PMCID: PMC9159338 DOI: 10.1093/infdis/jiab102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Antibiotics, such as inhaled tobramycin are used to eradicate new onset Pseudomonas aeruginosa (PA) infections in cystic fibrosis (CF) patients but frequently fail due to reasons poorly understood. We hypothesized that PA isolates' resistance to neutrophil antibacterial functions was associated with failed eradication in patients harboring those strains. METHODS We analyzed all PA isolates from a cohort of 39 CF children with new onset PA infections undergoing tobramycin eradication therapy, where N=30 patients had eradicated and N=9 patients had persistent infection. We characterized several bacterial phenotypes and measured the isolates' susceptibility to neutrophil antibacterial functions using in vitro assays of phagocytosis and intracellular bacterial killing. RESULTS PA isolates from persistent infections were more resistant to neutrophil functions, with lower phagocytosis and intracellular bacterial killing compared to those from eradicated infections. In multivariable analyses, in vitro neutrophil responses were positively associated with twitching motility, and negatively with mucoidy. In vitro neutrophil phagocytosis was a predictor of persistent infection following tobramycin even after adjustment for clinical risk factors. CONCLUSIONS PA isolates from new onset CF infection show strain-specific susceptibility to neutrophil antibacterial functions, and infection with PA isolates resistant to neutrophil phagocytosis is an independent risk factor for failed tobramycin eradication.
Collapse
Affiliation(s)
- K Kwong
- Department of Microbiology and Immunology, McGill University, Montreal, CA.,Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, CA
| | - A Benedetti
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, CA.,Centre for Health Outcome Research, Research Institute of the McGill University Health Centre, Montreal, CA
| | - Y Yau
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, CA.,Division of Microbiology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, CA
| | - V Waters
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, CA.,Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, CA
| | - D Nguyen
- Department of Microbiology and Immunology, McGill University, Montreal, CA.,Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, CA.,Department of Medicine, McGill University, Montreal, CA
| |
Collapse
|
18
|
Jackson L, Waters V. Factors influencing the acquisition and eradication of early Pseudomonas aeruginosa infection in cystic fibrosis. J Cyst Fibros 2020; 20:8-16. [PMID: 33172756 DOI: 10.1016/j.jcf.2020.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022]
Abstract
In recent years considerable improvements have been made in increasing the life expectancy of patients with cystic fibrosis. New highly effective modulator therapies targeting the underlying defect in the cystic fibrosis transmembrane conductance regulator protein are expected to enhance lifespan even further. However, chronic Pseudomonas aeruginosa pulmonary infections continue to threaten CF patient lung health and mortality rates. Early and aggressive antibiotic eradication therapies targeting P. aeruginosa are standard practice, but these eradication therapies fail in 10-40% of patients. The reasons for P. aeruginosa eradication failure remain unclear. Thus, this review summarizes the evidence to date for pseudomonal acquisition and eradication failure in the cystic fibrosis lung. A complex combination of host and bacterial factors are responsible for initial establishment of P. aeruginosa pulmonary infections. Moreover, host and pseudomonal factors, polymicrobial interactions, and antimicrobial limitations in relation to P. aeruginosa eradication therapy failure are summarized.
Collapse
Affiliation(s)
- Lindsay Jackson
- Translational Medicine, Hospital for Sick Children, Toronto, Canada.
| | - Valerie Waters
- Translational Medicine, Hospital for Sick Children, Toronto, Canada; Infectious Diseases, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
19
|
The Versatile Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Promotes Aggregation through Different Extracellular Exopolysaccharide Interactions. J Bacteriol 2020; 202:JB.00216-20. [PMID: 32661078 PMCID: PMC7484184 DOI: 10.1128/jb.00216-20] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Depending upon the strain, Pseudomonas aeruginosa can use different exopolysaccharides (e.g., Psl, Pel, and alginate) to build its biofilm matrix. Previously, we demonstrated that the biofilm matrix protein CdrA binds to Psl, promoting biofilm formation and aggregate stability. As such, it was thought that CdrA might be important for biofilm assembly only in strains that rely upon Psl. However, past studies indicated that CdrA can interact with monosaccharides not present in Psl, including N-acetylglucosamine, a constituent of another EPS called Pel. We discovered that CdrA also binds to Pel and promotes biofilm formation by strains in which Psl is not dominant. Thus, our findings suggest that CdrA plays a common role as a biofilm matrix cross-linker across P. aeruginosa isolates with different EPS. Pseudomonas aeruginosa is an important pathogen that causes chronic infections that involve multicellular aggregates called biofilms. Within biofilms, bacteria are surrounded in a protective extracellular matrix of proteins, exopolysaccharides (EPS), and DNA. A key P. aeruginosa matrix protein is an extracellular adhesin called CdrA, which promotes aggregation by binding to the EPS Psl and via CdrA-CdrA interactions. We hypothesized that because of its ability to bind Psl, CdrA would be important only for strains that use Psl as the primary EPS (e.g., the laboratory strain PAO1). Thus, we predicted that cdrA might be dispensable for biofilm formation by strains that do not utilize Psl (e.g., the laboratory strain PA14). Instead, we observed that cdrA deletion strains exhibited biofilm defects, regardless of their EPS dependencies. We screened a panel of clinical and environmental P. aeruginosa isolates for the presence of the cdrA allele and production of CdrA protein. All isolates that we tested contained the cdrA allele, and these alleles had minimal sequence variation compared to the reference PAO1 cdrA gene. Additionally, all isolates except one produced detectable CdrA protein. We investigated the possible mechanisms of CdrA-promoted biofilm formation in these strains where Psl is not dominant, and we discovered that CdrA binds to Pel. Although Psl and Pel chemical structures are distinct, this appears to be a specific interaction, since previous work has shown that CdrA binds discriminately to other EPS. Our findings provide new understanding of biofilm formation across P. aeruginosa isolates and emphasize the versatility of CdrA. IMPORTANCE Depending upon the strain, Pseudomonas aeruginosa can use different exopolysaccharides (e.g., Psl, Pel, and alginate) to build its biofilm matrix. Previously, we demonstrated that the biofilm matrix protein CdrA binds to Psl, promoting biofilm formation and aggregate stability. As such, it was thought that CdrA might be important for biofilm assembly only in strains that rely upon Psl. However, past studies indicated that CdrA can interact with monosaccharides not present in Psl, including N-acetylglucosamine, a constituent of another EPS called Pel. We discovered that CdrA also binds to Pel and promotes biofilm formation by strains in which Psl is not dominant. Thus, our findings suggest that CdrA plays a common role as a biofilm matrix cross-linker across P. aeruginosa isolates with different EPS.
Collapse
|
20
|
Sheremet AB, Nesterenko LN, Zigangirova NA. The Type Three Secretion System of Pseudomonas aeruginosa as a Target for Development of Antivirulence Drugs. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2020. [DOI: 10.3103/s0891416820010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Yu M, Chua SL. Demolishing the great wall of biofilms in Gram‐negative bacteria: To disrupt or disperse? Med Res Rev 2019; 40:1103-1116. [DOI: 10.1002/med.21647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Miao Yu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
- State Key Laboratory of Chemical Biology and Drug DiscoveryThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
| | - Song Lin Chua
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
- State Key Laboratory of Chemical Biology and Drug DiscoveryThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
| |
Collapse
|
22
|
Abstract
In this issue of Cell Host & Microbe, Thanabalasuriar et al. (2019) show how neutrophils and biofilm-forming bacteria respond reciprocally, resulting in the formation of a barricade comprised of neutrophil extracellular traps. Disrupting this exchange and the resulting barrier can be detrimental unless balanced in favor of the immune system.
Collapse
|
23
|
Tabor DE, Oganesyan V, Keller AE, Yu L, McLaughlin RE, Song E, Warrener P, Rosenthal K, Esser M, Qi Y, Ruzin A, Stover CK, DiGiandomenico A. Pseudomonas aeruginosa PcrV and Psl, the Molecular Targets of Bispecific Antibody MEDI3902, Are Conserved Among Diverse Global Clinical Isolates. J Infect Dis 2019; 218:1983-1994. [PMID: 30016475 DOI: 10.1093/infdis/jiy438] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/10/2018] [Indexed: 01/07/2023] Open
Abstract
Background Bispecific antibody MEDI3902, targeting the Pseudomonas aeruginosa type 3 secretion system (PcrV) and Psl exopolysaccharide, is currently in phase 2b development for prevention of nosocomial pneumonia in patients undergoing mechanical ventilation. We surveyed a diverse collection of isolates to study MEDI3902 epitope conservation and protective activity. Methods P. aeruginosa clinical isolates (n = 913) were collected from diverse patients and geographic locations during 2003-2014. We conducted whole-genome sequencing; performed PcrV and Psl expression analyses via immunoblotting and enzyme-linked immunosorbent assay, respectively; performed crystallography to determine the MEDI3902 PcrV epitope, using anti-PcrV Fab and PcrV components (resolved at 2.8 Å); and evaluated MEDI3902 protective activity against select isolates in vitro and in vivo. Results Intact psl operon and pcrV genes were present in 94% and 99% of isolates, respectively, and 99.9% of isolates contained at least one of the genetic elements. Anti-Psl binding was confirmed in tested isolates harboring a complete Psl operon or lacking nonessential psl genes. We identified 46 PcrV variant sequences, and MEDI3902-PcrV contact residues were preserved. MEDI3902 maintained potent in vivo activity against various strains, including strains expressing only a single target. Conclusions Psl and PcrV are highly prevalent in global clinical isolates, suggesting MEDI3902 can mediate broad coverage against P. aeruginosa.
Collapse
Affiliation(s)
- D E Tabor
- Translational Medicine, Gaithersburg, Maryland
| | - V Oganesyan
- Antibody Development and Protein Engineering, Gaithersburg, Maryland
| | - A E Keller
- Microbial Sciences, Gaithersburg, Maryland
| | - L Yu
- Biostatistics, MedImmune, Gaithersburg, Maryland
| | - R E McLaughlin
- Global Medicines Development, AstraZeneca, Waltham, Massachusetts
| | - E Song
- Translational Medicine, Gaithersburg, Maryland
| | - P Warrener
- Microbial Sciences, Gaithersburg, Maryland
| | - K Rosenthal
- Antibody Development and Protein Engineering, Gaithersburg, Maryland
| | - M Esser
- Translational Medicine, Gaithersburg, Maryland
| | - Y Qi
- Translational Medicine, Gaithersburg, Maryland
| | - A Ruzin
- Translational Medicine, Gaithersburg, Maryland
| | - C K Stover
- Microbial Sciences, Gaithersburg, Maryland
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This review highlights recent developments in the development of monoclonal antibodies to treat bacterial disease, including preclinical advances and the status of current clinical trials. RECENT FINDINGS Monoclonal antibody (mAb) therapy is becoming increasingly promising in the infectious disease field. Though bacterial exotoxins continue to be a mainstay of mAb targets, searches for protein targets on the surface of bacteria have uncovered new mechanisms of antibody-mediated action against bacteria. Additionally, surveys of the polysaccharide serotype prevalence among antibiotic-resistant bacterial populations have yielded opportunities to leverage human selective pressures to our clinical advantage. Several mAb candidates are progressing through clinical development with great promise, especially those with structures altered to provide maximum benefit. Although other clinical trials have recently proved unsuccessful, these failures and lessons from immune profiling provide opportunities to understand how vulnerabilities of certain targets may change in different disease states. SUMMARY Despite the hurdles of identifying effective targets and understanding how mAbs provide protection within different infections, we show that the progress made in these fields is a positive indication of mAbs becoming more widely accepted as the future for treating bacterial infections.
Collapse
Affiliation(s)
- Michael P Motley
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Kasturi Banerjee
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Bettina C. Fries
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
25
|
Thanabalasuriar A, Scott BNV, Peiseler M, Willson ME, Zeng Z, Warrener P, Keller AE, Surewaard BGJ, Dozier EA, Korhonen JT, Cheng LIT, Gadjeva M, Stover CK, DiGiandomenico A, Kubes P. Neutrophil Extracellular Traps Confine Pseudomonas aeruginosa Ocular Biofilms and Restrict Brain Invasion. Cell Host Microbe 2019; 25:526-536.e4. [PMID: 30930127 DOI: 10.1016/j.chom.2019.02.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/30/2018] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Bacterial biofilm infections are difficult to eradicate because of antibiotic insusceptibility and high recurrence rates. Biofilm formation by Pseudomonas aeruginosa, a leading cause of bacterial keratitis, is facilitated by the bacterial Psl exopolysaccharide and associated with heightened virulence. Using intravital microscopy, we observed that neutrophilic recruitment to corneal infections limits P. aeruginosa biofilms to the outer eye surface, preventing bacterial dissemination. Neutrophils moved to the base of forming biofilms, where they underwent neutrophil extracellular trap formation (NETosis) in response to high expression of the bacterial type-3 secretion system (T3SS). NETs formed a barrier "dead zone," confining bacteria to the external corneal environment and inhibiting bacterial dissemination into the brain. Once formed, ocular biofilms were resistant to antibiotics and neutrophil killing, advancing eye pathology. However, blocking both Psl and T3SS together with antibiotic treatment broke down the biofilm and reversed keratitis, suggesting future therapeutic strategies for this intractable infection.
Collapse
Affiliation(s)
- Ajitha Thanabalasuriar
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada; Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | - Brittney Noelle Vivian Scott
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Moritz Peiseler
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Michelle Elizabeth Willson
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Zhutian Zeng
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Paul Warrener
- Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | | | - Bas Gerardus Johannes Surewaard
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | | | - Juha Tapio Korhonen
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Lily I-Ting Cheng
- Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | - Mihaela Gadjeva
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - C Kendall Stover
- Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | | | - Paul Kubes
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada.
| |
Collapse
|
26
|
Development of an effective fluorescence probe for discovery of aminopeptidase inhibitors to suppress biofilm formation. J Antibiot (Tokyo) 2019; 72:461-468. [PMID: 30894675 DOI: 10.1038/s41429-019-0166-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/28/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
The human pathogen Pseudomonas aeruginosa can easily form biofilms. The extracellular matrix produced by the bacterial cells acts as a physical barrier to hinder the antibiotics treatment. It is necessary to destroy the biofilm in order to improve the efficacy of antibiotics. However, it has been a significant challenge to develop effective small molecules targeting the components of biofilm matrix. In this study, we report the development of a new effective fluorescence probe that could be used in the high throughput screening to identify novel small molecule inhibitors targeting the most abundant component in the biofilm formation: P. aeruginosa aminopeptidase (PaAP). Through screening of an in-house chemical library, a commercially available drug, balsalazide, has been identified as a novel PaAP inhibitor, which exhibited remarkable anti-biofilm effect. Our study indicated that the newly developed fluorescence probe is applicable in exploring new aminopeptidase inhibitors, and it also warrants further investigation of balsalazide as a new anti-biofilm agent to treat P. aeruginosa infection in combination with known antibiotics.
Collapse
|
27
|
Kugadas A, Geddes-McAlister J, Guy E, DiGiandomenico A, Sykes DB, Mansour MK, Mirchev R, Gadjeva M. Frontline Science: Employing enzymatic treatment options for management of ocular biofilm-based infections. J Leukoc Biol 2019; 105:1099-1110. [PMID: 30690787 PMCID: PMC6618031 DOI: 10.1002/jlb.4hi0918-364rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa-induced corneal keratitis is a sight-threatening disease. The rise of antibiotic resistance among P. aeruginosa keratitis isolates makes treatment of this disease challenging, emphasizing the need for alternative therapeutic modalities. By comparing the responses to P. aeruginosa infection between an outbred mouse strain (Swiss Webster, SW) and a susceptible mouse strain (C57BL6/N), we found that the inherent neutrophil-killing abilities of these strains correlated with their susceptibility to infection. Namely, SW-derived neutrophils were significantly more efficient at killing P. aeruginosa in vitro than C57BL6/N-derived neutrophils. To interrogate whether the distinct neutrophil killing capacities were dependent on endogenous or exogenous factors, neutrophil progenitor cell lines were generated. The in vitro differentiated neutrophils from either SW or C57BL6/N progenitors retained the differential killing abilities, illustrating that endogenous factors conferred resistance. Consistently, quantitative LC-MS/MS analysis revealed strain-specific and infection-induced alterations of neutrophil proteomes. Among the distinctly elevated proteins in the SW-derived proteomes were α-mannosidases, potentially associated with protection. Inhibition of α-mannosidases reduced neutrophil bactericidal functions in vitro. Conversely, topical application of α-mannosidases reduced bacterial biofilms and burden of infected corneas. Cumulatively, these data suggest novel therapeutic approaches to control bacterial biofilm assembly and improve bacterial clearance via enzymatic treatments.
Collapse
Affiliation(s)
- Abirami Kugadas
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Geddes-McAlister
- Proteomics and Signal Transduction Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Emilia Guy
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rossen Mirchev
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mihaela Gadjeva
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Thompson JM, Miller RJ, Ashbaugh AG, Dillen CA, Pickett JE, Wang Y, Ortines RV, Sterling RS, Francis KP, Bernthal NM, Cohen TS, Tkaczyk C, Yu L, Stover CK, DiGiandomenico A, Sellman BR, Thorek DL, Miller LS. Mouse model of Gram-negative prosthetic joint infection reveals therapeutic targets. JCI Insight 2018; 3:121737. [PMID: 30185667 DOI: 10.1172/jci.insight.121737] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/26/2018] [Indexed: 12/23/2022] Open
Abstract
Bacterial biofilm infections of implantable medical devices decrease the effectiveness of antibiotics, creating difficult-to-treat chronic infections. Prosthetic joint infections (PJI) are particularly problematic because they require prolonged antibiotic courses and reoperations to remove and replace the infected prostheses. Current models to study PJI focus on Gram-positive bacteria, but Gram-negative PJI (GN-PJI) are increasingly common and are often more difficult to treat, with worse clinical outcomes. Herein, we sought to develop a mouse model of GN-PJI to investigate the pathogenesis of these infections and identify potential therapeutic targets. An orthopedic-grade titanium implant was surgically placed in the femurs of mice, followed by infection of the knee joint with Pseudomonas aeruginosa or Escherichia coli. We found that in vitro biofilm-producing activity was associated with the development of an in vivo orthopedic implant infection characterized by bacterial infection of the bone/joint tissue, biofilm formation on the implants, reactive bone changes, and inflammatory immune cell infiltrates. In addition, a bispecific antibody targeting P. aeruginosa virulence factors (PcrV and Psl exopolysaccharide) reduced the bacterial burden in vivo. Taken together, our findings provide a preclinical model of GN-PJI and suggest the therapeutic potential of targeting biofilm-associated antigens.
Collapse
Affiliation(s)
| | | | | | | | - Julie E Pickett
- Department of Radiology and Radiological Sciences, Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yu Wang
- Department of Dermatology, and
| | | | | | - Kevin P Francis
- PerkinElmer, Hopkinton, Massachusetts, USA.,Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | | | | | - Li Yu
- Statistical Sciences, MedImmune, Gaithersburg, Maryland, USA
| | | | | | | | - Daniel Lj Thorek
- Department of Radiology and Radiological Sciences, Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cancer Molecular and Functional Imaging Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
| | - Lloyd S Miller
- Department of Orthopaedic Surgery.,Department of Dermatology, and.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Phenotypic Variation during Biofilm Formation: Implications for Anti-Biofilm Therapeutic Design. MATERIALS 2018; 11:ma11071086. [PMID: 29949876 PMCID: PMC6073711 DOI: 10.3390/ma11071086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
Various bacterial species cycle between growth phases and biofilm formation, of which the latter facilitates persistence in inhospitable environments. These phases can be generally characterized by one or more cellular phenotype(s), each with distinct virulence factor functionality. In addition, a variety of phenotypes can often be observed within the phases themselves, which can be dependent on host conditions or the presence of nutrient and oxygen gradients within the biofilm itself (i.e., microenvironments). Currently, most anti-biofilm strategies have targeted a single phenotype; this approach has driven effective, yet incomplete, protection due to the lack of consideration of gene expression dynamics throughout the bacteria’s pathogenesis. As such, this article provides an overview of the distinct phenotypes found within each biofilm development phase and demonstrates the unique anti-biofilm solutions each phase offers. However, we conclude that a combinatorial approach must be taken to provide complete protection against biofilm forming bacterial and their resulting diseases.
Collapse
|