1
|
Pan X, Huang P, Ali SS, Renslo B, Hutchinson TE, Erwin N, Greenberg Z, Ding Z, Li Y, Warnecke A, Fernandez NE, Staecker H, He M. CRISPR-Cas9 Engineered Extracellular Vesicles for the Treatment of Dominant Progressive Hearing Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557853. [PMID: 38168224 PMCID: PMC10760051 DOI: 10.1101/2023.09.14.557853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clinical translation of gene therapy has been challenging, due to limitations in current delivery vehicles such as traditional viral vectors. Herein, we report the use of gRNA:Cas9 ribonucleoprotein (RNP) complexes engineered extracellular vesicles (EVs) for in vivo gene therapy. By leveraging a novel high-throughput microfluidic droplet-based electroporation system (μDES), we achieved 10-fold enhancement of loading efficiency and more than 1000-fold increase in processing throughput on loading RNP complexes into EVs (RNP-EVs), compared with conventional bulk electroporation. The flow-through droplets serve as enormous bioreactors for offering millisecond pulsed, low-voltage electroporation in a continuous-flow and scalable manner, which minimizes the Joule heating influence and surface alteration to retain natural EV stability and integrity. In the Shaker-1 mouse model of dominant progressive hearing loss, we demonstrated the effective delivery of RNP-EVs into inner ear hair cells, with a clear reduction of Myo7ash1 mRNA expression compared to RNP-loaded lipid-like nanoparticles (RNP-LNPs), leading to significant hearing recovery measured by auditory brainstem responses (ABR).
Collapse
Affiliation(s)
- Xiaoshu Pan
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Samantha S. Ali
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Bryan Renslo
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Tarun E Hutchinson
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Nina Erwin
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Zachary Greenberg
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Zuo Ding
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida, 32610, United States
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
| | - Natalia E. Fernandez
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Mei He
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Qin B, Zhang Q, Hu XM, Mi TY, Yu HY, Liu SS, Zhang B, Tang M, Huang JF, Xiong K. How does temperature play a role in the storage of extracellular vesicles? J Cell Physiol 2020; 235:7663-7680. [PMID: 32324279 DOI: 10.1002/jcp.29700] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) contain specific proteins, lipids, and nucleic acids that can be passed to other cells as signal molecules to alter their function. However, there are many problems and challenges in the conversion and clinical application of EVs. Storage and protection of EVs is one of the issues that need further research. To adapt to potential clinical applications, this type of problem must be solved. This review summarizes the storage practices of EVs in recent years, and explains the impact of temperature on the quality and stability of EVs during storage based on current research, and explains the potential mechanisms involved in this effect as much as possible.
Collapse
Affiliation(s)
- Bo Qin
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Tuo-Yang Mi
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hai-Yang Yu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shen-Shen Liu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bin Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Mu Tang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
3
|
Chen XD, Zhao J, Yan Z, Zhou BW, Huang WF, Liu WF, Li C, Liu KX. Isolation of extracellular vesicles from intestinal tissue in a mouse model of intestinal ischemia/reperfusion injury. Biotechniques 2020; 68:257-262. [PMID: 32090587 DOI: 10.2144/btn-2019-0159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) are small membranous particles that contribute to intercellular communications. Separating EVs from tissue is still a technical challenge. Here, we present a rigorous method for extracting EVs from intestinal tissue in a mouse intestinal ischemia/reperfusion (I/R) model, and for analyzing their miRNA content. The isolated EVs show a typical cup shape with a size peak of 120-130 nm in diameter, confirmed by TEM and NTA. They also express EV markers such as CD9, CD63, CD81, Tsg101 and Alix. Real-time qPCR confirmed that these pellets contain miRNAs related to I/R injury. Our study presents a practical way to isolate EVs from intestinal tissue which is suitable for downstream applications such as miRNA analysis, and provides a novel method for investigating the mechanism of intestinal I/R injury.
Collapse
Affiliation(s)
- Xiao-Dong Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengzheng Yan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo-Wei Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen-Fang Huang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Kimura Y, Ikeuchi M, Inoue Y, Ikuta K. 3D microdevices that perform sample purification and multiplex qRT-PCR for early cancer detection with confirmation of specific RNAs. Sci Rep 2018; 8:17480. [PMID: 30504786 PMCID: PMC6269476 DOI: 10.1038/s41598-018-35772-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
MicroRNA expression analysis is an important screening tool for the early detection of cancer. In this study, we developed two portable three-dimensional microdevices for multiple singleplex RNA expression analysis by microRNA purification and qRT-PCR as a prototype for point-of-care testing. These microdevices are composed of several types of modules termed 'chemical IC chips'. We successfully reduced the heating area and fluorescence observation area, reduced the energy required for the reaction, and improved the portability of all systems in the devices. The purification microdevice could purify the microRNA from the sample using the FTA elute card system. The disposable reactor module mounted on both devices was easily fabricated by deforming a 100-μm-thick polypropylene film using an uncomplicated procedure. The qRT-PCR microdevice could perform reactions for samples of small volume. We purified microRNA from the HepG2 liver cancer cell line using the purification microdevice and confirmed the expression level of miR-224, which is a potential biomarker for liver cancer. Furthermore, we observed an increase in the fluorescence intensity when we performed qRT-PCR in the qRT-PCR microdevice. Therefore, the two developed microdevices show promise as a new portable tool for early cancer detection.
Collapse
Affiliation(s)
- Yusuke Kimura
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Ikeuchi
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoshinori Inoue
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Koji Ikuta
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|