1
|
Liu Z, Li J, Wang H, Xia F, Xia Y, Wang H, Hu Y, Zou M. Clonal transmission of bla IMP-4-carrying ST196 Klebsiella pneumoniae isolates mediated by the IncN plasmid in China. J Glob Antimicrob Resist 2024; 38:116-122. [PMID: 38735531 DOI: 10.1016/j.jgar.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
OBJECTIVES To investigate the clinical and molecular epidemiological characteristics of blaIMP-4-carrying Klebsiella pneumoniae in a tertiary hospital in China. METHODS Ten carbapenem-resistant K. pneumoniae (CRKP) isolates carrying the blaIMP-4 gene were collected. Molecular characteristics were analysed using whole-genome sequencing. Plasmid conjugation experiments were used to analyse conjugation of the plasmids. We compared and analysed K. pneumoniae-carrying blaIMP-4 genomic datasets obtained from the National Center for Biotechnology Information (NCBI) with the strains in this study. RESULTS All 10 CRKP isolates carrying blaIMP-4 were collected from 10 adult patients in the respiratory intensive care unit. These strains were only sensitive to polymyxins and tigecycline due to them simultaneously carrying multiple resistance genes, namely blaOKP-A-5, fosA, oqxA, and oqxB. Notably, R29 harboured two carbapenemase genes (blaNDM-1 and blaIMP-4). These strains had similar drug-resistant phenotypes and genes, all belonging to sequence type (ST)196. Additionally, the patients had experienced spatiotemporal intersection during hospitalization, suggesting that these strains underwent clonal transmission, but they belonged to different clonal clusters from the blaIMP-4-positive K. pneumoniae currently published in the NCBI. Among the 10 strains, blaIMP-4 was located on the IncN plasmid, and six strains had successfully transferred the plasmid to the recipient strain EC600 through plasmid conjugation. CONCLUSIONS The blaIMP-4-positive ST196 CRKP isolate showed clonal distribution in the respiratory intensive care unit, which was mediated by the IncN plasmid. Consequently, there should be increased monitoring of carbapenem-resistant strains in clinical settings to prevent and control its transmission.
Collapse
Affiliation(s)
- Zhaojun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Haolan Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fengjun Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yubing Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haichen Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yongmei Hu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
2
|
Guo K, Zhao Z, Yang Y, Jiang X, Xu H, Tao F, Xu Y, Liu W. Emergence of an Extensive Drug Resistant Citrobacter portucalensis Clinical Strain Harboring bla SFO-1, bla KPC-2, and bla NDM-1. Infect Drug Resist 2024; 17:2273-2283. [PMID: 38854780 PMCID: PMC11162216 DOI: 10.2147/idr.s461118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
Background To explore the plasmid characteristics and transfer mechanisms of an extensive drug resistant (XDR) clinical isolate, Citrobacter portucalensis L2724hy, co-producing bla SFO-1, bla NDM-1, and bla KPC-2. Methods Species confirmation of L2724hy was achieved through 16S rRNA sequencing and Average Nucleotide Identity (ANI) analysis. Antimicrobial susceptibility testing (AST) employed the agar dilution and micro broth dilution methods. Identification of resistance genes was carried out by PCR and whole-genome sequencing (WGS). Essential resistance gene locations were verified by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and southern hybridization experiments. Subsequent WGS data analysis delved into drug resistance genes and plasmids. Results The confirmation of the strain L2724hy as an extensive drug-resistant Citrobacter portucalensis, resistant to almost all antibiotics tested except polymyxin B and tigecycline, was achieved through 16S rRNA sequencing, ANI analysis and AST results. WGS and subsequent analysis revealed L2724hy carrying bla SFO-1, bla NDM-1, and bla KPC-2 on plasmids of various sizes. The uncommon ESBL gene bla SFO-1 coexists with the fosA3 gene on an IncFII plasmid, featuring the genetic environment IS26-fosA3-IS26-ampR-bla SFO-1-IS26. The bla NDM-1 was found on an IncX3 plasmid, coexisting with bla SHV-12, displaying the sequence IS5-IS3000-IS3000-Tn2-bla NDM-1-ble-trpF-dsbD-cutA-gros-groL, lacking ISAa125. The bla KPC-2 is located on an unclassified plasmid, exhibiting the sequence Tn2-tnpR-ISKpn27-bla KPC-2-ISKpn6-korC. Conjugation assays confirmed the transferability of both bla NDM-1 and bla KPC-2. Conclusion We discovered the coexistence of bla SFO-1, bla NDM-1, and bla KPC-2 in C. portucalensis for the first time, delving into plasmid characteristics and transfer mechanisms. Our finding highlights the importance of vigilant monitoring of drug-resistance genes and insertion elements in uncommon strains.
Collapse
Affiliation(s)
- Kexin Guo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Zanzan Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yu Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiawei Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fangfang Tao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Ye Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Wenhong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
3
|
Liu C, Dong N, Zhang Y, Sun Q, Huang Y, Cai C, Chen G, Zhang R. Phenotypic and genomic characteristics of clinical IMP-producing Klebsiella spp. Isolates in China. COMMUNICATIONS MEDICINE 2024; 4:25. [PMID: 38383740 PMCID: PMC10881498 DOI: 10.1038/s43856-024-00439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND IMP-producing Klebsiella spp. (IMPKsp) strains have spread globally, including in China. Currently, the prevalence and genomic characterization of IMPKsp is largely unknown nationwide. Here we aimed to provide a general overview of the phenotypic and genomic characteristics of IMPKsp strains. METHODS 61 IMPKsp strains were obtained from 13 provinces in China during 2016-2021. All strains were tested for their susceptibility to antimicrobial agents by the microdilution broth method and sequenced with Illumina next-generation sequencing. We performed conjugation experiments on thirteen representative strains which were also sequenced by Oxford nanopore sequencing technology to characterize blaIMP-encoding plasmids. RESULTS We find that all IMPKsp strains display multidrug-resistant (MDR) phenotypes. All strains belong to 27 different STs. ST307 emerges as a principal IMP-producing sublineage. blaIMP-4 is found to be the major isoform, followed by blaIMP-38. Seven incompatibility types of blaIMP-encoding plasmids are identified, including IncHI5 (32/61, 52.5%), IncN-IncR (10/61, 16.4%), IncFIB(K)-HI1B (7/61, 11.5%), IncN (5/61, 8.2%), IncN-IncFII (2/61, 3.3%), IncFII (1/61, 1.6%) and IncP (1/61, 1.6%). The strains carrying IncHI5 and IncN plasmids belong to diverse ST types, indicating that these two plasmids may play an important role in the transmission of blaIMP genes among Klebsiella spp. strains. CONCLUSIONS Our results highlight that multi-clonal transmission, multiple genetic environments and plasmid types play a major role in the dissemination process of blaIMP genes among Klebsiella spp. IncHI5 type plasmids have the potential to be the main vectors mediating the spread of the blaIMP genes in Klebsiella spp.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ning Dong
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yonglu Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Chang Cai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Wu W, Wei S, Xue CX, Zhang W, Yan X, Liu J, Song Y, Yang L, Lin H, Wu B, Wen W, Zhou K. An IncN-ST7 epidemic plasmid mediates the dissemination of carbapenem-resistant Klebsiella pneumoniae in a neonatal intensive care unit in China over 10 years. Int J Antimicrob Agents 2023; 62:106921. [PMID: 37433387 DOI: 10.1016/j.ijantimicag.2023.106921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVES Carbapenem-resistant Klebsiella pneumoniae (CRKP) has widely disseminated globally, but its epidemiological characterization and clinical significance in paediatric patients are not well understood. In this study, we aimed to trace the dissemination dynamics of CRKP in the neonatal intensive care unit (NICU) of a tertiary hospital over a 10-y period. METHODS We collected 67 non-duplicate K. pneumoniae species complex isolates from the NICU with patient metadata during 2009-2018. Antimicrobial susceptibility was determined by the agar or broth microdilution method. Risk factors for CRKP-positive patients were identified by univariate and multivariate analysis. Genetic characterization was dissected by whole-genome sequencing. Plasmid transmissibility, stability, and fitness were assessed. RESULTS Thirty-four of 67 isolates (50.75%) were identified as CRKP. Premature rupture of membranes, gestational age, and invasive procedures are independent risk factors for CRKP-positive patients. The annual isolation rate of CRKP varied between 0% and 88.9%, and multiple clonal replacements were observed during the study period, which could be largely due to the division of the NICU. All but one CRKP produced IMP-4 carbapenemase, which was encoded by an IncN-ST7 epidemic plasmid, suggesting that the IncN-ST7 plasmid mediated the CRKP dissemination in the NICU over 10 y. The same plasmid was found in several CRKP isolates from adult patients, of which two ST17 isolates from the neurosurgery department shared a high homology with the ST17 isolates from the NICU, indicating possible cross-departmental transmission. CONCLUSION Our study highlights the urgent need for infection control measures targeting high-risk plasmids like IncN-ST7.
Collapse
Affiliation(s)
- Weiyuan Wu
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Sha Wei
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Chun-Xu Xue
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Wenjia Zhang
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xudong Yan
- Department of Neonatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jinquan Liu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yajing Song
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lin Yang
- Department of Neonatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Haoyun Lin
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Benqing Wu
- Department of Neonatology, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
| | - Wangrong Wen
- Clinical Laboratory Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China; Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| |
Collapse
|
5
|
Ramamurthy T, Ghosh A, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front Cell Infect Microbiol 2022; 12:952491. [PMID: 36506027 PMCID: PMC9727169 DOI: 10.3389/fcimb.2022.952491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is an important global health problem affecting humans, animals, and the environment. AMR is considered as one of the major components in the "global one health". Misuse/overuse of antibiotics in any one of the segments can impact the integrity of the others. In the presence of antibiotic selective pressure, bacteria tend to develop several defense mechanisms, which include structural changes of the bacterial outer membrane, enzymatic processes, gene upregulation, mutations, adaptive resistance, and biofilm formation. Several components of mobile genetic elements (MGEs) play an important role in the dissemination of AMR. Each one of these components has a specific function that lasts long, irrespective of any antibiotic pressure. Integrative and conjugative elements (ICEs), insertion sequence elements (ISs), and transposons carry the antimicrobial resistance genes (ARGs) on different genetic backbones. Successful transfer of ARGs depends on the class of plasmids, regulons, ISs proximity, and type of recombination systems. Additionally, phage-bacterial networks play a major role in the transmission of ARGs, especially in bacteria from the environment and foods of animal origin. Several other functional attributes of bacteria also get successfully modified to acquire ARGs. These include efflux pumps, toxin-antitoxin systems, regulatory small RNAs, guanosine pentaphosphate signaling, quorum sensing, two-component system, and clustered regularly interspaced short palindromic repeats (CRISPR) systems. The metabolic and virulence state of bacteria is also associated with a range of genetic and phenotypic resistance mechanisms. In spite of the availability of a considerable information on AMR, the network associations between selection pressures and several of the components mentioned above are poorly understood. Understanding how a pathogen resists and regulates the ARGs in response to antimicrobials can help in controlling the development of resistance. Here, we provide an overview of the importance of genetic network and regulation of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Thandavarayan Ramamurthy,
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-inchi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR- National Institute of Cholera and Enteric Diseases, Kolkata, India,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Qiao J, Ge H, Xu H, Guo X, Liu R, Li C, Chen R, Zheng B, Gou J. Detection of IMP-4 and SFO-1 co-producing ST51 Enterobacter hormaechei clinical isolates. Front Cell Infect Microbiol 2022; 12:998578. [PMID: 36389152 PMCID: PMC9647121 DOI: 10.3389/fcimb.2022.998578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/13/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose To explore the genetic characteristics of the IMP-4 and SFO-1 co-producing multidrug-resistant (MDR) clinical isolates, Enterobacter hormaechei YQ13422hy and YQ13530hy. Methods MALDI-TOF MS was used for species identification. Antibiotic resistance genes (ARGs) were tested by PCR and Sanger sequencing analysis. In addition to agar dilution, broth microdilution was used for antimicrobial susceptibility testing (AST). Whole-genome sequencing (WGS) analysis was conducted using the Illumina NovaSeq 6000 and Oxford Nanopore platforms. Annotation was performed by RAST on the genome. The phylogenetic tree was achieved using kSNP3.0. Plasmid characterization was conducted using S1-pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, conjugation experiments, and whole genome sequencing (WGS). An in-depth study of the conjugation module was conducted using the OriTFinder website. The genetic context of bla IMP-4 and bla SFO-1 was analyzed using BLAST Ring Image Generator (BRIG) and Easyfig 2.3. Results YQ13422hy and YQ13530hy, two MDR strains of ST51 E. hormaechei harboring bla IMP-4 and bla SFO-1, were identified. They were only sensitive to meropenem, amikacin and polymyxin B, and were resistant to cephalosporins, aztreonam, piperacillin/tazobactam and aminoglycosides, intermediate to imipenem. The genetic context surrounding bla IMP-4 was 5'CS-hin-1-IS26-IntI1-bla IMP-4-IS6100-ecoRII. The integron of bla IMP-4 is In823, which is the array of gene cassettes of 5'CS-bla IMP-4. Phylogenetic analysis demonstrated that E. hormaechei YQ13422hy and YQ13530hy belonged to the same small clusters with a high degree of homology. Conclusion This observation revealed the dissemination of the bla IMP-4 gene in E. hormaechei in China. We found that bla IMP-4 and bla SFO-1 co-exist in MDR clinical E. hormaechei isolates. This work showed a transferable IncN-type plasmid carrying the bla IMP-4 resistance gene in E. hormaechei. We examined the potential resistance mechanisms of pYQ13422-IMP-4 and pYQ13422-SFO-1, along with their detailed genetic contexts.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Yeh TK, Lin HJ, Liu PY, Wang JH, Hsueh PR. Antibiotic resistance in Enterobacter hormaechei. Int J Antimicrob Agents 2022; 60:106650. [DOI: 10.1016/j.ijantimicag.2022.106650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
|
8
|
Xiao T, Peng K, Chen Q, Hou X, Huang W, Lv H, Yang X, Lei G, Li R. Coexistence of tmexCD-toprJ, blaNDM-1, and blaIMP-4 in One Plasmid Carried by Clinical Klebsiella spp. Microbiol Spectr 2022; 10:e0054922. [PMID: 35647621 PMCID: PMC9241619 DOI: 10.1128/spectrum.00549-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/21/2022] [Indexed: 12/31/2022] Open
Abstract
In clinical practice, carbapenems and tigecycline are considered significant options for treating infections caused by multidrug-resistant Klebsiella spp. The continual evolution of resistance mechanisms to carbapenems and tigecycline is shattering the present condition. Meanwhile, convergence of the two resistance mechanisms in a single strain has been reported repeatedly, posing a significant threat to public health and safety. In this study, two carbapenem- and tigecycline-resistant Klebsiella species were obtained from patients and investigated using antimicrobial susceptibility testing, conjugation assay, whole-genome sequencing, and bioinformatics analysis. In Klebsiella variicola FK2020ZBJ35, an untransferable multidrug IncFIB(Mar)/IncHI1B-like plasmid carrying tmexCD2-toprJ2, blaIMP-4, and blaNDM-1 was discovered, as was a similar plasmid carrying tmexCD1-toprJ1 and blaIMP-4 in Klebsiella quasipneumoniae 2019SCSN059. Genetic context analysis found that two distinct tmexCD-toprJ variants were detected in comparable mobile units with genetic array int-int-hp-hp-tnfxB-tmexCD-toprJ and integrated into separate genetic locations. blaIMP-4 and blaNDM-1 were carried by an integron In1377 and a truncated Tn3000, respectively. These findings revealed that the carbapenem and tigecycline resistance genes carried by the two strains were located on mobile elements and might potentially transmit horizontally to additional strains. Furthermore, our findings showed that IncFIB(Mar)/IncHI1B-like plasmids represent a significant reservoir of essential resistance genes that warrants continued monitoring. IMPORTANCE Tigecycline is an essential antibiotic that is used to treat infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). The emergence of high-level tigecycline-resistant CRKP poses a serious hazard to human health. This work screened two tigecycline-resistant CRKP strains from clinical patients and found a type of plasmid that encoded carbapenemase and TmexCD-ToprJ in Klebsiella. Importantly, one plasmid cocarried tmexCD-toprJ, blaNDM-1, and blaIMP-4, hinting that this plasmid could be a critical vector for superbug development. Furthermore, we discovered that the carbapenem and tigecycline resistance genes are located in mobile units by genetic structure analysis. Our research tracks the formation of clinically super-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Tao Xiao
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Qi Chen
- Suining Center for Disease Control and Prevention, Suining, Sichuan Province, People’s Republic of China
| | - Xueqin Hou
- Guangyuan Center for Disease Control and Prevention, Guangyuan, Sichuan Province, People’s Republic of China
| | - Weifeng Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| | - Hong Lv
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaorong Yang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| | - Gaopeng Lei
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
9
|
Wang B, Pan F, Han D, Zhao W, Shi Y, Sun Y, Wang C, Zhang T, Zhang H. Genetic Characteristics and Microbiological Profile of Hypermucoviscous Multidrug-Resistant Klebsiella variicola Coproducing IMP-4 and NDM-1 Carbapenemases. Microbiol Spectr 2022; 10:e0158121. [PMID: 35019673 PMCID: PMC8823660 DOI: 10.1128/spectrum.01581-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
We report here a hypermucoviscous, New Delhi metallo-β-lactamase 1 (NDM-1) and imipenemase 4 (IMP-4) carbapenemases-coproducing Klebsiella variicola isolate obtained from a pediatric patient. This strain was resistant to carbapenems and most other β-lactams. Although hypermucoviscous, this strain possessed attenuated virulence according to serum killing assay and Galleria mellonella infection model. Notably, two copies of blaNDM-1 were contained on two tandem ISCR1 elements and coexisted with blaIMP-4 in a novel hybrid multidrug resistance plasmid. This is the first description of the coexistence of blaNDM-1 and blaIMP-4 in a single plasmid of hypermucoviscous K. variicola. IMPORTANCE As an important member of the Klebsiella pneumoniae complex, Klebsiella variicola is poorly studied as an emerging human pathogen. We, for the first time, report a unique K. variicola isolated from a pediatric patient in China. This isolate exhibited hypermucoviscosity, a classic hypervirulence characteristic of K. pneumoniae, and contained multiple carbapenem-resistant genes, including blaIMP-1 and blaNDM-1. Interestingly, these antimicrobial resistance genes were located on a novel hybrid plasmid, and our results suggested that this plasmid might have been introduced from K. pneumoniae and undergone a series of integration and recombination evolutionary events. Overall, our study provides more insight into K. variicola and highlights its superior capability to acquire and maintain foreign resistance genes.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wantong Zhao
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yingying Shi
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yan Sun
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chun Wang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tiandong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Sun M, Xiao W, Xu Q. IncN1 ST7 Epidemic Plasmid Carrying blaIMP-4 in One ST85-Type Klebsiella oxytoca Clinical Isolate with Porin Deficiency. Infect Drug Resist 2021; 14:3827-3835. [PMID: 34566416 PMCID: PMC8458025 DOI: 10.2147/idr.s330362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose Klebsiella oxytoca is an opportunistic pathogen causing nosocomial infections. This study was designed to characterize the genomic features of a carbapenem-resistant K. oxytoca strain and analyze its molecular characteristics. Materials and Methods The strain wzx-IMP was isolated from the blood of a 2-year-old girl diagnosed with acute myeloid leukemia-M7. Species identification was performed, and the minimal inhibitory concentration of the strain was measured. Multilocus sequence typing was performed to identify the subtypes of K. oxytoca. The transfer capacity of the blaIMP-4-harboring plasmid was investigated by conjugation experiments, and the genome characteristics of the strain were examined using whole-genome sequencing. Results wzx-IMP belongs to the ST85 type and is resistant to imipenem and meropenem, which harbored the blaIMP-4 gene. The blaIMP-4 gene was located in an IS26-associated class 1 integron of pwzx_IMP, which contains conserved IncN1-type backbone regions with a replication gene and its accessory structure for plasmid replication. The blaIMP-4-carrying plasmid in wzx-IMP was successfully transferred to Escherichia coli EC600 by conjugation. Whole-genome sequencing showed that the wzx-IMP isolate included the blaOXY-1-1 gene, accompanied by OmpK36 absence. Conclusion We report an ST85-type carbapenem-resistant K. oxytoca strain, which produces blaIMP-4 located in an IncN1-type plasmid and accompanied by OmpK36 porin deficiency.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| | - Weiqiang Xiao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
11
|
Gu Y, Lü Z, Cao C, Sheng H, Li W, Cui S, Li R, Lü X, Yang B. Cunning plasmid fusion mediates antibiotic resistance genes represented by ESBLs encoding genes transfer in foodborne Salmonella. Int J Food Microbiol 2021; 355:109336. [PMID: 34352499 DOI: 10.1016/j.ijfoodmicro.2021.109336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
Foodborne disease caused by antibiotic resistant Salmonella is quite difficult to deal with. In order to further explore the antibiotic resistance associated with gene transfer among foodborne Salmonella, several wild-type Salmonella strains were used as donors and recipients, respectively, to investigate how extended spectrum β-lactamases (ESBLs) encoding genes co-transfer with transposable elements to transmit antibiotic resistance. Antibiotic susceptibility was determined by agar dilution method, the transposase encoding gene was detected via PCR combined with DNA sequencing, S1 nuclease and pulsed field gel electrophoresis (S1-PFGE), and southern-blot. Illumina HiSeq 4000 platform and Nanopore MinION long-read sequencing technology were used to determine the antibiotic resistance encoding genes (ARGs) and their surrounding gene environment. The results indicated that the conjugation frequency was from ×10-4 to ×10-5 per recipient cell. A 185,608-bp-long DNA fragment and two short backbone protein encoding regions in pG19 in the donor fused with part genes in pS3 in the recipient during conjugation, the size of this fusion plasmid is as same as that of pG19. Cefoxitin resistance of the transconjugant was mediated by a tnpA21-related blaDHA-1 transfer. Resistance of Salmonella to ceftriaxone, cefoperazone and ceftiofur was mediated by a tnpU1548 related blaTEM-1B and blaCTX-M-3 transfer. The study indicated that transposase synergy and plasmid selective fusion act as important roles for foodborne Salmonella gathering ARGs. The consistent size of the plasmid before and after fusion suggested the invisibility and complexity of bacterial conjugation without DNA sequencing, the fact reminded us that the rampant transmission of antibiotic-resistance encoding genes would pose tremendous threat to food safety.
Collapse
Affiliation(s)
- Yaxin Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Gancz A, Kondratyeva K, Cohen-Eli D, Navon-Venezia S. Genomics and Virulence of Klebsiella pneumoniae Kpnu95 ST1412 Harboring a Novel Incf Plasmid Encoding Blactx-M-15 and Qnrs1 Causing Community Urinary Tract Infection. Microorganisms 2021; 9:microorganisms9051022. [PMID: 34068663 PMCID: PMC8151138 DOI: 10.3390/microorganisms9051022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
The emergence of extended-spectrum β-lactamase (ESBL)-producing multidrug resistant Klebsiella pneumoniae causing community urinary tract infections (CA-UTI) in healthy women undermines effective treatment and poses a public health concern. We performed a comprehensive genomic analysis (Illumina and MinION) and virulence studies using Caenorhabditis elegans nematodes to evaluate KpnU95, a blaCTX-M-15-producing CA-UTI K. pneumoniae strain. Whole genome sequencing identified KpnU95 as sequence type 1412 and revealed the chromosomal and plasmid-encoding resistome, virulome and persistence features. KpnU95 possess a wide virulome and caused complete C. elegans killing. The strain harbored a single novel 180.3Kb IncFIB(K) plasmid (pKpnU95), which encodes ten antibiotic resistance genes, including blaCTX-M-15 and qnrS1 alongside a wide persistome encoding heavy metal and UV resistance. Plasmid curing and reconstitution were used for loss and gain studies to evaluate its role on bacterial resistance, fitness and virulence. Plasmid curing abolished the ESBL phenotype, decreased ciprofloxacin MIC and improved bacterial fitness in artificial urine accompanied with enhanced copper tolerance, without affecting bacterial virulence. Meta-analysis supported the uniqueness of pKpnU95 and revealed plasmid-ST1412 lineage adaptation. Overall, our findings provide translational data on a CA-UTI K. pneumoniae ST1412 strain and demonstrates that ESBL-encoding plasmids play key roles in multidrug resistance and in bacterial fitness and persistence.
Collapse
Affiliation(s)
- Ayala Gancz
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
| | - Kira Kondratyeva
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
| | - Dorit Cohen-Eli
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
| | - Shiri Navon-Venezia
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
- The Miriam and Sheldon Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Correspondence:
| |
Collapse
|
13
|
De Angelis G, Del Giacomo P, Posteraro B, Sanguinetti M, Tumbarello M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int J Mol Sci 2020; 21:ijms21145090. [PMID: 32708513 PMCID: PMC7404273 DOI: 10.3390/ijms21145090] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite being members of gut microbiota, Enterobacteriaceae are associated with many severe infections such as bloodstream infections. The β-lactam drugs have been the cornerstone of antibiotic therapy for such infections. However, the overuse of these antibiotics has contributed to select β-lactam-resistant Enterobacteriaceae isolates, so that β-lactam resistance is nowadays a major concern worldwide. The production of enzymes that inactivate β-lactams, mainly extended-spectrum β-lactamases and carbapenemases, can confer multidrug resistance patterns that seriously compromise therapeutic options. Further, β-lactam resistance may result in increases in the drug toxicity, mortality, and healthcare costs associated with Enterobacteriaceae infections. Here, we summarize the updated evidence about the molecular mechanisms and epidemiology of β-lactamase-mediated β-lactam resistance in Enterobacteriaceae, and their potential impact on clinical outcomes of β-lactam-resistant Enterobacteriaceae infections.
Collapse
Affiliation(s)
- Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Paola Del Giacomo
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
14
|
He DD, Zhao SY, Wu H, Hu GZ, Zhao JF, Zong ZY, Pan YS. Antimicrobial resistance-encoding plasmid clusters with heterogeneous MDR regions driven by IS26 in a single Escherichia coli isolate. J Antimicrob Chemother 2020; 74:1511-1516. [PMID: 30820562 DOI: 10.1093/jac/dkz044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND IS26-flanked transposons played an increasingly important part in the mobilization and development of resistance determinants. Heterogeneous resistance-encoding plasmid clusters with polymorphic MDR regions (MRRs) conferred by IS26 in an individual Escherichia coli isolate have not yet been detected. OBJECTIVES To characterize the complete sequence of a novel blaCTX-M-65- and fosA3-carrying IncZ-7 plasmid with dynamic MRRs from an E. coli isolate, and to depict the mechanism underlying the spread of resistance determinants and genetic polymorphisms. METHODS The molecular characterization of a strain carrying blaCTX-M-65 and fosA3 was analysed by antimicrobial susceptibility testing and MLST. The transferability of a plasmid bearing blaCTX-M-65 and fosA3 was determined by conjugation assays, and the complete structure of the plasmid was obtained by Illumina, PacBio and conventional PCR mapping, respectively. The circular forms derived from IS26-flanked transposons were detected by reverse PCR and sequencing. RESULTS A novel IncZ-7 plasmid pEC013 (∼118kb) harbouring the blaCTX-M-65 and fosA3 genes was recovered from E. coli isolate EC013 belonging to D-ST117. The plasmid was found to have heterogeneous and dynamic MRRs in an individual strain and the IS26-flanked composite transposon-derived circular intermediates were identified and characterized in pEC013. CONCLUSIONS The heterogeneous MRRs suggested that a single plasmid may actually be a cluster of plasmids with the same backbone but varied MRRs, reflecting the plasmid's heterogeneity and the survival benefits of having a response to antimicrobial-related threatening conditions in an individual strain.
Collapse
Affiliation(s)
- Dan Dan He
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shi Yu Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Wu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong Zheng Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jin Feng Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhi Yong Zong
- West China Hospital, Sichuan University, Chengdu, China
| | - Yu Shan Pan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
15
|
Dissemination of a 'rare' extended-spectrum β-lactamase gene bla SFO-1 mediated by epidemic clones of carbapenemase-producing Enterobacter hormaechei in China. Int J Antimicrob Agents 2020; 56:106079. [PMID: 32634604 DOI: 10.1016/j.ijantimicag.2020.106079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/16/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022]
Abstract
An increasing trend of the coexistence of a rare extended-spectrum β-lactamase gene blaSFO-1 and carbapenemase genes in Enterobacteriaceae has recently been noted. This study aimed to determine the epidemiological and genetic characterisation of SFO-1-positive carbapenem-resistant Enterobacter cloacae complex (CREC) isolates. A total of 61 CREC clinical isolates were collected in the framework of a national surveillance for carbapenem-resistant Enterobacteriaceae during 2011-2015 in China. Seven SFO-1-positive CREC isolates (11.5%) were identified in four provinces, suggesting a wide dissemination of the blaSFO-1 gene among the CREC population in China. Five SFO-1-positive CREC isolates were further identified by screening 1625 genomes of E. cloacae complex strains retrieved from GenBank. The 12 SFO-1-positive CREC isolates were further identified as Enterobacter hormaechei, of which 10 belonged to epidemic clones (ST93, ST114 and ST418), indicating that these clones might largely contribute to the dissemination of blaSFO-1. Phylogenomics analysis further identified the occurrence of clonal dissemination in the community setting. The blaSFO-1-bearing plasmids were assigned to various incompatibility groups with highly diverse sizes (~104-370 kb), suggesting a wide vector range of blaSFO-1. Two types of genetic context, with and without insertion sequence IS26, were identified for the blaSFO-1 gene. The genetic context flanked by IS26 was more prevalent, thus largely facilitating the mobility of blaSFO-1. This study revealed that the blaSFO-1 gene is not as rare as previously found and that epidemic clones of CREC are responsible for its dissemination in China. These findings highlight the potential of wide dissemination of low-prevalence antimicrobial resistance genes.
Collapse
|
16
|
Xu J, Lin W, Chen Y, He F. Characterization of an IMP-4-Producing Klebsiella pneumoniae ST1873 Strain Recovered from an Infant with a Bloodstream Infection in China. Infect Drug Resist 2020; 13:773-779. [PMID: 32210591 PMCID: PMC7069566 DOI: 10.2147/idr.s247341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/23/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Imipenemase (IMP), an Ambler class B metallo-β-lactamase, is an important carbapenemase that confers resistance to almost all β-lactams. In this study, we characterized the genomic feature of an IMP-4-producing Klebsiella pneumoniae ST1873 strain, a rare sequence type (ST) isolated from an infant with a bloodstream infection in China. Patients and Methods K. pneumoniae strain, BKP19, was collected from a bloodstream infection in an infant who was hospitalized at the department of paediatrics. The whole genome sequence of the strain was sequenced using the Illumina NovaSeq 6000 platform and long-read MinION sequencer. Multilocus sequence typing, antimicrobial resistance gene identification, plasmid and phylogenetic relationship analysis of the strain were analysed by various bioinformatics approaches. Results K. pneumoniae BKP19 was resistant to multiple antimicrobials, including carbapenems. Eleven antimicrobial resistance genes corresponding to beta-lactam resistance, quinolone resistance, phenicol resistance and fosfomycin resistance could be identified in the genome. The carbapenem resistance gene bla IMP-4 was located in an IS26-associated class 1 integron of an IncN-type plasmid with 39,033 bp (pIMP-4-BKP19). Sequence alignment revealed that pIMP-4-BKP19 is closely related to the common plasmid carrying IMP-4 in K. pneumoniae (pIMP-HZ1-like plasmid) but is smaller, lacking the quinolone resistance gene qnrS1 and multiple tra gene orthologs. Conjugation experiment revealed that pIMP-4-BKP19 is a non-conjugative plasmid. According to in silico MLST analysis, K. pneumoniae strain BKP19 belongs to a sporadic clone ST1873. Conclusion In summary, our study reports the first genome sequence of a K. pneumoniae ST1873 strain harbouring the class B β-lactamase bla IMP-4 in an IncN-type plasmid recovered from an infant with a bloodstream infection in China. Considering the global emergence of IMP-4 carbapenemase, more attention must be paid to prevent its future prevalence.
Collapse
Affiliation(s)
- Juan Xu
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, People's Republic of China
| | - Wenping Lin
- Centers for Disease Control and Prevention of Ningbo, Ningbo, Zhejiang 315010, People's Republic of China
| | - Yanmin Chen
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Fang He
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
17
|
Yang S, Deng W, Liu S, Yu X, Mustafa GR, Chen S, He L, Ao X, Yang Y, Zhou K, Li B, Han X, Xu X, Zou L. Presence of heavy metal resistance genes in Escherichia coli and Salmonella isolates and analysis of resistance gene structure in E. coli E308. J Glob Antimicrob Resist 2020; 21:420-426. [PMID: 32006752 DOI: 10.1016/j.jgar.2020.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/15/2019] [Accepted: 01/12/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES With the wide use of heavy metals as feed additives in animal production, little attention has been paid to heavy metal resistance in pathogenic bacteria. This study was performed to investigate the presence of heavy metal resistance genes (HMRGs) in Escherichia coli and Salmonella isolates and its correlation with disinfectant resistance genes (DRGs) and antibiotic resistance genes (ARGs). METHODS HMRGs of 178 E. coli and 294 Salmonella isolated from chicken broiler farms and retail meat were detected by PCR. Minimum inhibitory concentrations (MICs) of heavy metals were determined by the broth microdilution method. The complete genome of E. coli E308, which had indications of multidrug resistance, was recovered and assembled using third-generation sequencing. RESULTS The frequency of different HMRGs in E. coli and Salmonella ranged from 0.60-77.0% and 0.30-87.1%, respectively. MICs of heavy metals for E. coli and Salmonella ranged widely from ≤12.5 mg/L to 1600 mg/L. Moreover, HMRGs (zntA, arsB, merA, pcoR, pcoA, pcoC and chrA) were found to be significantly associated with one or more DRGs [sugE(c), emrE, mdfA, ydgE/ydgF, qacF, sugE(p) and qacEΔ1] and ARGs (sul1, sul2, sul3, tetA, tetB, tetC, blaTEM, blaSHV and blaCTX) (P < 0.05). CONCLUSION This study demonstrated that HMRGs are widely present in E. coli and Salmonella isolated from chicken farms and retail meat. The association between HMRGs with DRGs and ARGs may lead to co-resistance to heavy metals and other antimicrobial agents.
Collapse
Affiliation(s)
- Shengzhi Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Wenwen Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625000, Sichuan, PR China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Ghulam Raza Mustafa
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625000, Sichuan, PR China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an 625000, Sichuan, PR China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an 625000, Sichuan, PR China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an 625000, Sichuan, PR China
| | - Kang Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an 625000, Sichuan, PR China
| | - Bei Li
- Dujiangyan Campus, Sichuan Agricultural University, Dujiangyan 611830, Sichuan, PR China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xuebin Xu
- Laboratory of Microbiology, Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, PR China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
18
|
Comprehensive Genome Analysis of Carbapenem-Resistant Raoultella spp. strains, an Emerging Multidrug-Resistant Bacteria in Hospitals. Antimicrob Agents Chemother 2019:AAC.01367-19. [PMID: 31570399 PMCID: PMC6879265 DOI: 10.1128/aac.01367-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We report the characterization of six carbapenem-resistant Raoultella spp. (CRRS) in our hospital and a genomic analysis of 58 publicly available isolates. CRRS isolates are sporadically identified around the world, and different transposons carrying carbapenemases were the resistant mechanisms. Mobile genetic elements play an important role in acquiring antibiotic resistance genes from the hospital. We report the characterization of six carbapenem-resistant Raoultella spp. (CRRS) in our hospital and a genomic analysis of 58 publicly available isolates. CRRS isolates are sporadically identified around the world, and different transposons carrying carbapenemases were the resistant mechanisms. Mobile genetic elements play an important role in acquiring antibiotic resistance genes from the hospital. An improved understanding of these transposon and targeted control measures will be very valuable to prevent CRRS dissemination.
Collapse
|
19
|
Ramirez MS, Iriarte A, Reyes-Lamothe R, Sherratt DJ, Tolmasky ME. Small Klebsiella pneumoniae Plasmids: Neglected Contributors to Antibiotic Resistance. Front Microbiol 2019; 10:2182. [PMID: 31616398 PMCID: PMC6764390 DOI: 10.3389/fmicb.2019.02182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is the causative agent of community- and, more commonly, hospital-acquired infections. Infections caused by this bacterium have recently become more dangerous due to the acquisition of multiresistance to antibiotics and the rise of hypervirulent variants. Plasmids usually carry genes coding for resistance to antibiotics or virulence factors, and the recent sequence of complete K. pneumoniae genomes showed that most strains harbor many of them. Unlike large plasmids, small, usually high copy number plasmids, did not attract much attention. However, these plasmids may include genes coding for specialized functions, such as antibiotic resistance, that can be expressed at high levels due to gene dosage effect. These genes may be part of mobile elements that not only facilitate their dissemination but also participate in plasmid evolution. Furthermore, high copy number plasmids may also play a role in evolution by allowing coexistence of mutated and non-mutated versions of a gene, which helps to circumvent the constraints imposed by trade-offs after certain genes mutate. Most K. pneumoniae plasmids 25-kb or smaller replicate by the ColE1-type mechanism and many of them are mobilizable. The transposon Tn1331 and derivatives were found in a high percentage of these plasmids. Another transposon that was found in representatives of this group is the bla KPC-containing Tn4401. Common resistance determinants found in these plasmids were aac(6')-Ib and genes coding for β-lactamases including carbapenemases.
Collapse
Affiliation(s)
- Maria S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República de Uruguay, Montevideo, Uruguay
| | | | - David J. Sherratt
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Zhou K, Yu X, Zhou Y, Song J, Ji Y, Shen P, Rossen JWA, Xiao Y. Detection of an In104-like integron carrying a blaIMP-34 gene in Enterobacter cloacae isolates co-producing IMP-34 and VIM-1. J Antimicrob Chemother 2019; 74:2812-2814. [PMID: 31199433 DOI: 10.1093/jac/dkz240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China.,Shenzhen Institute of Respiratory Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.,Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Xiao Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Yanzi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Jingjie Song
- Shenzhen Institute of Respiratory Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Yang Ji
- Shenzhen Institute of Respiratory Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| |
Collapse
|