1
|
Navarro-Romero MT, Muñoz MDL, Krause-Kyora B, Cervini-Silva J, Alcalá-Castañeda E, David RE. Bioanthropological analysis of human remains from the archaic and classic period discovered in Puyil cave, Mexico. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24903. [PMID: 38308451 DOI: 10.1002/ajpa.24903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVES Determine the geographic place of origin and maternal lineage of prehistoric human skeletal remains discovered in Puyil Cave, Tabasco State, Mexico, located in a region currently populated by Olmec, Zoque and Maya populations. MATERIALS AND METHODS All specimens were radiocarbon (14C) dated (beta analytic), had dental modifications classified, and had an analysis of 13 homologous reference points conducted to evaluate artificial cranial deformation (ACD). Following DNA purification, hypervariable region I (HVR-1) of the mitogenome was amplified and Sanger sequenced. Finally, Next Generation Sequencing (NGS) was performed for total DNA. Mitochondrial DNA (mtDNA) variants and haplogroups were determined using BioEdit 7.2 and IGV software and confirmed with MITOMASTER and WebHome softwares. RESULTS Radiocarbon dating (14C) demonstrated that the inhabitants of Puyil Cave lived during the Archaic and Classic Periods and displayed tabular oblique and tabular mimetic ACD. These pre-Hispanic remains exhibited five mtDNA lineages: A, A2, C1, C1c and D4. Network analysis revealed a close genetic affinity between pre-Hispanic Puyil Cave inhabitants and contemporary Maya subpopulations from Mexico and Guatemala, as well as individuals from Bolivia, Brazil, the Dominican Republic, and China. CONCLUSIONS Our results elucidate the dispersal of pre-Hispanic Olmec and Maya ancestors and suggest that ACD practices are closely related to Olmec and Maya practices. Additionally, we conclude that ACD has likely been practiced in the region since the Middle-Archaic Period.
Collapse
Affiliation(s)
- María Teresa Navarro-Romero
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - María de Lourdes Muñoz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Javiera Cervini-Silva
- Department of Process and Technology, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico
| | - Enrique Alcalá-Castañeda
- Department of Archaeological Studies, Instituto Nacional de Antropología e Historia, Mexico City, Mexico
| | - Randy E David
- Department of Population Health and Disease Prevention, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
2
|
Motti JMB, Pauro M, Scabuzzo C, García A, Aldazábal V, Vecchi R, Bayón C, Pastor N, Demarchi DA, Bravi CM, Reich D, Cabana GS, Nores R. Ancient mitogenomes from the Southern Pampas of Argentina reflect local differentiation and limited extra-regional linkages after rapid initial colonization. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:216-230. [PMID: 36919783 DOI: 10.1002/ajpa.24727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE This study aims to contribute to the recovery of Indigenous evolutionary history in the Southern Pampas region of Argentina through an analysis of ancient complete mitochondrial genomes. MATERIALS AND METHODS We generated DNA data for nine complete mitogenomes from the Southern Pampas, dated to between 2531 and 723 cal BP. In combination with previously published ancient mitogenomes from the region and from throughout South America, we documented instances of extra-regional lineage-sharing, and estimated coalescent ages for local lineages using a Bayesian method with tip calibrations in a phylogenetic analysis. RESULTS We identified a novel mitochondrial haplogroup, B2b16, and two recently defined haplogroups, A2ay and B2ak1, as well as three local haplotypes within founder haplogroups C1b and C1d. We detected lineage-sharing with ancient and contemporary individuals from Central Argentina, but not with ancient or contemporary samples from North Patagonian or Littoral regions of Argentina, despite archeological evidence of cultural interactions with the latter regions. The estimated coalescent age of these shared lineages is ~10,000 years BP. DISCUSSION The history of the human populations in the Southern Pampas is temporally deep, exhibiting long-term continuity of mitogenome lineages. Additionally, the identification of highly localized mtDNA clades accords with a model of relatively rapid initial colonization of South America by Indigenous communities, followed by more local patterns of limited gene flow and genetic drift in various South American regions, including the Pampas.
Collapse
Affiliation(s)
- Josefina M B Motti
- Laboratorio de Ecología Evolutiva Humana, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Quequén, Buenos Aires, Argentina
| | - Maia Pauro
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina
| | - Clara Scabuzzo
- Centro de Investigación Científica y de Transferencia a la Producción (CICyTTP)-CONICET, Provincia de Entre Ríos-Universidad Autónoma de Entre Ríos (UADER)-División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Diamante, Entre Ríos, Argentina
| | - Angelina García
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina.,Facultad de Filosofía y Humanidades, Museo de Antropología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Aldazábal
- Instituto Multidisciplinario de Historia y Ciencias Humanas, CONICET, Buenos Aires, Argentina
| | - Rodrigo Vecchi
- Departamento de Humanidades, Universidad Nacional del Sur, CONICET, Bahía Blanca, Buenos Aires, Argentina
| | - Cristina Bayón
- Departamento de Humanidades, Universidad Nacional del Sur, CONICET, Bahía Blanca, Buenos Aires, Argentina
| | - Nicolás Pastor
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina
| | - Darío A Demarchi
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina.,Facultad de Filosofía y Humanidades, Museo de Antropología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudio M Bravi
- Instituto Multidisciplinario de Biología Celular, Centro Científico Tecnológica (CCT) La Plata CONICET, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Broad Institute, Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Graciela S Cabana
- Molecular Anthropology Laboratories, Department of Anthropology, University of Tennessee, Knoxville, Tennessee, USA
| | - Rodrigo Nores
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina.,Facultad de Filosofía y Humanidades, Museo de Antropología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Silva MACE, Ferraz T, Hünemeier T. A genomic perspective on South American human history. Genet Mol Biol 2022; 45:e20220078. [PMID: 35925590 PMCID: PMC9351327 DOI: 10.1590/1678-4685-gmb-2022-0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
It has generally been accepted that the current indigenous peoples of the Americas are derived from ancestors from northeastern Asia. The latter were believed to have spread into the American continent by the end of the Last Glacial Maximum. In this sense, a joint and in-depth study of the earliest settlement of East Asia and the Americas is required to elucidate these events accurately. The first Americans underwent an adaptation process to the Americas' vast environmental diversity, mediated by biological and cultural evolution and niche construction, resulting in enormous cultural diversity, a wealth of domesticated species, and extensive landscape modifications. Afterward, in the Late Holocene, the advent of intensive agricultural food production systems, sedentism, and climate change significantly reshaped genetic and cultural diversity across the continent, particularly in the Andes and Amazonia. Furthermore, starting around the end of the 15th century, European colonization resulted in massive extermination of indigenous peoples and extensive admixture. Thus, the present review aims to create a comprehensive picture of the main events involved in the formation of contemporary South American indigenous populations and the dynamics responsible for shaping their genetic diversity by integrating current genetic data with evidence from archeology, linguistics and other disciplines.
Collapse
Affiliation(s)
- Marcos Araújo Castro E Silva
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Tiago Ferraz
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Tábita Hünemeier
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Simão F, Ribeiro J, Vullo C, Catelli L, Gomes V, Xavier C, Huber G, Bodner M, Quiroz A, Ferreira AP, Carvalho EF, Parson W, Gusmão L. The Ancestry of Eastern Paraguay: A Typical South American Profile with a Unique Pattern of Admixture. Genes (Basel) 2021; 12:1788. [PMID: 34828394 PMCID: PMC8625094 DOI: 10.3390/genes12111788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Immigrants from diverse origins have arrived in Paraguay and produced important demographic changes in a territory initially inhabited by indigenous Guarani. Few studies have been performed to estimate the proportion of Native ancestry that is still preserved in Paraguay and the role of females and males in admixture processes. Therefore, 548 individuals from eastern Paraguay were genotyped for three marker sets: mtDNA, Y-SNPs and autosomal AIM-InDels. A genetic homogeneity was found between departments for each set of markers, supported by the demographic data collected, which showed that only 43% of the individuals have the same birthplace as their parents. The results show a sex-biased intermarriage, with higher maternal than paternal Native American ancestry. Within the native mtDNA lineages in Paraguay (87.2% of the total), most haplogroups have a broad distribution across the subcontinent, and only few are concentrated around the Paraná River basin. The frequency distribution of the European paternal lineages in Paraguay (92.2% of the total) showed a major contribution from the Iberian region. In addition to the remaining legacy of the colonial period, the joint analysis of the different types of markers included in this study revealed the impact of post-war migrations on the current genetic background of Paraguay.
Collapse
Affiliation(s)
- Filipa Simão
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Julyana Ribeiro
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Carlos Vullo
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team, Córdoba 14001, Argentina; (C.V.); (L.C.)
| | - Laura Catelli
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team, Córdoba 14001, Argentina; (C.V.); (L.C.)
| | - Verónica Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal;
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), 4099-002 Porto, Portugal
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Alfredo Quiroz
- Instituto de Previsión Social, Asunción 100153, Paraguay;
| | - Ana Paula Ferreira
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Elizeu F. Carvalho
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
- Forensic Science Program, The Pennsylvania State University, State College, PA 16801, USA
| | - Leonor Gusmão
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| |
Collapse
|
5
|
Di Corcia T, Scano G, Martínez-Labarga C, Sarno S, De Fanti S, Luiselli D, Rickards O. Uniparental Lineages from the Oldest Indigenous Population of Ecuador: The Tsachilas. Genes (Basel) 2021; 12:genes12081273. [PMID: 34440446 PMCID: PMC8391833 DOI: 10.3390/genes12081273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Together with Cayapas, the Tsachilas constitute the oldest population in the country of Ecuador and, according to some historians, they are the last descendants of the ancient Yumbos. Several anthropological issues underlie the interest towards this peculiar population: the uncertainty of their origin, their belonging to the Barbacoan linguistic family, which is still at the center of an intense linguistic debate, and the relations of their Yumbo ancestors with the Inca invaders who occupied their ancient territory. Our contribution to the knowledge of their complex past was the reconstruction of their genetic maternal and paternal inheritance through the sequencing of 70 entire mitochondrial genomes and the characterization of the non-recombinant region of the Y chromosome in 26 males. For both markers, we built comprehensive datasets of various populations from the surrounding geographical area, northwestern South America, NW, with a known linguistic affiliation, and we could then compare our sample against the overall variability to infer relationships with other Barbacoan people and with other NW natives. We found contrasting patterns of genetic diversity for the two markers, but generally, our results indicated a possible common origin between the Tsachilas, the Chachi, and other Ecuadorian and Colombian Barbacoans and are suggestive of an interesting ancient linkage to the Inca invaders in Yumbo country.
Collapse
Affiliation(s)
- Tullia Di Corcia
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
- Correspondence: (T.D.C.); (G.S.)
| | - Giuseppina Scano
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
- Correspondence: (T.D.C.); (G.S.)
| | - Cristina Martínez-Labarga
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (S.D.F.)
| | - Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (S.D.F.)
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage (DBC), University of Bologna, Via degli Ariani, 1, 40121 Ravenna, Italy;
| | - Olga Rickards
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
| |
Collapse
|
6
|
García A, Nores R, Motti JMB, Pauro M, Luisi P, Bravi CM, Fabra M, Gosling AL, Kardailsky O, Boocock J, Solé-Morata N, Matisoo-Smith EA, Comas D, Demarchi DA. Ancient and modern mitogenomes from Central Argentina: new insights into population continuity, temporal depth and migration in South America. Hum Mol Genet 2021; 30:1200-1217. [PMID: 33856032 DOI: 10.1093/hmg/ddab105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
The inverted triangle shape of South America places Argentina territory as a geographical crossroads between the two principal peopling streams that followed either the Pacific or the Atlantic coasts, which could have then merged in Central Argentina (CA). Although the genetic diversity from this region is therefore crucial to decipher past population movements in South America, its characterization has been overlooked so far. We report 92 modern and 22 ancient mitogenomes spanning a temporal range of 5000 years, which were compared with a large set of previously reported data. Leveraging this dataset representative of the mitochondrial diversity of the subcontinent, we investigate the maternal history of CA populations within a wider geographical context. We describe a large number of novel clades within the mitochondrial DNA tree, thus providing new phylogenetic interpretations for South America. We also identify several local clades of great temporal depth with continuity until the present time, which stem directly from the founder haplotypes, suggesting that they originated in the region and expanded from there. Moreover, the presence of lineages characteristic of other South American regions reveals the existence of gene flow to CA. Finally, we report some lineages with discontinuous distribution across the Americas, which suggest the persistence of relic lineages likely linked to the first population arrivals. The present study represents to date the most exhaustive attempt to elaborate a Native American genetic map from modern and ancient complete mitochondrial genomes in Argentina and provides relevant information about the general process of settlement in South America.
Collapse
Affiliation(s)
- Angelina García
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Rodrigo Nores
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Josefina M B Motti
- FACSO (NEIPHPA), Universidad Nacional del Centro de la Provincia de Buenos Aires, CONICET, Quequén 7631, Argentina
| | - Maia Pauro
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Pierre Luisi
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Claudio M Bravi
- Instituto Multidisciplinario de Biología Celular (IMBICE), CCT La Plata CONICET, CICPBA, Universidad Nacional de La Plata, La Plata 1906, Argentina
| | - Mariana Fabra
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Anna L Gosling
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - James Boocock
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.,Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Neus Solé-Morata
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Darío A Demarchi
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
7
|
Davidson R, Fehren-Schmitz L, Llamas B. A Multidisciplinary Review of the Inka Imperial Resettlement Policy and Implications for Future Investigations. Genes (Basel) 2021; 12:215. [PMID: 33540755 PMCID: PMC7913103 DOI: 10.3390/genes12020215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/10/2023] Open
Abstract
The rulers of the Inka empire conquered approximately 2 million km2 of the South American Andes in just under 100 years from 1438-1533 CE. Inside the empire, the elite conducted a systematic resettlement of the many Indigenous peoples in the Andes that had been rapidly colonised. The nature of this resettlement phenomenon is recorded within the Spanish colonial ethnohistorical record. Here we have broadly characterised the resettlement policy, despite the often incomplete and conflicting details in the descriptions. We then review research from multiple disciplines that investigate the empirical reality of the Inka resettlement policy, including stable isotope analysis, intentional cranial deformation morphology, ceramic artefact chemical analyses and genetics. Further, we discuss the benefits and limitations of each discipline for investigating the resettlement policy and emphasise their collective value in an interdisciplinary characterisation of the resettlement policy.
Collapse
Affiliation(s)
- Roberta Davidson
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics (NCIG), Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
8
|
Guevara EK, Palo JU, Översti S, King JL, Seidel M, Stoljarova M, Wendt FR, Bus MM, Guengerich A, Church WB, Guillén S, Roewer L, Budowle B, Sajantila A. Genetic assessment reveals no population substructure and divergent regional and sex-specific histories in the Chachapoyas from northeast Peru. PLoS One 2020; 15:e0244497. [PMID: 33382772 PMCID: PMC7774974 DOI: 10.1371/journal.pone.0244497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
Many native populations in South America have been severely impacted by two relatively recent historical events, the Inca and the Spanish conquest. However decisive these disruptive events may have been, the populations and their gene pools have been shaped markedly also by the history prior to the conquests. This study focuses mainly on the Chachapoya peoples that inhabit the montane forests on the eastern slopes of the northern Peruvian Andes, but also includes three distinct neighboring populations (the Jívaro, the Huancas and the Cajamarca). By assessing mitochondrial, Y-chromosomal and autosomal diversity in the region, we explore questions that have emerged from archaeological and historical studies of the regional culture (s). These studies have shown, among others, that Chachapoyas was a crossroads for Coast-Andes-Amazon interactions since very early times. In this study, we examine the following questions: 1) was there pre-Hispanic genetic population substructure in the Chachapoyas sample? 2) did the Spanish conquest cause a more severe population decline on Chachapoyan males than on females? 3) can we detect different patterns of European gene flow in the Chachapoyas region? and, 4) did the demographic history in the Chachapoyas resemble the one from the Andean area? Despite cultural differences within the Chachapoyas region as shown by archaeological and ethnohistorical research, genetic markers show no significant evidence for past or current population substructure, although an Amazonian gene flow dynamic in the northern part of this territory is suggested. The data also indicates a bottleneck c. 25 generations ago that was more severe among males than females, as well as divergent population histories for populations in the Andean and Amazonian regions. In line with previous studies, we observe high genetic diversity in the Chachapoyas, despite the documented dramatic population declines. The diverse topography and great biodiversity of the northeastern Peruvian montane forests are potential contributing agents in shaping and maintaining the high genetic diversity in the Chachapoyas region.
Collapse
Affiliation(s)
- Evelyn K. Guevara
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- * E-mail: (EKG); (AS)
| | - Jukka U. Palo
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Genetics Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sanni Översti
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jonathan L. King
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Maria Seidel
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Monika Stoljarova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Frank R. Wendt
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Magdalena M. Bus
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anna Guengerich
- Eckerd College, Saint Petersburg, Florida, United States of America
| | - Warren B. Church
- Department of Earth and Space Sciences, Columbus State University, Columbus, Georgia, United States of America
| | | | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- * E-mail: (EKG); (AS)
| |
Collapse
|
9
|
Sandoval JR, Lacerda DR, Jota MMS, Robles-Ruiz P, Danos P, Paz-Y-Miño C, Wells S, Santos FR, Fujita R. Tracing the genetic history of the 'Cañaris' from Ecuador and Peru using uniparental DNA markers. BMC Genomics 2020; 21:413. [PMID: 32912150 PMCID: PMC7488242 DOI: 10.1186/s12864-020-06834-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND According to history, in the pre-Hispanic period, during the conquest and Inka expansion in Ecuador, many Andean families of the Cañar region would have been displaced to several places of Tawantinsuyu, including Kañaris, a Quechua-speaking community located at the highlands of the Province of Ferreñafe, Lambayeque (Peru). Other families were probably taken from the Central Andes to a place close to Kañaris, named Inkawasi. Evidence of this migration comes from the presence near the Kañaris-Inkawasi communities of a village, a former Inka camp, which persists until the present day. This scenario could explain these toponyms, but it is still controversial. To clarify this historical question, the study presented here focused on the inference of the genetic relationship between 'Cañaris' populations, particularly of Cañar and Ferreñafe, compared to other highland populations. We analysed native patrilineal Y chromosome haplotypes composed of 15 short tandem repeats, a set of SNPs, and maternal mitochondrial DNA haplotypes of control region sequences. RESULTS After the genetic comparisons of local populations-three from Ecuador and seven from Peru-, Y chromosome analyses (n = 376) indicated that individuals from the Cañar region do not share Y haplotypes with the Kañaris, or even with those of the Inkawasi. However, some Y haplotypes of Ecuadorian 'Cañaris' were associated with haplotypes of the Peruvian populations of Cajamarca, Chivay (Arequipa), Cusco and Lake Titicaca, an observation that is congruent with colonial records. Within the Kañaris and Inkawasi communities there are at least five clans in which several individuals share haplotypes, indicating that they have recent common ancestors. Despite their relative isolation, most individuals of both communities are related to those of the Cajamarca and Chachapoyas in Peru, consistent with the spoken Quechua and their geographic proximity. With respect to mitochondrial DNA haplotypes (n = 379), with the exception of a shared haplotype of the D1 lineage between the Cañar and Kañaris, there are no genetic affinities. CONCLUSION Although there is no close genetic relationship between the Peruvian Kañaris (including Inkawasi) and Ecuadorian Cañar populations, our results showed some congruence with historical records.
Collapse
Affiliation(s)
- José R Sandoval
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Instituto de Investigación, Facultad de Medicina, Universidad de San Martín de Porres, Lima, Peru. .,Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Daniela R Lacerda
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marilza M S Jota
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Robles-Ruiz
- Instituto de Investigaciones Biomédicas, Universidad de las Américas, Quito, Ecuador
| | - Pierina Danos
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Instituto de Investigación, Facultad de Medicina, Universidad de San Martín de Porres, Lima, Peru
| | - César Paz-Y-Miño
- Centro de Investigación Genética y Genómica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Spencer Wells
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Fabrício R Santos
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Fujita
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Instituto de Investigación, Facultad de Medicina, Universidad de San Martín de Porres, Lima, Peru
| |
Collapse
|
10
|
Barbieri C, Barquera R, Arias L, Sandoval JR, Acosta O, Zurita C, Aguilar-Campos A, Tito-Álvarez AM, Serrano-Osuna R, Gray RD, Mafessoni F, Heggarty P, Shimizu KK, Fujita R, Stoneking M, Pugach I, Fehren-Schmitz L. The Current Genomic Landscape of Western South America: Andes, Amazonia, and Pacific Coast. Mol Biol Evol 2019; 36:2698-2713. [PMID: 31350885 PMCID: PMC6878948 DOI: 10.1093/molbev/msz174] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies of Native South American genetic diversity have helped to shed light on the peopling and differentiation of the continent, but available data are sparse for the major ecogeographic domains. These include the Pacific Coast, a potential early migration route; the Andes, home to the most expansive complex societies and to one of the most widely spoken indigenous language families of the continent (Quechua); and Amazonia, with its understudied population structure and rich cultural diversity. Here, we explore the genetic structure of 176 individuals from these three domains, genotyped with the Affymetrix Human Origins array. We infer multiple sources of ancestry within the Native American ancestry component; one with clear predominance on the Coast and in the Andes, and at least two distinct substrates in neighboring Amazonia, including a previously undetected ancestry characteristic of northern Ecuador and Colombia. Amazonian populations are also involved in recent gene-flow with each other and across ecogeographic domains, which does not accord with the traditional view of small, isolated groups. Long-distance genetic connections between speakers of the same language family suggest that indigenous languages here were spread not by cultural contact alone. Finally, Native American populations admixed with post-Columbian European and African sources at different times, with few cases of prolonged isolation. With our results we emphasize the importance of including understudied regions of the continent in high-resolution genetic studies, and we illustrate the potential of SNP chip arrays for informative regional-scale analysis.
Collapse
Affiliation(s)
- Chiara Barbieri
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Leonardo Arias
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José R Sandoval
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Universidad de San Martín de Porres, Lima, Peru
| | - Oscar Acosta
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Universidad de San Martín de Porres, Lima, Peru
| | - Camilo Zurita
- Cátedra de Inmunología, Facultad de Medicina, Universidad Central del Ecuador, Quito, Ecuador
- Zurita & Zurita Laboratorios, Unidad de Investigaciones en Biomedicina, Quito, Ecuador
| | - Abraham Aguilar-Campos
- Clinical Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 2, Instituto Mexicano del Seguro Social (IMSS), Ciudad Obregón, Sonora, Mexico
| | - Ana M Tito-Álvarez
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| | - Ricardo Serrano-Osuna
- Clinical Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 2, Instituto Mexicano del Seguro Social (IMSS), Ciudad Obregón, Sonora, Mexico
| | - Russell D Gray
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Fabrizio Mafessoni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paul Heggarty
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Ricardo Fujita
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Universidad de San Martín de Porres, Lima, Peru
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics, Department of Anthropology, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
| |
Collapse
|
11
|
Resolving mitochondrial haplogroups B2 and B4 with next-generation mitogenome sequencing to distinguish Native American from Asian haplotypes. Forensic Sci Int Genet 2019; 43:102143. [DOI: 10.1016/j.fsigen.2019.102143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
|
12
|
Pinotti T, Bergström A, Geppert M, Bawn M, Ohasi D, Shi W, Lacerda DR, Solli A, Norstedt J, Reed K, Dawtry K, González-Andrade F, Paz-Y-Miño C, Revollo S, Cuellar C, Jota MS, Santos JE, Ayub Q, Kivisild T, Sandoval JR, Fujita R, Xue Y, Roewer L, Santos FR, Tyler-Smith C. Y Chromosome Sequences Reveal a Short Beringian Standstill, Rapid Expansion, and early Population structure of Native American Founders. Curr Biol 2018; 29:149-157.e3. [PMID: 30581024 DOI: 10.1016/j.cub.2018.11.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
The Americas were the last inhabitable continents to be occupied by humans, with a growing multidisciplinary consensus for entry 15-25 thousand years ago (kya) from northeast Asia via the former Beringia land bridge [1-4]. Autosomal DNA analyses have dated the separation of Native American ancestors from the Asian gene pool to 23 kya or later [5, 6] and mtDNA analyses to ∼25 kya [7], followed by isolation ("Beringian Standstill" [8, 9]) for 2.4-9 ky and then a rapid expansion throughout the Americas. Here, we present a calibrated sequence-based analysis of 222 Native American and relevant Eurasian Y chromosomes (24 new) from haplogroups Q and C [10], with four major conclusions. First, we identify three to four independent lineages as autochthonous and likely founders: the major Q-M3 and rarer Q-CTS1780 present throughout the Americas, the very rare C3-MPB373 in South America, and possibly the C3-P39/Z30536 in North America. Second, from the divergence times and Eurasian/American distribution of lineages, we estimate a Beringian Standstill duration of 2.7 ky or 4.6 ky, according to alternative models, and entry south of the ice sheet after 19.5 kya. Third, we describe the star-like expansion of Q-M848 (within Q-M3) starting at 15 kya [11] in the Americas, followed by establishment of substantial spatial structure in South America by 12 kya. Fourth, the deep branches of the Q-CTS1780 lineage present at low frequencies throughout the Americas today [12] may reflect a separate out-of-Beringia dispersal after the melting of the glaciers at the end of the Pleistocene.
Collapse
Affiliation(s)
- Thomaz Pinotti
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-010 Belo Horizonte, Brazil; The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Anders Bergström
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Maria Geppert
- Institute of Legal Medicine and Forensic Sciences, Department of Forensic Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matt Bawn
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martin de Porres, 15009 Lima, Peru; The Earlham Institute, NR4 7UG Norwich, UK
| | - Dominique Ohasi
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-010 Belo Horizonte, Brazil
| | - Wentao Shi
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Daniela R Lacerda
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-010 Belo Horizonte, Brazil
| | - Arne Solli
- Q Nordic Independent Researchers; Department of Archaeology, History, Cultural Studies and Religion (AHKR), University of Bergen, Norway
| | | | | | | | - Fabricio González-Andrade
- Translational Medicine Unit, Central University of Ecuador, Faculty of Medical Sciences, Iquique N14-121 y Sodiro-Itchimbía, Sector El Dorado, 170403 Quito, Ecuador
| | - Cesar Paz-Y-Miño
- Universidad de las Americas, Av. de los Granados E12-41, 170513 Quito, Ecuador
| | - Susana Revollo
- Universidad Mayor de San Andrés, Av. Villazón 1995, 2008 La Paz, Bolivia
| | - Cinthia Cuellar
- Universidad Mayor de San Andrés, Av. Villazón 1995, 2008 La Paz, Bolivia
| | - Marilza S Jota
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-010 Belo Horizonte, Brazil
| | - José E Santos
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-010 Belo Horizonte, Brazil
| | - Qasim Ayub
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK; Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Toomas Kivisild
- Department of Archaeology and Anthropology, University of Cambridge, CB2 1QH Cambridge, UK; Estonian Biocentre, 51010 Tartu, Estonia
| | - José R Sandoval
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martin de Porres, 15009 Lima, Peru
| | - Ricardo Fujita
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martin de Porres, 15009 Lima, Peru
| | - Yali Xue
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Lutz Roewer
- Institute of Legal Medicine and Forensic Sciences, Department of Forensic Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fabrício R Santos
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-010 Belo Horizonte, Brazil.
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
13
|
Arias L, Schröder R, Hübner A, Barreto G, Stoneking M, Pakendorf B. Cultural Innovations Influence Patterns of Genetic Diversity in Northwestern Amazonia. Mol Biol Evol 2018; 35:2719-2735. [PMID: 30169717 PMCID: PMC6231495 DOI: 10.1093/molbev/msy169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human populations often exhibit contrasting patterns of genetic diversity in the mtDNA and the nonrecombining portion of the Y-chromosome (NRY), which reflect sex-specific cultural behaviors and population histories. Here, we sequenced 2.3 Mb of the NRY from 284 individuals representing more than 30 Native American groups from Northwestern Amazonia (NWA) and compared these data to previously generated mtDNA genomes from the same groups, to investigate the impact of cultural practices on genetic diversity and gain new insights about NWA population history. Relevant cultural practices in NWA include postmarital residential rules and linguistic exogamy, a marital practice in which men are required to marry women speaking a different language. We identified 2,969 SNPs in the NRY sequences, only 925 of which were previously described. The NRY and mtDNA data showed different sex-specific demographic histories: female effective population size has been larger than that of males through time, which might reflect larger variance in male reproductive success. Both markers show an increase in lineage diversification beginning ∼5,000 years ago, which may reflect the intensification of agriculture, technological innovations, and the expansion of regional trade networks documented in the archaeological evidence. Furthermore, we find similar excesses of NRY versus mtDNA between-population divergence at both the local and continental scale, suggesting long-term stability of female versus male migration. We also find evidence of the impact of sociocultural practices on diversity patterns. Finally, our study highlights the importance of analyzing high-resolution mtDNA and NRY sequences to reconstruct demographic history, since this can differ considerably between sexes.
Collapse
Affiliation(s)
- Leonardo Arias
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Laboratorio de Genética Molecular Humana, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Roland Schröder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Guillermo Barreto
- Laboratorio de Genética Molecular Humana, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | |
Collapse
|
14
|
Sandoval JR, Lacerda DR, Jota MS, Elward R, Acosta O, Pinedo D, Danos P, Cuellar C, Revollo S, Santos FR, Fujita R. Genetic ancestry of families of putative Inka descent. Mol Genet Genomics 2018; 293:873-881. [PMID: 29502256 PMCID: PMC6061041 DOI: 10.1007/s00438-018-1427-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/26/2018] [Indexed: 11/17/2022]
Abstract
This study focuses on the descendants of the royal Inka family. The Inkas ruled Tawantinsuyu, the largest pre-Columbian empire in South America, which extended from southern Colombia to central Chile. The origin of the royal Inkas is currently unknown. While the mummies of the Inka rulers could have been informative, most were destroyed by Spaniards and the few remaining disappeared without a trace. Moreover, no genetic studies have been conducted on present-day descendants of the Inka rulers. In the present study, we analysed uniparental DNA markers in 18 individuals predominantly from the districts of San Sebastian and San Jerónimo in Cusco (Peru), who belong to 12 families of putative patrilineal descent of Inka rulers, according to documented registries. We used single-nucleotide polymorphisms and short tandem repeat (STR) markers of the Y chromosome (Y-STRs), as well as mitochondrial DNA D-loop sequences, to investigate the paternal and maternal descent of the 18 alleged Inka descendants. Two Q-M3* Y-STR clusters descending from different male founders were identified. The first cluster, named AWKI-1, was associated with five families (eight individuals). By contrast, the second cluster, named AWKI-2, was represented by a single individual; AWKI-2 was part of the Q-Z19483 sub-lineage that was likely associated with a recent male expansion in the Andes, which probably occurred during the Late Intermediate Period (1000-1450 AD), overlapping the Inka period. Concerning the maternal descent, different mtDNA lineages associated with each family were identified, suggesting a high maternal gene flow among Andean populations, probably due to changes in the last 1000 years.
Collapse
Affiliation(s)
- José R Sandoval
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres (USMP), Lima, Peru.
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Daniela R Lacerda
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marilza S Jota
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Oscar Acosta
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres (USMP), Lima, Peru
| | - Donaldo Pinedo
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres (USMP), Lima, Peru
| | - Pierina Danos
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres (USMP), Lima, Peru
| | | | | | - Fabricio R Santos
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Fujita
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres (USMP), Lima, Peru
| |
Collapse
|