1
|
Stafford P, Sherma ND, Peterson M, Diehnelt CW. A Peptide Microarray Platform Approach for Discovery of Immunodominant Antibody Epitopes. Anal Chem 2024; 96:14524-14530. [PMID: 39207871 DOI: 10.1021/acs.analchem.4c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Immunodominant epitope discovery platforms play an important role in identifying novel biomarkers for effective immunotherapies and diagnostics. Methods to analyze the B-cell repertoire have been improved both experimentally and computationally. We developed an enhanced peptide microarray platform to discover and subsequently screen immunodominant epitopes. We utilized SARS-Cov-2 IgG positive and negative samples as a proof-of-concept to demonstrate the power of these improved peptide microarrays. The method identified significantly discriminant epitopes that classify positive and negative samples with good performance both as single peptides and in combination. We provide the assay conditions and parameters that justify the use of peptide microarrays in the selection of high-affinity epitopes, and we directly compare peptide performance against proteins. The results suggest that this platform can be used to confidently identify immunodominant antiviral epitopes while also serving as a useful tool for high-volume screening.
Collapse
Affiliation(s)
- Phillip Stafford
- Robust Diagnostics, LLC, Chandler, Arizona 85226, United States of America
| | - Nisha D Sherma
- Robust Diagnostics, LLC, Chandler, Arizona 85226, United States of America
| | - Milene Peterson
- Robust Diagnostics, LLC, Chandler, Arizona 85226, United States of America
| | - Chris W Diehnelt
- Robust Diagnostics, LLC, Chandler, Arizona 85226, United States of America
| |
Collapse
|
2
|
Iannuzo N, Haller YA, McBride M, Mehari S, Lainson JC, Diehnelt CW, Haydel SE. High-Throughput Screening Identifies Synthetic Peptides with Antibacterial Activity against Mycobacterium abscessus and Serum Stability. ACS OMEGA 2022; 7:23967-23977. [PMID: 35847280 PMCID: PMC9281306 DOI: 10.1021/acsomega.2c02844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise in antibiotic resistance in bacteria has spawned new technological approaches for identifying novel antimicrobials with narrow specificity. Current antibiotic treatment regimens and antituberculosis drugs are not effective in treating Mycobacterium abscessus. Meanwhile, antimicrobial peptides are gaining prominence as alternative antimicrobials due to their specificity toward anionic bacterial membranes, rapid action, and limited development of resistance. To rapidly identify antimicrobial peptide candidates, our group has developed a high-density peptide microarray consisting of 125,000 random synthetic peptides screened for interaction with the mycobacterial cell surface of M. abscessus morphotypes. From the array screening, peptides positive for interaction were synthesized and their antimicrobial activity was validated. Overall, six peptides inhibited the M. abscessus smooth morphotype (IC50 = 1.7 μM for all peptides) and had reduced activity against the M. abscessus rough morphotype (IC50 range: 13-82 μM). Peptides ASU2056 and ASU2060 had minimum inhibitory concentration values of 32 and 8 μM, respectively, against the M. abscessus smooth morphotype. Additionally, ASU2060 (8 μM) was active against Escherichia coli, including multidrug-resistant E. coli clinical isolates, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. ASU2056 and ASU2060 exhibited no significant hemolytic activity at biologically relevant concentrations, further supporting these peptides as promising therapeutic candidates. Moreover, ASU2060 retained antibacterial activity after preincubation in human serum for 24 h. With antimicrobial resistance on the rise, methods such as those presented here will streamline the peptide discovery process for targeted antimicrobial peptides.
Collapse
Affiliation(s)
- Natalie Iannuzo
- School
of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yannik A. Haller
- School
of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Michelle McBride
- The
Biodesign Institute Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Sabrina Mehari
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - John C. Lainson
- The
Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, Arizona 85287, United States
| | - Chris W. Diehnelt
- The
Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, Arizona 85287, United States
| | - Shelley E. Haydel
- School
of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
- The
Biodesign Institute Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Vengesai A, Kasambala M, Mutandadzi H, Mduluza-Jokonya TL, Mduluza T, Naicker T. Scoping review of the applications of peptide microarrays on the fight against human infections. PLoS One 2022; 17:e0248666. [PMID: 35077448 PMCID: PMC8789108 DOI: 10.1371/journal.pone.0248666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION This scoping review explores the use of peptide microarrays in the fight against infectious diseases. The research domains explored included the use of peptide microarrays in the mapping of linear B-cell and T cell epitopes, antimicrobial peptide discovery, immunosignature characterisation and disease immunodiagnostics. This review also provides a short overview of peptide microarray synthesis. METHODS Electronic databases were systematically searched to identify relevant studies. The review was conducted using the Joanna Briggs Institute methodology for scoping reviews and data charting was performed using a predefined form. The results were reported by narrative synthesis in line with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews guidelines. RESULTS Ninety-five articles from 103 studies were included in the final data charting process. The majority (92. 0%) of the articles were published during 2010-2020 and were mostly from Europe (44.2%) and North America (34.7%). The findings were from the investigation of viral (45.6%), bacterial (32. 0%), parasitic (23.3%) and fungal (2. 0%) infections. Out of the serological studies, IgG was the most reported antibody type followed by IgM. The largest portion of the studies (77.7%) were related to mapping B-cell linear epitopes, 5.8% were on diagnostics, 5.8% reported on immunosignature characterisation and 8.7% reported on viral and bacterial cell binding assays. Two studies reported on T-cell epitope profiling. CONCLUSION The most important application of peptide microarrays was found to be B-cell epitope mapping or antibody profiling to identify diagnostic and vaccine targets. Immunosignatures identified by random peptide microarrays were found to be applied in the diagnosis of infections and interrogation of vaccine responses. The analysis of the interactions of random peptide microarrays with bacterial and viral cells using binding assays enabled the identification of antimicrobial peptides. Peptide microarray arrays were also used for T-cell linear epitope mapping which may provide more information for the design of peptide-based vaccines and for the development of diagnostic reagents.
Collapse
Affiliation(s)
- Arthur Vengesai
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Gweru, Zimbabwe
| | - Maritha Kasambala
- Department of Biology, Faculty of Science and Agriculture, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Hamlet Mutandadzi
- Faculty of Medicine and Health Sciences, Parirenyatwa Hospital, University of Zimbabwe, Harare, Zimbabwe
| | - Tariro L. Mduluza-Jokonya
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Takafira Mduluza
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Gweru, Zimbabwe
| | - Thajasvarie Naicker
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| |
Collapse
|
4
|
Luo QH, Gao J, Guo Y, Liu C, Ma YZ, Zhou ZY, Dai PL, Hou CS, Wu YY, Diao QY. Effects of a commercially formulated glyphosate solutions at recommended concentrations on honeybee (Apis mellifera L.) behaviours. Sci Rep 2021; 11:2115. [PMID: 33483522 PMCID: PMC7822899 DOI: 10.1038/s41598-020-80445-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Glyphosate, the active ingredient of the most widely used commercial herbicide formulation, is extensively used and produced in China. Previous studies have reported sublethal effects of glyphosate on honeybees. However, the effects of commercially formulated glyphosate (CFG) at the recommended concentration (RC) on the chronic toxicity of honeybees, especially on their behaviours, remain unknown. In this study, a series of behavioural experiments were conducted to investigate the effects of CFG on honeybees. The results showed that there was a significant decline in water responsiveness at 1/2 × , 1 × and 2 × the RC after 3 h of exposure to CFG for 11 days. The CFG significantly reduced sucrose responsiveness at 1/2 × and 1 × the RC. In addition, CFG significantly affected olfactory learning ability at 1/2 × , 1 × , and 2 × the RC and negatively affected memory ability at 1/2 × and 1 × the RC. The climbing ability of honeybees also significantly decreased at 1/2 × , 1 × and 2 × the RC. Our findings indicated that, after they were chronically exposed to CFG at the RC, honeybees exhibited behavioural changes. These results provide a theoretical basis for regulating field applications of CFG, which is necessary for establishing an early warning and notification system and for protecting honeybees.
Collapse
Affiliation(s)
- Qi-Hua Luo
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
- Bureau of Landscape and Forestry, Mi Yun District, Beijing, 101500, China
| | - Jing Gao
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yi Guo
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Chang Liu
- Bureau of Landscape and Forestry, Mi Yun District, Beijing, 101500, China
| | - Yu-Zhen Ma
- Bureau of Landscape and Forestry, Mi Yun District, Beijing, 101500, China
| | - Zhi-Yong Zhou
- Bureau of Landscape and Forestry, Mi Yun District, Beijing, 101500, China
| | - Ping-Li Dai
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Chun-Sheng Hou
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yan-Yan Wu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Qing-Yun Diao
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|