1
|
Zhang H, Rodriguez-Hernandez LD, D'Souza AJ, He D, Zain M, Fung SW, Bennett LA, Bonin RP. Nociceptor activity induces nonionotropic NMDA receptor signaling to enable spinal reconsolidation and reverse pathological pain. SCIENCE ADVANCES 2023; 9:eadg2819. [PMID: 37205760 DOI: 10.1126/sciadv.adg2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Chronic, pathological pain is a highly debilitating condition that can arise and be maintained through central sensitization. Central sensitization shares mechanistic and phenotypic parallels with memory formation. In a sensory model of memory reconsolidation, plastic changes underlying pain hypersensitivity can be dynamically regulated and reversed following the reactivation of sensitized sensory pathways. However, the mechanisms by which synaptic reactivation induces destabilization of the spinal "pain engram" are unclear. We identified nonionotropic N-methyl-d-aspartate receptor (NI-NMDAR) signaling as necessary and sufficient for the reactive destabilization of dorsal horn long-term potentiation and the reversal of mechanical sensitization associated with central sensitization. NI-NMDAR signaling engaged directly or through the reactivation of sensitized sensory networks was associated with the degradation of excitatory postsynaptic proteins. Our findings identify NI-NMDAR signaling as a putative synaptic mechanism by which engrams are destabilized in reconsolidation and as a potential means of treating underlying causes of chronic pain.
Collapse
Affiliation(s)
- Hantao Zhang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Luis D Rodriguez-Hernandez
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Abigail J D'Souza
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - David He
- Department of Anesthesia, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maham Zain
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Samuel W Fung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Laura A Bennett
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Izquierdo-Altarejos P, Cabrera-Pastor A, Martínez-García M, Sánchez-Huertas C, Hernández A, Moreno-Manzano V, Felipo V. Extracellular vesicles from mesenchymal stem cells reduce neuroinflammation in hippocampus and restore cognitive function in hyperammonemic rats. J Neuroinflammation 2023; 20:1. [PMID: 36593485 PMCID: PMC9806918 DOI: 10.1186/s12974-022-02688-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Chronic hyperammonemia, a main contributor to hepatic encephalopathy (HE), leads to neuroinflammation which alters neurotransmission leading to cognitive impairment. There are no specific treatments for the neurological alterations in HE. Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) reduce neuroinflammation in some pathological conditions. The aims were to assess if treatment of hyperammonemic rats with EVs from MSCs restores cognitive function and analyze the underlying mechanisms. EVs injected in vivo reach the hippocampus and restore performance of hyperammonemic rats in object location, object recognition, short-term memory in the Y-maze and reference memory in the radial maze. Hyperammonemic rats show reduced TGFβ levels and membrane expression of TGFβ receptors in hippocampus. This leads to microglia activation and reduced Smad7-IkB pathway, which induces NF-κB nuclear translocation in neurons, increasing IL-1β which alters AMPA and NMDA receptors membrane expression, leading to cognitive impairment. These effects are reversed by TGFβ in the EVs from MSCs, which activates TGFβ receptors, reducing microglia activation and NF-κB nuclear translocation in neurons by normalizing the Smad7-IkB pathway. This normalizes IL-1β, AMPA and NMDA receptors membrane expression and, therefore, cognitive function. EVs from MSCs may be useful to improve cognitive function in patients with hyperammonemia and minimal HE.
Collapse
Affiliation(s)
- Paula Izquierdo-Altarejos
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain
| | - Andrea Cabrera-Pastor
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain ,grid.476458.c0000 0004 0427 8560Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Valencia, Spain
| | - Mar Martínez-García
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain
| | - Carlos Sánchez-Huertas
- grid.418274.c0000 0004 0399 600XNeuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain ,grid.466805.90000 0004 1759 6875Laboratory of Bilateral Neural Circuits, Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
| | - Alberto Hernández
- grid.418274.c0000 0004 0399 600XOptical and Confocal Microscopy Service, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Victoria Moreno-Manzano
- grid.418274.c0000 0004 0399 600XNeuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain
| |
Collapse
|
3
|
Fruzzetti L, Kalidindi HT, Antonietti A, Alessandro C, Geminiani A, Casellato C, Falotico E, D’Angelo E. Dual STDP processes at Purkinje cells contribute to distinct improvements in accuracy and speed of saccadic eye movements. PLoS Comput Biol 2022; 18:e1010564. [PMID: 36194625 PMCID: PMC9565489 DOI: 10.1371/journal.pcbi.1010564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/14/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Saccadic eye-movements play a crucial role in visuo-motor control by allowing rapid foveation onto new targets. However, the neural processes governing saccades adaptation are not fully understood. Saccades, due to the short-time of execution (20-100 ms) and the absence of sensory information for online feedback control, must be controlled in a ballistic manner. Incomplete measurements of the movement trajectory, such as the visual endpoint error, are supposedly used to form internal predictions about the movement kinematics resulting in predictive control. In order to characterize the synaptic and neural circuit mechanisms underlying predictive saccadic control, we have reconstructed the saccadic system in a digital controller embedding a spiking neural network of the cerebellum with spike timing-dependent plasticity (STDP) rules driving parallel fiber-Purkinje cell long-term potentiation and depression (LTP and LTD). This model implements a control policy based on a dual plasticity mechanism, resulting in the identification of the roles of LTP and LTD in regulating the overall quality of saccade kinematics: it turns out that LTD increases the accuracy by decreasing visual error and LTP increases the peak speed. The control policy also required cerebellar PCs to be divided into two subpopulations, characterized by burst or pause responses. To our knowledge, this is the first model that explains in mechanistic terms the visual error and peak speed regulation of ballistic eye movements in forward mode exploiting spike-timing to regulate firing in different populations of the neuronal network. This elementary model of saccades could be extended and applied to other more complex cases in which single jerks are concatenated to compose articulated and coordinated movements.
Collapse
Affiliation(s)
- Lorenzo Fruzzetti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera (Pisa), Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Hari Teja Kalidindi
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universite Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Universite Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- * E-mail: (HK); (EF)
| | - Alberto Antonietti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Cristiano Alessandro
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
- School of Medicine and Surgery/Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
| | - Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera (Pisa), Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- * E-mail: (HK); (EF)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
4
|
Maya-Romero AM, Dodd GE, Landin JD, Zaremba HK, Allen OF, Bilbow MA, Hammaker RD, Santerre-Anderson JL. Adolescent high-fructose corn syrup consumption leads to dysfunction in adult affective behaviors and mesolimbic proteins in male Sprague-Dawley rats. Behav Brain Res 2022; 419:113687. [PMID: 34838930 DOI: 10.1016/j.bbr.2021.113687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
Adolescence is a critical period of development, during which the brain undergoes rapid maturation. Problematically, adolescents are the top consumers of high fructose corn syrup (HFCS) sweetened beverages and snacks, which may have neurodevelopmental consequences. While HFCS consumption has been linked to an increased likelihood of obesity and other physical health impairments, the link between HFCS and persistent behavioral changes is not yet fully established. The present study aimed to assess whether adolescent HFCS consumption could lead to alterations in adult behaviors and protein expression, following cessation. Adolescent HFCS-exposure contributed to deficits in learning and motivation on an effort-related T-Maze procedure, as well as increased immobility time in the forced swim paradigm during adulthood. Molecularly, protracted decreases in accumbal dopamine D1 and D2 receptors and protein kinase G (PKG), as well as increases in tyrosine hydroxylase and GluA2 receptor subunits, were observed following HFCS-exposure. Taken together, these data suggest that adolescent HFCS-consumption leads to protracted dysfunction in affective behaviors and alterations in accumbal proteins which persist following cessation of HFCS-consumption.
Collapse
Affiliation(s)
- Alex M Maya-Romero
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Gina E Dodd
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Justine D Landin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Helen K Zaremba
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Omar F Allen
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Mackenzie A Bilbow
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Rhyce D Hammaker
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Jessica L Santerre-Anderson
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA.
| |
Collapse
|
5
|
Taoro-González L, Cabrera-Pastor A, Sancho-Alonso M, Felipo V. Intracellular and extracelluar cyclic GMP in the brain and the hippocampus. VITAMINS AND HORMONES 2022; 118:247-288. [PMID: 35180929 DOI: 10.1016/bs.vh.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclic Guanosine-Monophosphate (cGMP) is implicated as second messenger in a plethora of pathways and its effects are executed mainly by cGMP-dependent protein kinases (PKG). It is involved in both peripheral (cardiovascular regulation, intestinal secretion, phototransduction, etc.) and brain (hippocampal synaptic plasticity, neuroinflammation, cognitive function, etc.) processes. Stimulation of hippocampal cGMP signaling have been proved to be beneficial in animal models of aging, Alzheimer's disease or hepatic encephalopathy, restoring different cognitive functions such as passive avoidance, object recognition or spatial memory. However, even when some inhibitors of cGMP-degrading enzymes (PDEs) are already used against peripheral pathologies, their utility as neurological treatments is still under clinical investigation. Additionally, it has been demonstrated a list of cGMP roles as not second but first messenger. The role of extracellular cGMP has been specially studied in hippocampal function and cognitive impairment in animal models and it has emerged as an important modulator of neuroinflammation-mediated cognitive alterations and hippocampal synaptic plasticity malfunction. Specifically, it has been demonstrated that extracellular cGMP decreases hippocampal IL-1β levels restoring membrane expression of glutamate receptors in the hippocampus and cognitive function in hyperammonemic rats. The mechanisms implicated are still unclear and might involve complex interactions between hippocampal neurons, astrocytes and microglia. Membrane targets for extracellular cGMP are still poorly understood and must be addressed in future studies.
Collapse
Affiliation(s)
- Lucas Taoro-González
- Department of Clinical Psychology, Psychobiology and Methodology, Area of Psycobiology, University of La Laguna, Tenerife, Spain
| | - Andrea Cabrera-Pastor
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria (INCLIVA), Valencia, Spain; Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Sancho-Alonso
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
6
|
Schmidt H, Böttcher A, Gross T, Schmidtko A. cGMP signalling in dorsal root ganglia and the spinal cord: Various functions in development and adulthood. Br J Pharmacol 2021; 179:2361-2377. [PMID: 33939841 DOI: 10.1111/bph.15514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Cyclic GMP (cGMP) is a second messenger that regulates numerous physiological and pathophysiological processes. In recent years, more and more studies have uncovered multiple roles of cGMP signalling pathways in the somatosensory system. Accumulating evidence suggests that cGMP regulates different cellular processes from embryonic development through to adulthood. During embryonic development, a cGMP-dependent signalling cascade in the trunk sensory system is essential for axon bifurcation, a specific form of branching of somatosensory axons. In adulthood, various cGMP signalling pathways in distinct cell populations of sensory neurons and dorsal horn neurons in the spinal cord play an important role in the processing of pain and itch. Some of the involved enzymes might serve as a target for future therapies. In this review, we summarise the knowledge regarding cGMP-dependent signalling pathways in dorsal root ganglia and the spinal cord during embryonic development and adulthood, and the potential of targeting these pathways.
Collapse
Affiliation(s)
- Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Alexandra Böttcher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Tilman Gross
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Free Wanderer Powder regulates AMPA receptor homeostasis in chronic restraint stress-induced rat model of depression with liver-depression and spleen-deficiency syndrome. Aging (Albany NY) 2020; 12:19563-19584. [PMID: 33052137 PMCID: PMC7732332 DOI: 10.18632/aging.103912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/23/2020] [Indexed: 01/24/2023]
Abstract
Free Wanderer Powder (FWP) is a classic formula for depression with digestive dysfunctions, i.e., liver-depression and spleen-deficiency syndrome (LDSDS) in Chinese Medicine. But its protective mechanism has not been fully clarified. Here a chronic restraint stress (CRS) induced rat model showed depression with LDSDS in food intake, metabolism, and behaviour tests. Then 75 rats were randomly divided, and received CRS and different treatment with behaviour tests. Expressions of c-Fos and AMPA-type glutamate receptor subunits GluR1-3 in hippocampus CA1, CA3, DG and amygdala BLA were detected by immunohistochemistry, western blot and RT-PCR, respectively. In CRS rats, FWP alleviated depressive behaviour and c-Fos expression. FWP suppressed the increasement of GluR1 in CA1 and DG, p-GluR1 in CA1, and p-GluR2 and GluR3 in BLA. FWP also blocked the decrease of GluR1 and Glur2/3 in CA3, p-GluR1 in CA3, and p-GluR2 in CA1 and CA3. Furthermore, constituents of FWP and their potential targets were explored using UHPLC-MS and systematic bioinformatics analysis. There were 23 constituents identified in FWP, 9 of which regulated glutamatergic synapse. Together, these results suggest that FWP contains effective constituents and alleviates depression with LDSDS by regulating AMPA-type glutamate receptor homeostasis in amygdala and hippocampus.
Collapse
|
8
|
Belluati A, Craciun I, Palivan CG. Bioactive Catalytic Nanocompartments Integrated into Cell Physiology and Their Amplification of a Native Signaling Cascade. ACS NANO 2020; 14:12101-12112. [PMID: 32869973 DOI: 10.1021/acsnano.0c05574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioactive nanomaterials have the potential to overcome the limitations of classical pharmacological approaches by taking advantage of native pathways to influence cell behavior, interacting with them and eliciting responses. Herein, we propose a cascade system mediated by two catalytic nanocompartments (CNC) with biological activity. Activated by nitric oxide (NO) produced by inducible nitric oxidase synthase (iNOS), soluble guanylyl cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), a second messenger that modulates a broad range of physiological functions. As alterations in cGMP signaling are implicated in a multitude of pathologies, its signaling cascade represents a viable target for therapeutic intervention. Following along this line, we encapsulated iNOS and sGC in two separate polymeric compartments that function in unison to produce NO and cGMP. Their action was tested in vitro by monitoring the derived changes in cytoplasmic calcium concentrations of HeLa and differentiated C2C12 myocytes, where the produced second messenger influenced the cellular homeostasis.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Balzano T, Arenas YM, Dadsetan S, Forteza J, Gil-Perotin S, Cubas-Nuñez L, Casanova B, Gracià F, Varela-Andrés N, Montoliu C, Llansola M, Felipo V. Sustained hyperammonemia induces TNF-a IN Purkinje neurons by activating the TNFR1-NF-κB pathway. J Neuroinflammation 2020; 17:70. [PMID: 32087723 PMCID: PMC7035786 DOI: 10.1186/s12974-020-01746-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Patients with liver cirrhosis may develop hepatic encephalopathy. Rats with chronic hyperammonemia exhibit neurological alterations mediated by peripheral inflammation and neuroinflammation. Motor incoordination is due to increased TNF-a levels and activation of its receptor TNFR1 in the cerebellum. The aims were to assess (a) whether peripheral inflammation is responsible for TNF-a induction in hyperammonemic rats, (b) the cell type(s) in which TNF-a is increased, (c) whether this increase is associated with increased nuclear NF-κB and TNFR1 activation, (d) the time course of TNF-a induction, and (e) if TNF-a is induced in the Purkinje neurons of patients who die with liver cirrhosis. Methods We analyzed the level of TNF-a mRNA and NF-κB in microglia, astrocytes, and Purkinje neurons in the cerebellum after 1, 2, and 4 weeks of hyperammonemia. We assessed whether preventing peripheral inflammation by administering an anti-TNF-a antibody prevents TNF-a induction. We tested whether TNF-a induction is reversed by R7050, which inhibits the TNFR1-NF-κB pathway, in ex vivo cerebellar slices. Results Hyperammonemia induced microglial and astrocyte activation at 1 week. This was followed by TNF-a induction in both glial cell types at 2 weeks and in Purkinje neurons at 4 weeks. The level of TNF-a mRNA increased in parallel with the TNF-a protein level, indicating that TNF-a was synthesized in Purkinje cells. This increase was associated with increased NF-κB nuclear translocation. The nuclear translocation of NF-κB and the increase in TNF-a were reversed by R7050, indicating that they were mediated by the activation of TNFR1. Preventing peripheral inflammation with an anti-TNF-a antibody prevents TNF-a induction. Conclusion Sustained (4 weeks) but not short-term hyperammonemia induces TNF-a in Purkinje neurons in rats. This is mediated by peripheral inflammation. TNF-a is also increased in the Purkinje neurons of patients who die with liver cirrhosis. The results suggest that hyperammonemia induces TNF-a in glial cells and that TNF-a released by glial cells activates TNFR1 in Purkinje neurons, leading to NF-κB nuclear translocation and the induction of TNF-a expression, which may contribute to the neurological alterations observed in hyperammonemia and hepatic encephalopathy.
Collapse
Affiliation(s)
- Tiziano Balzano
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
| | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
| | - Sherry Dadsetan
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
| | - Jerónimo Forteza
- Instituto Valenciano de Patología, Unidad Mixta de Patología Molecular, Centro Investigación Príncipe Felipe/Universidad Católica de Valencia, Valencia, Spain
| | - Sara Gil-Perotin
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, Valencia, Spain
| | - Laura Cubas-Nuñez
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, Valencia, Spain
| | - Bonaventura Casanova
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, Valencia, Spain
| | - Francisco Gracià
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
| | - Natalia Varela-Andrés
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
| | - Carmina Montoliu
- Instituto de Investigacion Sanitaria INCLIVA, Hospital Clinico de Valencia, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain.
| |
Collapse
|