1
|
Chen T, Kong D, Hu X, Gao Y, Lin S, Liao M, Fan H. Influenza H7N9 Virus Hemagglutinin with T169A Mutation Possesses Enhanced Thermostability and Provides Effective Immune Protection against Lethal H7N9 Virus Challenge in Chickens. Vaccines (Basel) 2023; 11:1318. [PMID: 37631886 PMCID: PMC10460070 DOI: 10.3390/vaccines11081318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023] Open
Abstract
H7N9 avian influenza virus (AIV) has caused huge losses in the poultry industry and impacted human public health security, and still poses a potential threat. Currently, immune prevention and control of avian influenza relies on traditional inactivated vaccines; however, they have some limitations and genetically engineered avian influenza subunit vaccines may be potential candidate vaccines. In this study, a T169A mutation in the HA protein derived from H7N9 AIV A/Chicken/Guangdong/16876 (H7N9-16876) was generated using the baculovirus expression system (BVES). The results showed that the mutant (HAm) had significantly increased thermostability compared with the wild-type HA protein (HA-WT). Importantly, immunizing chickens with HAm combined with ISA 71VG elicited higher cross-reactive hemagglutination inhibition (HI) antibody responses and cytokine (IFN-γ and IL-4) secretion. After a lethal challenge with heterologous H7N9 AIV, the vaccine conferred chickens with 100% (10/10) clinical protection and effectively inhibited viral shedding, with 90% (9/10) of the chickens showing no virus shedding. The thermostability of HAm may represent an advantage in practical vaccine manufacture and application. In general, the HAm generated in this study represents a promising subunit vaccine candidate for the prevention and control of H7N9 avian influenza.
Collapse
Affiliation(s)
- Taoran Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Dexin Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Xiaolong Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Shaorong Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| |
Collapse
|
2
|
Komori M, Nogimori T, Morey AL, Sekida T, Ishimoto K, Hassett MR, Masuta Y, Ode H, Tamura T, Suzuki R, Alexander J, Kido Y, Matsuda K, Fukuhara T, Iwatani Y, Yamamoto T, Smith JF, Akahata W. saRNA vaccine expressing membrane-anchored RBD elicits broad and durable immunity against SARS-CoV-2 variants of concern. Nat Commun 2023; 14:2810. [PMID: 37208330 DOI: 10.1038/s41467-023-38457-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Several vaccines have been widely used to counteract the global pandemic caused by SARS-CoV-2. However, due to the rapid emergence of SARS-CoV-2 variants of concern (VOCs), further development of vaccines that confer broad and longer-lasting protection against emerging VOCs are needed. Here, we report the immunological characteristics of a self-amplifying RNA (saRNA) vaccine expressing the SARS-CoV-2 Spike (S) receptor binding domain (RBD), which is membrane-anchored by fusing with an N-terminal signal sequence and a C-terminal transmembrane domain (RBD-TM). Immunization with saRNA RBD-TM delivered in lipid nanoparticles (LNP) efficiently induces T-cell and B-cell responses in non-human primates (NHPs). In addition, immunized hamsters and NHPs are protected against SARS-CoV-2 challenge. Importantly, RBD-specific antibodies against VOCs are maintained for at least 12 months in NHPs. These findings suggest that this saRNA platform expressing RBD-TM will be a useful vaccine candidate inducing durable immunity against emerging SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Mai Komori
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, 567-0085, Japan
| | - Amber L Morey
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Takashi Sekida
- VLP Therapeutics Japan, Inc. 1-16-4 Nishi-Shinbashi, Minato-ku, Tokyo, 100-0003, Japan
| | - Keiko Ishimoto
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Matthew R Hassett
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Yuji Masuta
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, 567-0085, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, 460-0001, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Hokkaido, 060-8638, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Hokkaido, 060-8638, Japan
| | - Jeff Alexander
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Yasutoshi Kido
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-0051, Japan
| | - Kenta Matsuda
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Hokkaido, 060-8638, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, 460-0001, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Jonathan F Smith
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA.
| | - Wataru Akahata
- VLP Therapeutics Japan, Inc. 1-16-4 Nishi-Shinbashi, Minato-ku, Tokyo, 100-0003, Japan.
| |
Collapse
|
3
|
Tang P, Cui EH, Chang WC, Yu C, Wang H, Du EQ, Wang JY. Nanoparticle-Based Bivalent Swine Influenza Virus Vaccine Induces Enhanced Immunity and Effective Protection against Drifted H1N1 and H3N2 Viruses in Mice. Viruses 2022; 14:v14112443. [PMID: 36366541 PMCID: PMC9693272 DOI: 10.3390/v14112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Swine influenza virus (SIV) circulates worldwide, posing substantial economic loss and disease burden to humans and animals. Vaccination remains the most effective way to prevent SIV infection and transmission. In this study, we evaluated the protective efficacy of a recombinant, baculovirus-insect cell system-expressed bivalent nanoparticle SIV vaccine in mice challenged with drifted swine influenza H1N1 and H3N2 viruses. After a prime-boost immunization, the bivalent nanoparticle vaccine (BNV) induced high levels of hemagglutination inhibition (HAI) antibodies, virus-neutralization (VN) antibodies, and antigen-specific IgG antibodies in mice, as well as more efficient cytokine levels. The MF59 and CPG1 adjuvant could significantly promote both humoral and cellular immunity of BNV. The MF59 adjuvant showed a balanced Th1/Th2 immune response, and the CPG1 adjuvant tended to show a Th1-favored response. The BALB/c challenge test showed that BNV could significantly reduce lung viral loads and feces viral shedding, and showed fewer lung pathological lesions than those in PBS and inactivated vaccine groups. These results suggest that this novel bivalent nanoparticle swine influenza vaccine can be used as an efficacious vaccine candidate to induce robust immunity and provide broad protection against drifted subtypes in mice. Immune efficacy in pigs needs to be further evaluated.
Collapse
Affiliation(s)
- Pan Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - En-hui Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wen-chi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chen Yu
- Yangling Carey Biotechnology Co., Ltd., Yangling, Xianyang 712100, China
| | - Hao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Yangling Carey Biotechnology Co., Ltd., Yangling, Xianyang 712100, China
| | - En-qi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Yangling Carey Biotechnology Co., Ltd., Yangling, Xianyang 712100, China
- Correspondence: (E.-q.D.); (J.-y.W.)
| | - Jing-yu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (E.-q.D.); (J.-y.W.)
| |
Collapse
|
4
|
Qin J, Hu B, Song Q, Wang R, Zhang X, Yu Y, Wang JH. The transmembrane replacement H7N9-VLP vaccine displays high levels of protection in mice. Front Microbiol 2022; 13:1003714. [PMID: 36274725 PMCID: PMC9582854 DOI: 10.3389/fmicb.2022.1003714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of infections caused by the H7N9 subtype of the influenza virus has expanded rapidly in China in recent decades, generating massive economic loss and posing a significant threat to public health. In the absence of specialized antiviral treatments or long-term effective preventative vaccinations, it is critical to constantly enhance vaccines and create effective antiviral drugs to prevent the recurrence of pandemics. In the present study, a transmembrane-substituted (TM) virus-like particle (VLP)-based vaccine was created by replacing the transmembrane region of hemagglutinin (HA) protein with the transmembrane region of the H3 HA protein and then used to immunize BALB/c mice. Sera and T cells were collected from the immunized mice to evaluate the passive immune effects. Our results showed that naïve mice achieved 80–100% protection against homologous and heterologous H7N9 influenza strains after receiving passive serum immunization; the protective effect of the TM VLPs was more evident than that of the wild-type HA VLPs. In contrast, mice immunized with passive T cells achieved only 20 to 80% protection against homologous or heterologous strains. Our findings significantly contribute to understanding the control of the H7N9 virus and the development of a vaccine.
Collapse
Affiliation(s)
- Jianru Qin
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Bing Hu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qiqi Song
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ruijuan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiangfei Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yaqi Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Jian-Hua Wang,
| |
Collapse
|
5
|
Essone PN, Adegbite BR, Mbadinga MJM, Mbouna AV, Lotola-Mougeni F, Alabi A, Edoa JR, Lell B, Alabi AS, Adegnika AA, Ramharter M, Siawaya JFD, Grobusch MP, Kremsner PG, Agnandji ST. Creatine kinase-(MB) and hepcidin as candidate biomarkers for early diagnosis of pulmonary tuberculosis: a proof-of-concept study in Lambaréné, Gabon. Infection 2022; 50:897-905. [PMID: 35133607 PMCID: PMC9338130 DOI: 10.1007/s15010-022-01760-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/15/2022] [Indexed: 12/05/2022]
Abstract
Background The present study aimed to evaluate the diagnostic utility of creatine kinase-MB (CK-MB), hepcidin (HEPC), phospholipase A2 group IIA (PLa2G2A), and myosin-binding protein C (MYBPC1) for tuberculosis (TB). These four biomarkers are differentially regulated between quiescent Mycobacterium tuberculosis (Mtb) infected individuals (non-progressors to TB disease) and Mtb-infected TB disease progressors 6 months before the onset of symptoms.
Methods We enrolled samples from patients experiencing moderate-to-severe pulmonary infections diseases including 23 TB cases confirmed by smear microscopy and culture, and 34 TB-negative cases. For each participant, the serum levels of the four biomarkers were measured using ELISA. Results The levels of CK-MB and HEPC were significantly reduced in patients with active TB disease. CK-MB median level was 2045 pg/ml (1455–4000 pg/ml) in active TB cases and 3245 pg/ml (1645–4000 pg/ml) in non-TB pulmonary diseases. Using the receiver operating characteristic curve (ROC) analysis, HEPC and CK-MB had the Area Under the Curve (AUC) of 79% (95% CI 67–91%) and 81% (95% CI 69–93%), respectively. Both markers correlated with TB diagnosis as a single marker. PLa2G2A and MYBPC1 with AUCs of 48% (95% CI 36–65%) and 62% (95% CI 48–76%) did not performed well as single biomarkers. The three markers’model (CK-MB-HEPC-PLa2G2A) had the highest diagnostic accuracy at 82% (95% CI 56–82%) after cross-validation. Conclusion CK-MB and HEPC levels were statistically different between confirmed TB cases and non-TB cases. This study yields promising results for the rapid diagnosis of TB disease using a single marker or three biomarkers model. Supplementary Information The online version contains supplementary material available at 10.1007/s15010-022-01760-8.
Collapse
Affiliation(s)
- Paulin N Essone
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany.
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Libreville, Gabon.
| | - Bayode R Adegbite
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Armel V Mbouna
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Ayodele Alabi
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean R Edoa
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Abraham S Alabi
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany
| | - Ayola A Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and Department of Internal Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joel F D Siawaya
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Libreville, Gabon
| | - Martin P Grobusch
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany
| | - Selidji T Agnandji
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research Tübingen, Tübingen, Germany.
- The African Society of Clinical Trials and the African Congress for Clinical Trials, Lambaréné, Gabon.
| |
Collapse
|
6
|
Gravel C, Muralidharan A, Duran A, Zetner A, Pfeifle A, Zhang W, Hashem A, Tamming L, Farnsworth A, Loemba H, Chen W, Krammer F, Safronetz D, Cao J, Wang L, Sauve S, Rosu-Myles M, Van Domselaar G, Li X. Synthetic vaccine affords full protection to mice against lethal challenge of influenza B virus of both genetic lineages. iScience 2021; 24:103328. [PMID: 34805790 PMCID: PMC8586812 DOI: 10.1016/j.isci.2021.103328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023] Open
Abstract
A quarter of all seasonal influenza cases are caused by type B influenza virus (IBV) that also dominates periodically. Here, we investigated a recombinant adenovirus vaccine carrying a synthetic HA2 representing the consensus sequence of all IBV hemagglutinins. The vaccine fully protected mice from lethal challenges by IBV of both genetic lineages, demonstrating its breadth of protection. The protection was not mediated by neutralizing antibodies but robust antibody-dependent cellular cytotoxicity and cell-mediated immune responses. Complete protection of the animals required the entire codon-optimized HA2 sequence that elicited a balanced immune response, whereas truncated vaccines without either the fusion peptide or the transmembrane domain reduced the efficacy of protection. Finally, the vaccines did not demonstrate any sign of disease exacerbation following lung pathology and morbidity monitoring. Collectively, these data suggest that it could be worth further exploring this prototype universal vaccine because of its considerable efficacy, safety, and breadth of protection.
Collapse
Affiliation(s)
- Caroline Gravel
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Amparo Duran
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Adrian Zetner
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Annabelle Pfeifle
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Wanyue Zhang
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anwar Hashem
- Immunotherapy Unit, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Vaccines, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Levi Tamming
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aaron Farnsworth
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Hugues Loemba
- Montfort Hospital and Faculty of Medicine, University of Ottawa, Ottawa, On, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON, Canada
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Simon Sauve
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Pre-treatment with chicken IL-17A secreted by bioengineered LAB vector protects chicken embryo fibroblasts against Influenza Type A Virus (IAV) infection. Mol Immunol 2021; 140:106-119. [PMID: 34678620 DOI: 10.1016/j.molimm.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023]
Abstract
The recent advances in our understanding of the host factors in orchestrating qualitatively different immune responses against influenza Type A virus (IAV) have changed the perception of conventional approaches for controlling avian influenza virus (AIV) infection in chickens. Given that infection-induced pathogenicity and replication of influenza virus largely rely on regulating host immune responses, immunoregulatory cytokine profiles often determine the disease outcomes. However, in contrast to the function of other inflammatory cytokines, interleukin-17A (IL-17A) has been described as a 'double-edged sword', indicating that in addition to antiviral host responses, IL-17A has a distinct role in promoting viral infection. Therefore, in the present study, we investigated the chicken IL-17A mediated antiviral immune effects on IAVs infection in primary chicken embryo fibroblasts cells (CEFs). To this end, we first bioengineered a food-grade Lactic Acid Producing Bacteria (LAB), Lactococcus lactis (L. lactis), secreting bioactive recombinant chicken IL-17A (sChIL-17A). Next, the functionality of sChIL-17A was confirmed by transcriptional upregulation of several genes associated with antiviral host responses, including granulocyte-monocyte colony-stimulating factor (GM-CSF) (CSF3 in the chickens), interleukin-6 (IL-6), interferon-α (IFN-α), -β and -γ genes in primary CEFs cells. Consistent with our hypothesis that such a pro-inflammatory state may translate to immunoprotection against IAVs infection, we observed that sChIL-17A pre-treatment could significantly limit the viral replication and protect the primary CEFs cells against two heterotypic IAVs such as A/turkey/Wisconsin/1/1966(H9N2) and A/PR/8/1934(H1N1). Together, the data presented in this work suggest that exogenous application of sChIL-17A secreted by modified LAB vector may represent an alternative strategy for improving antiviral immunity against avian influenza virus infection in chickens.
Collapse
|
8
|
Xiao Y, Yang F, Liu F, Yao H, Wu N, Wu H. Antigen-capture ELISA and immunochromatographic test strip to detect the H9N2 subtype avian influenza virus rapidly based on monoclonal antibodies. Virol J 2021; 18:198. [PMID: 34600550 PMCID: PMC8487345 DOI: 10.1186/s12985-021-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The H9N2 subtype of avian influenza virus (AIV) has become the most widespread subtype of AIV among birds in Asia, which threatens the poultry industry and human health. Therefore, it is important to establish methods for the rapid diagnosis and continuous surveillance of H9N2 subtype AIV. METHODS In this study, an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) and a colloidal gold immunochromatographic test (ICT) strip using monoclonal antibodies (MAbs) 3G4 and 2G7 were established to detect H9N2 subtype AIV. RESULTS The AC-ELISA method and ICT strip can detect H9N2 subtype AIV quickly, and do not cross-react with other subtype AIVs or other viruses. The detection limit of AC-ELISA was a hemagglutinin (HA) titer of 4 for H9N2 subtype AIV per 100 μl sample, and the limit of detection of the HA protein of AIV H9N2 was 31.5 ng/ml. The ICT strip detection limit was an HA titer of 4 for H9N2 subtype AIV per 100 μl sample. Moreover, both detection methods exhibited good reproducibility and repeatability, with coefficients of variation < 5%. For detection in 200 actual poultry samples, the sensitivities and specificities of AC-ELISA were determined as 93.2% and 98.1%, respectively. The sensitivities and specificities of the ICT strips were determined as 90.9% and 97.4%, respectively. CONCLUSIONS The developed AC-ELISA and ICT strips displayed high specificity, sensitivity, and stability, making them suitable for rapid diagnosis and field investigation of H9N2 subtype AIV.
Collapse
Affiliation(s)
- Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
9
|
Influenza A H1 and H3 Transmembrane Domains Interact Differently with Each Other and with Surrounding Membrane Lipids. Viruses 2020; 12:v12121461. [PMID: 33348831 PMCID: PMC7765950 DOI: 10.3390/v12121461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hemagglutinin (HA) is a class I viral membrane fusion protein, which is the most abundant transmembrane protein on the surface of influenza A virus (IAV) particles. HA plays a crucial role in the recognition of the host cell, fusion of the viral envelope and the host cell membrane, and is the major antigen in the immune response during the infection. Mature HA organizes in homotrimers consisting of a sequentially highly variable globular head and a relatively conserved stalk region. Every HA monomer comprises a hydrophilic ectodomain, a pre-transmembrane domain (pre-TMD), a hydrophobic transmembrane domain (TMD), and a cytoplasmic tail (CT). In recent years the effect of the pre-TMD and TMD on the structure and function of HA has drawn some attention. Using bioinformatic tools we analyzed all available full-length amino acid sequences of HA from 16 subtypes across various host species. We calculated several physico-chemical parameters of HA pre-TMDs and TMDs including accessible surface area (ASA), average hydrophobicity (Hav), and the hydrophobic moment (µH). Our data suggests that distinct differences in these parameters between the two major phylogenetic groups, represented by H1 and H3 subtypes, could have profound effects on protein–lipid interactions, trimer formation, and the overall HA ectodomain orientation and antigen exposure.
Collapse
|
10
|
Mehranfard N, Yazdi A, Sardooi AR, Shakerin Z, Ghasemi M. Honey protects against chronic unpredictable mild stress induced- intestinal barrier disintegration and hepatic inflammation. Mol Biol Rep 2020; 47:8475-8484. [PMID: 33047241 DOI: 10.1007/s11033-020-05888-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/30/2020] [Indexed: 01/19/2023]
Abstract
Chronic stress is linked to liver injury by increasing intestinal permeability to lipopolysaccharide (LPS), which in turn can result in systemic and liver inflammation and damage. Beneficial effect of honey in the prevention of liver injury has been shown in previous studies, but mechanisms underlying are still less known. Here, we examined the therapeutic impacts of honey on intestinal nuclear factor-κB (NF-κB; an important regulator of stress-induced immune and inflammatory responses) and ileal tight junction (TJ) proteins of claudin-1 and ZO-1, serum LPS, liver inflammation and oxidative markers of malondialdehyde (MDA), nitric oxide (NO), (erythroid-derived 2)-like 2 (Nrf2), tumor necrosis factor (TNF)-α and total antioxidant capacity (TAC) following chronic unpredictable mild stress (CUMS) using Western blotting, ELISA kit and spectrophotometry. Male rats were subjected to CUMS for 28 consecutive days. Honey (0.2 and 2 g/kg/day, by gavage) was administered pretreatment (10 days) and during stress. Honey reduced stress-induced LPS elevation by preventing reduction in the intestinal TJ proteins of claudin-1 and ZO-1, while did not affect NF-kB levels. In liver, honey significantly suppressed stress-induced increase in MDA, NO, TNF-α and Nrf2 expression and normalized TAC. Noteworthy, honey high-dose provoked a greater decrease in TNF-α, Nrf2 and LPS levels than honey low-dose. Together, our study indicated that honey protects against stress-induced liver damage by modulating at least two pathways; intestinal barrier protection via increased TJ protein complex expression, and hepatic TAC protection that may be involved in the inhibition of MDA, NO, TNF-α and Nrf2 expression.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Azadeh Yazdi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asiye Rafiee Sardooi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Shakerin
- PhD of Anatomical Science, Department of Anatomy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Sitaras I, Spackman E, de Jong MCM, Parris DJ. Selection and antigenic characterization of immune-escape mutants of H7N2 low pathogenic avian influenza virus using homologous polyclonal sera. Virus Res 2020; 290:198188. [PMID: 33045306 DOI: 10.1016/j.virusres.2020.198188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 01/24/2023]
Abstract
Understanding the dynamics of the selection of influenza A immune escape variants by serum antibody is critical for designing effective vaccination programs for animals, especially poultry where large populations have a short generation time and may be vaccinated with high frequency. In this report, immune-escape mutants of A/turkey/New York/4450/1994 H7N2 low pathogenic avian influenza virus, were selected by serially passaging the virus in the presence of continuously increasing concentrations of homologous chicken polyclonal sera. Amino acid mutations were identified by sequencing the parental hemagglutinin (HA) gene and every 10 passages by both Sanger and deep sequencing, and the antigenic distance of the mutants to the parent strain was determined. Progressively, a total of five amino acid mutations were observed over the course of 30 passages. Based on their absence from the parental virus with deep sequencing, the mutations appear to have developed de novo. The antigenic distance between the selected mutants and the parent strain increased as the number of amino acid mutations accumulated and the concentration of antibodies had to be periodically increased to maintain the same reduction in virus titer during selection. This selection system demonstrates how H7 avian influenza viruses behave under selection with homologous sera, and provides a glimpse of their evolutionary dynamics, which can be applied to developing vaccination programs that maximize the effectiveness of a vaccine over time.
Collapse
Affiliation(s)
- Ioannis Sitaras
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA.
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - D Joshua Parris
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| |
Collapse
|
12
|
Peng X, Luo G, Wu Z, Wen W, Zhang X, Wang S. Fluorescent-Magnetic-Catalytic Nanospheres for Dual-Modality Detection of H9N2 Avian Influenza Virus. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41148-41156. [PMID: 31613583 DOI: 10.1021/acsami.9b16718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The outbreak of H9N2 avian influenza virus (H9N2 AIV) brings high mortality and huge economic losses every year. Sensitive and reliable detection methods are essential to timely diagnosis and treatment. Herein, a dual-modality immunoassay is proposed for H9N2 AIV detection by employing fluorescent-magnetic-catalytic nanospheres (FMCNs) as labels and alkaline phosphatase (ALP)-induced metallization as a signal amplification strategy. The excellent magnetic properties of FMCNs endow the assay a potential application in complex samples. Also, the excellent fluorescence properties of FMCNs enable fluorescence modality readout. The antibodies on the FMCN surface can achieve efficient capture and separation of targets. Amplified electrochemical modality readout can be obtained through ALP-catalyzed silver deposition. Dual-modality immunoassay combined the advantages of electrochemical assay with fluorescence assay and provides accurate detection results to meet different testing needs. With two quantitative analysis forms, H9N2 AIV can be detected by electrochemical signals with a quantitation range of 0.1 to 1000 ng/mL and a detection limit of 10 pg/mL. The linear range is 300 to 1000 ng/mL with a detection limit of 69.8 ng/mL by the fluorescence signal readout. Moreover, the specificity, anti-interference ability, accuracy, and diversity of the proposal have unlimited potential for early diagnosis of suspect infections.
Collapse
Affiliation(s)
- Xiaolun Peng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , PR China
| | - Guan Luo
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , PR China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , PR China
| |
Collapse
|
13
|
Zhang Y, Xu C, Zhang H, Liu GD, Xue C, Cao Y. Targeting Hemagglutinin: Approaches for Broad Protection against the Influenza A Virus. Viruses 2019; 11:v11050405. [PMID: 31052339 PMCID: PMC6563292 DOI: 10.3390/v11050405] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses are dynamically epidemic and genetically diverse. Due to the antigenic drift and shift of the virus, seasonal vaccines are required to be reformulated annually to match with current circulating strains. However, the mismatch between vaccinal strains and circulating strains occurs frequently, resulting in the low efficacy of seasonal vaccines. Therefore, several “universal” vaccine candidates based on the structure and function of the hemagglutinin (HA) protein have been developed to meet the requirement of a broad protection against homo-/heterosubtypic challenges. Here, we review recent novel constructs and discuss several important findings regarding the broad protective efficacy of HA-based universal vaccines.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cong Xu
- Research Center of Agricultural of Dongguan City, Dongguan 523086, China.
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12,050 167th PL NE, Redmond, WA 98052, USA.
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
14
|
H7 virus-like particles assembled by hemagglutinin containing H3N2 transmembrane domain and M1 induce broad homologous and heterologous protection in mice. Vaccine 2018; 36:5030-5036. [PMID: 30037418 PMCID: PMC7115656 DOI: 10.1016/j.vaccine.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
H7 VLPs-WT and H7 VLPs-TM have similar morphological and cleavage characteristics. H7 VLPs-TM has more HA trimers and better resists thermal changes than H7 VLPs-WT. H7 VLPs-TM induces stronger Th1 immune response than H7 VLPs-WT. H7 VLPs-TM induces broad homologous and heterologous protection in mice.
Influenza A H7N9 virus has caused five outbreak waves of human infections in China since 2013 and posed a dual challenge to public health and poultry industry. There is an urgent need to develop an effective vaccine to reduce its pandemic potential. In the present study, we evaluated the biochemical characteristics and immunogenicity of two H7 virus-like particles (VLPs) composed of the matrix 1 (M1) and hemagglutinin of wild-type (HA-WT) or hemagglutinin of whose transmembrane domain replaced by that from H3N2 subtype (HA-TM). H7 VLPs-WT and H7 VLPs-TM could assemble and release into the supernatant of Sf9 cells and they had similar morphological characteristics. However, compared to H7 VLPs-WT, H7 VLPs-TM had more trimeric HA proteins and could better resist thermal changes. In mice H7 VLPs-TM induced higher titers of HI, IgG, IgG2a and IFN-γ, and provided better protection against homologous and heterologous H7N9 viruses (no matter belonging to Yangtze River Delta or Pearl River Delta) challenge with less weight loss and higher survival rate. In summary, H7 VLPs-TM represents a potential strategy for the development of H7N9 vaccines.
Collapse
|