1
|
Kellogg MK, Tikhonova EB, Karamyshev AL. Signal Recognition Particle in Human Diseases. Front Genet 2022; 13:898083. [PMID: 35754847 PMCID: PMC9214365 DOI: 10.3389/fgene.2022.898083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 01/14/2023] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex with dual functions. It co-translationally targets proteins with a signal sequence to the endoplasmic reticulum (ER) and protects their mRNA from degradation. If SRP is depleted or cannot recognize the signal sequence, then the Regulation of Aberrant Protein Production (RAPP) is activated, which results in the loss of secretory protein mRNA. If SRP recognizes the substrates but is unable to target them to ER, they may mislocalize or degrade. All these events lead to dramatic consequence for protein biogenesis, activating protein quality control pathways, and creating pressure on cell physiology, and might lead to the pathogenesis of disease. Indeed, SRP dysfunction is involved in many different human diseases, including: congenital neutropenia; idiopathic inflammatory myopathy; viral, protozoal, and prion infections; and cancer. In this work, we analyze diseases caused by SRP failure and discuss their possible molecular mechanisms.
Collapse
Affiliation(s)
- Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
2
|
Li Q, Shen J, Qin T, Zhou G, Li Y, Chen Z, Li M. A Qualitative and Comprehensive Analysis of Caries Susceptibility for Dental Fluorosis Patients. Antibiotics (Basel) 2021; 10:antibiotics10091047. [PMID: 34572628 PMCID: PMC8464924 DOI: 10.3390/antibiotics10091047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
Dental fluorosis (DF) is an endemic disease caused by excessive fluoride exposure during childhood. Previous studies mainly focused on the acid resistance of fluorotic enamel and failed to reach a consensus on the topic of the caries susceptibility of DF patients. In this review, we discuss the role of DF classification in assessing this susceptibility and follow the “four factors theory” in weighing the pros and cons of DF classification in terms of host factor (dental enamel and saliva), food factor, bacteria factor, and DF treatment factor. From our analysis, we find that susceptibility is possibly determined by various factors such as the extent of structural and chemical changes in fluorotic enamel, eating habits, fluoride levels in diets and in the oral cavity, changes in quantity and quality of saliva, and/or oral hygiene. Thus, a universal conclusion regarding caries susceptibility might not exist, instead depending on each individual’s situation.
Collapse
Affiliation(s)
- Qianrui Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
| | - Jiaqi Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
| | - Tao Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
| | - Ge Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
| | - Yifeng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
| | - Zhu Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi 563000, China;
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
- Correspondence:
| |
Collapse
|
3
|
Faoro C, Ataide SF. Noncanonical Functions and Cellular Dynamics of the Mammalian Signal Recognition Particle Components. Front Mol Biosci 2021; 8:679584. [PMID: 34113652 PMCID: PMC8185352 DOI: 10.3389/fmolb.2021.679584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex fundamental for co-translational delivery of proteins to their proper membrane localization and secretory pathways. Literature of the past two decades has suggested new roles for individual SRP components, 7SL RNA and proteins SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72, outside the SRP cycle. These noncanonical functions interconnect SRP with a multitude of cellular and molecular pathways, including virus-host interactions, stress response, transcriptional regulation and modulation of apoptosis in autoimmune diseases. Uncovered novel properties of the SRP components present a new perspective for the mammalian SRP as a biological modulator of multiple cellular processes. As a consequence of these findings, SRP components have been correlated with a growing list of diseases, such as cancer progression, myopathies and bone marrow genetic diseases, suggesting a potential for development of SRP-target therapies of each individual component. For the first time, here we present the current knowledge on the SRP noncanonical functions and raise the need of a deeper understanding of the molecular interactions between SRP and accessory cellular components. We examine diseases associated with SRP components and discuss the development and feasibility of therapeutics targeting individual SRP noncanonical functions.
Collapse
Affiliation(s)
- Camilla Faoro
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sandro F Ataide
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Biological Analysis of Gene Expression and Clinical Variables Suggest FZD1 as a Novel Biomarker for Patients with Kashin-Beck Disease, an Endemic Osteoarthritis in China. DISEASE MARKERS 2019; 2019:3736198. [PMID: 30719180 PMCID: PMC6335718 DOI: 10.1155/2019/3736198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 02/04/2023]
Abstract
Clinical variables contribute to the severity of Kashin-Beck disease (KBD). However, it is unclear if there is a correlation between gene expression and clinical variables. Peripheral blood samples were collected from 100 patients with KBD and 100 healthy controls from KBD-endemic areas to identify differentially expressed genes in KBD. Correlation analysis and multiple logistic regression analysis were performed using gene expression and clinical parameters. Immunohistochemistry (IHC) was used to detect the expression of related proteins in articular cartilage tissues. Thirty-nine differentially expressed genes were identified in patients with KBD. Nine differentially expressed genes were correlated with the metacarpal length/metacarpal breadth index. FZD1 was identified as having statistical significance in establishing the regression model of clinical parameters and gene expression. FZD1 expression levels were remarkably reduced in patients with KBD. Our results indicate that FZD1 could be involved in the pathological process of phalanges tuberositas and brachydactylia and may provide new insight into the pathogenesis of articular cartilage destruction observed in patients with KBD.
Collapse
|
5
|
de Paula Fonseca Arrifano G, Del Carmen Rodriguez Martin-Doimeadios R, Jiménez-Moreno M, Augusto-Oliveira M, Rogério Souza-Monteiro J, Paraense R, Rodrigues Machado C, Farina M, Macchi B, do Nascimento JLM, Crespo-Lopez ME. Assessing mercury intoxication in isolated/remote populations: Increased S100B mRNA in blood in exposed riverine inhabitants of the Amazon. Neurotoxicology 2018; 68:151-158. [PMID: 30076900 DOI: 10.1016/j.neuro.2018.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
Mercury is a heavy metal responsible for human intoxication worldwide and especially in the Amazon, where both natural and anthropogenic sources are responsible for exposure in riverine populations. Methylmercury is the most toxic specie of mercury with recognized neurotoxicity due to its affinity for the central nervous system. S100B protein is a well-established biomarker of brain damage and it was recently associated with mercury-related neurotoxicity. Accurate measurement is especially challenging in isolated/remote populations due to the difficulty of adequate sample conservation, therefore here we use S100B mRNA levels in blood as a way to assay mercury neurotoxicity. We hypothesized that individuals from chronically exposed populations showing mercury levels above the limit of 10 μg/g in hair would present increased levels of S100B mRNA, likely due to early brain damage. A total of 224 riverine individuals were evaluated for anthropometric data (age, body mass index), self-reported symptoms of mercury intoxication, c-reactive protein in blood, and mercury speciation in hair. Approximately 20% of participants showed mercury levels above the limit, and prevalence for most symptoms was not different between individuals exposed to high or low mercury levels. Rigorous exclusion criteria were applied to avoid confounding factors and S100B mRNA in blood was tested by RT-qPCR. Participants with ≥10 μg/g of mercury had S100B mRNA levels over two times higher than that of individuals with lower exposure. A significant correlation was also detected between mercury content in hair and S100B mRNA levels in blood, supporting the use of the latter as a possible candidate to predict mercury-induced neurotoxicity. This is the first report of an association between S100B mRNA and mercury exposure in humans. The combination of both exposure and intoxication biomarkers could provide additional support for the screening and early identification of high-risk individuals in isolated populations and subsequent referral to specialized centers.
Collapse
Affiliation(s)
| | | | - María Jiménez-Moreno
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Marcus Augusto-Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará; Belém, PA, Brazil
| | - José Rogério Souza-Monteiro
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará; Belém, PA, Brazil
| | - Ricardo Paraense
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará; Belém, PA, Brazil
| | - Camila Rodrigues Machado
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará; Belém, PA, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Barbarella Macchi
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências Biologicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - José Luiz Martins do Nascimento
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências Biologicas, Universidade Federal do Pará, Belém, PA, Brazil; Universidade CEUMA, Pesquisa em Neurociências, São Luís, MA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará; Belém, PA, Brazil.
| |
Collapse
|