1
|
Liu F, Luo J, Zhu X, Zhao C, Niu L, Cui J. Transgenic Cry1Ac/CpTI cotton assessment finds no detrimental effects on the insect predator Chrysoperla sinica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111680. [PMID: 33396012 DOI: 10.1016/j.ecoenv.2020.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/28/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The widespread commercialization of genetically modified (GM) cotton makes it important to assess the potential impact of this recombinant crop on non-target organisms. As important natural enemies of cotton field predators, green lacewing Chrysoperla sinica larvae are exposed to Bt insecticidal proteins expressed by GM cotton by feeding on herbivorous pests, and adults are directly exposed to Bt proteins by cotton pollen consumption. However, potential impacts of transgenic Bt cotton on C. sinica remain unclear. In this study, we evaluated the effects of two transgenic cotton varieties, CCRI41 and CCRI45, which express Cry1Ac (Bt toxin) and CpTI (Cowpea Trypsin Inhibitor), on C. sinica larvae and adults. After being fed with cotton aphids Aphis gossypii reared on transgenic cotton, the survival rate, developmental duration, pupation rate, and emergence rate of larvae were not adversely affected. After being fed two types of transgenic cotton pollen, the 7-day weight of adults and the preoviposition period and the cumulative oviposition of females were not significantly different from control specimen. Taken together, these results indicate that the potential risks of the two tested GM cotton varieties for the predator C. sinica are negligible. CAPSULE: Our study indicated that GM cotton varieties CCRI41 and CCRI45 have no adverse effects on insect predator C. sinica.
Collapse
Affiliation(s)
- Fang Liu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Junyu Luo
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangzhen Zhu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Chenchen Zhao
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Niu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| | - Jinjie Cui
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| |
Collapse
|
2
|
Pinto CPG, Azevedo EB, Dos Santos ALZ, Cardoso CP, Fernandes FO, Rossi GD, Polanczyk RA. Immune response and susceptibility to Cotesia flavipes parasitizing Diatraea saccharalis larvae exposed to and surviving an LC 25 dosage of Bacillus thuringiensis. J Invertebr Pathol 2019; 166:107209. [PMID: 31201787 DOI: 10.1016/j.jip.2019.107209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/29/2023]
Abstract
Biological control using entomopathogens and natural enemies is an ecofriendly method for pest management in agriculture. Biological control agents often can be simultaneously employed and compatibility between agents may improve pest suppression. We investigated the influence of the entomopathogen Bacillus thuringiensis (Bt) on the immune system of the sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) to determine if such changes impact parasitization by Cotesia flavipes Cameron, 1891 (Hymenoptera: Braconidae). The immune response of surviving D. saccharalis larvae fed with an LC25 dosage of a Bt-based biopesticide (Dipel®) was analyzed (total hemocyte count, hemocyte adhesion, and activities of phenoloxidase and lysozyme). Furthermore, the suitability of surviving Bt-fed larvae as hosts for C. flavipes was assessed by measuring parasitoid attributes such as number and size of teratocytes, weight of pupae, length of adult female tibia and number of emerged adults. Total hemocyte count, but not hemocyte adhesion, total protein content and phenoloxidase activity increased in the hemolymph of non-parasitized Bt-fed larvae (Bt-NP) compared to control larvae (NBt-NP). Lysozyme activity increased only after parasitization without Bt exposure (NBt-P). After parasitization, the immunological parameters activated in Bt-NP larvae decreased to levels at or below those observed in control larvae, showing that C. flavipes can regulate the activated immune response of Bt-fed larvae. The development of C. flavipes was not impaired in Bt-fed larval hosts (Bt-P); no changes were observed for teratocyte size, weight of pupal mass, length of hind tibia and number of adults emerged.
Collapse
Affiliation(s)
- Ciro Pedro Guidotti Pinto
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | - Emiliano Brandão Azevedo
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | | | - Camila Pires Cardoso
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | | | - Guilherme Duarte Rossi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | - Ricardo Antônio Polanczyk
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil.
| |
Collapse
|