1
|
Yoshihara T, Tamura T, Shiozaki S, Chou LC, Kakuchi R, Rokudai S. Confocal microscopic oxygen imaging of xenograft tumors using Ir(III) complexes as in vivo intravascular and intracellular probes. Sci Rep 2024; 14:18443. [PMID: 39117886 PMCID: PMC11310526 DOI: 10.1038/s41598-024-69369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Hypoxia is an important feature of the tumor microenvironment (TME) of most solid tumors, and it is closely linked to cancer cell proliferation, therapy resistance, and the tumor immune response. Herein, we describe a method for hypoxia-induced heterogeneous oxygen distribution in xenograft tumors based on phosphorescence imaging microscopy (PLIM) using intravascular and intracellular oxygen probes. We synthesized Ir(III) complexes with polyethylene glycol (PEG) units of different molecular weights into the ligand as intravascular oxygen probes, BTP-PEGm (m = 2000, 5000, 10000, 20000). BTP-PEGm showed red emission with relatively high emission quantum yield and high oxygen sensitivity in saline. Cellular and in vivo experiments using these complexes revealed that BTP-PEG10000 was the most suitable probe in terms of blood retention and ease of intravenous administration in mice. PLIM measurements of xenograft tumors in mice treated with BTP-PEG10000 allowed simultaneous imaging of the tumor microvasculature and quantification of oxygen partial pressures. From lifetime images using the red-emitting intracellular oxygen probe BTPDM1 and the green-emitting intravascular fluorescent probe FITC-dextran, we demonstrated hypoxic heterogeneity in the TME with a sparse vascular network and showed that the oxygen levels of tumor cells gradually decreased with vascular distance.
Collapse
Affiliation(s)
- Toshitada Yoshihara
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan.
| | - Takuto Tamura
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Shuichi Shiozaki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Li-Chieh Chou
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Ryohei Kakuchi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Susumu Rokudai
- Molecular Pharmacology and Oncology, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
2
|
Ou X, You J, Liang B, Li X, Zhou J, Wen F, Wang J, Dong Z, Zhang Y. Prognostic Factors Analysis of Metastatic Recurrence in Cervical Carcinoma Patients Treated with Definitive Radiotherapy: A Retrospective Study Using Mixture Cure Model. Cancers (Basel) 2023; 15:2913. [PMID: 37296875 PMCID: PMC10252127 DOI: 10.3390/cancers15112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES This study aims to identify prognostic factors associated with metastatic recurrence-free survival of cervical carcinoma (CC) patients treated with radical radiotherapy and assess the cure probability of radical radiotherapy from metastatic recurrence. METHODS Data were from 446 cervical carcinoma patients with radical radiotherapy for an average follow up of 3.96 years. We applied a mixture cure model to investigate the association between metastatic recurrence and prognostic factors and the association between noncure probability and factors, respectively. A nonparametric test of cure probability under the framework of a mixture cure model was used to examine the significance of cure probability of the definitive radiotherapy treatment. Propensity-score-matched (PSM) pairs were generated to reduce bias in subgroup analysis. RESULTS Patients in advanced stages (p = 0.005) and those with worse treatment responses in the 3rd month (p = 0.004) had higher metastatic recurrence rates. Nonparametric tests of the cure probability showed that 3-year cure probability from metastatic recurrence was significantly larger than 0, and 5-year cure probability was significantly larger than 0.7 but no larger than 0.8. The empirical cure probability by mixture cure model was 79.2% (95% CI: 78.6-79.9%) for the entire study population, and the overall median metastatic recurrence time for uncured patients (patients susceptible to metastatic recurrence) was 1.60 (95% CI: 1.51-1.69) years. Locally advanced/advanced stage was a risk factor but non-significant against the cure probability (OR = 1.078, p = 0.088). The interaction of age and activity of radioactive source were statistically significant in the incidence model (OR = 0.839, p = 0.025). In subgroup analysis, compared with high activity of radioactive source (HARS), low activity of radioactive source (LARS) significantly contributed to a 16.1% higher cure probability for patients greater than 53 years old, while cure probability was 12.2% lower for the younger patients. CONCLUSIONS There was statistically significant evidence in the data showing the existence of a large amount of patients cured by the definitive radiotherapy treatment. HARS is a protective factor against metastatic recurrence for uncured patients, and young patients tend to benefit more than the elderly from the HARS treatment.
Collapse
Affiliation(s)
- Xiaxian Ou
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.O.); (J.Z.); (J.W.)
| | - Jing You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (J.Y.); (X.L.); (Z.D.); (Y.Z.)
| | - Baosheng Liang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.O.); (J.Z.); (J.W.)
| | - Xiaofan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (J.Y.); (X.L.); (Z.D.); (Y.Z.)
| | - Jiangjie Zhou
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.O.); (J.Z.); (J.W.)
| | - Fengyu Wen
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China;
| | - Jingyuan Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.O.); (J.Z.); (J.W.)
| | - Zhengkun Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (J.Y.); (X.L.); (Z.D.); (Y.Z.)
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (J.Y.); (X.L.); (Z.D.); (Y.Z.)
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China;
| |
Collapse
|
3
|
Taylor E. A simple mathematical model of cyclic hypoxia and its impact on hypofractionated radiotherapy. Med Phys 2023; 50:1893-1904. [PMID: 36594511 DOI: 10.1002/mp.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/29/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE There is evidence that the population of cells that experience fluctuating oxygen levels ("acute," or, "cyclic" hypoxia) are more radioresistant than chronically hypoxic ones and hence, this population may determine radiotherapy (RT) response, in particular for hypofractionated RT, where reoxygenation may not be as prominent. A considerable effort has been devoted to examining the impact of hypoxia on hypofractionated RT; however, much less attention has been paid to cyclic hypoxia specifically and the role its kinetics may play in determining the efficacy of these treatments. Here, a simple mathematical model of cyclic hypoxia and fractionation effects was worked out to quantify this. METHODS Cancer clonogen survival fraction was estimated using the linear quadratic model, modified to account for oxygen enhancement effects. An analytic approximation for oxygen transport away from a random network of capillaries with fluctuating oxygen levels was used to model inter-fraction tissue oxygen kinetics. The resulting survival fraction formula was used to derive an expression for the iso-survival biologically effective dose (BED), BEDiso-SF . These were computed for some common extra-cranial hypofractionated RT regimens. RESULTS Using relevant literature parameter values, inter-fraction fluctuations in oxygenation were found to result in an added 1-2 logs of clonogen survival fraction in going from five fractions to one for the same nominal BED (i.e., excluding the effects of oxygen levels on radiosensitivity). BEDiso-SF 's for most ultra-hypofractionated (five or fewer fractions) regimens in a given tumor site are similar in magnitude, suggesting iso-efficacy for common fractionation schedules. CONCLUSIONS Although significant, the loss of cell-killing with increasing hypofractionation is not nearly as large as previous estimates based on the assumption of complete reoxygenation between fractions. Most ultra-hypofractionated regimens currently in place offer sufficiently high doses to counter this loss of cell killing, although care should be taken in implementing single-fraction regimens.
Collapse
Affiliation(s)
- Edward Taylor
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Kaeppler JR, Chen J, Buono M, Vermeer J, Kannan P, Cheng W, Voukantsis D, Thompson JM, Hill MA, Allen D, Gomes A, Kersemans V, Kinchesh P, Smart S, Buffa F, Nerlov C, Muschel RJ, Markelc B. Endothelial cell death after ionizing radiation does not impair vascular structure in mouse tumor models. EMBO Rep 2022; 23:e53221. [PMID: 35848459 PMCID: PMC9442312 DOI: 10.15252/embr.202153221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
The effect of radiation therapy on tumor vasculature has long been a subject of debate. Increased oxygenation and perfusion have been documented during radiation therapy. Conversely, apoptosis of endothelial cells in irradiated tumors has been proposed as a major contributor to tumor control. To examine these contradictions, we use multiphoton microscopy in two murine tumor models: MC38, a highly vascularized, and B16F10, a moderately vascularized model, grown in transgenic mice with tdTomato-labeled endothelium before and after a single (15 Gy) or fractionated (5 × 3 Gy) dose of radiation. Unexpectedly, even these high doses lead to little structural change of the perfused vasculature. Conversely, non-perfused vessels and blind ends are substantially impaired after radiation accompanied by apoptosis and reduced proliferation of their endothelium. RNAseq analysis of tumor endothelial cells confirms the modification of gene expression in apoptotic and cell cycle regulation pathways after irradiation. Therefore, we conclude that apoptosis of tumor endothelial cells after radiation does not impair vascular structure.
Collapse
Affiliation(s)
- Jakob R Kaeppler
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Jianzhou Chen
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Mario Buono
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Jenny Vermeer
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Pavitra Kannan
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Wei‐Chen Cheng
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Dimitrios Voukantsis
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - James M Thompson
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Mark A Hill
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Danny Allen
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ana Gomes
- In Vivo ImagingThe Francis Crick InstituteLondonUK
| | - Veerle Kersemans
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Paul Kinchesh
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Sean Smart
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Francesca Buffa
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Ruth J Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Bostjan Markelc
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
- Present address:
Department of Experimental OncologyInstitute of Oncology LjubljanaLjubljanaSlovenia
| |
Collapse
|
5
|
Binary dose level classification of tumour microvascular response to radiotherapy using artificial intelligence analysis of optical coherence tomography images. Sci Rep 2022; 12:13995. [PMID: 35978040 PMCID: PMC9385745 DOI: 10.1038/s41598-022-18393-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2022] [Indexed: 12/26/2022] Open
Abstract
The dominant consequence of irradiating biological systems is cellular damage, yet microvascular damage begins to assume an increasingly important role as the radiation dose levels increase. This is currently becoming more relevant in radiation medicine with its pivot towards higher-dose-per-fraction/fewer fractions treatment paradigm (e.g., stereotactic body radiotherapy (SBRT)). We have thus developed a 3D preclinical imaging platform based on speckle-variance optical coherence tomography (svOCT) for longitudinal monitoring of tumour microvascular radiation responses in vivo. Here we present an artificial intelligence (AI) approach to analyze the resultant microvascular data. In this initial study, we show that AI can successfully classify SBRT-relevant clinical radiation dose levels at multiple timepoints (t = 2–4 weeks) following irradiation (10 Gy and 30 Gy cohorts) based on induced changes in the detected microvascular networks. Practicality of the obtained results, challenges associated with modest number of animals, their successful mitigation via augmented data approaches, and advantages of using 3D deep learning methodologies, are discussed. Extension of this encouraging initial study to longitudinal AI-based time-series analysis for treatment outcome predictions at finer dose level gradations is envisioned.
Collapse
|
6
|
Kozin SV. Vascular damage in tumors: a key player in stereotactic radiation therapy? Trends Cancer 2022; 8:806-819. [PMID: 35835699 DOI: 10.1016/j.trecan.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
The use of stereotactic radiation therapy (SRT) for cancer treatment has grown in recent years, showing excellent results for some tumors. The greatly increased doses per fraction in SRT compared to conventional radiotherapy suggest a 'new biology' that determines treatment outcome. Proposed mechanisms include significant damage to tumor blood vessels and enhanced antitumor immune responses, which are also vasculature-dependent. These ideas are mostly based on the results of radiation studies in animal models because direct observations in humans are limited. However, even preclinical findings are somewhat incomplete and result in ambiguous conclusions. Current evidence of vasculature-related mechanisms of SRT is reviewed. Understanding them could result in better optimization of SRT alone or in combination with immune or other cancer therapies.
Collapse
Affiliation(s)
- Sergey V Kozin
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
7
|
HIF-1α Inhibition Improves Anti-Tumor Immunity and Promotes the Efficacy of Stereotactic Ablative Radiotherapy (SABR). Cancers (Basel) 2022; 14:cancers14133273. [PMID: 35805044 PMCID: PMC9265101 DOI: 10.3390/cancers14133273] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Stereotactic ablative radiotherapy (SABR), which irradiates tumors with high-dose radiation per fraction, promotes anti-tumor immunity by stimulating various immune processes. SABR also induces vascular damage and obstructs blood flow, thereby increasing tumor hypoxia and upregulation of hypoxia-inducible factors HIF-1α and HIF-2α, master transcription factors for the cellular response to hypoxia. HIF-1α and HIF-2α are key players in the upregulation of immune suppression in hypoxia. Therefore, the radiation-induced increase in anti-tumor immunity is masked by the HIF-mediated immune suppression. Pre-clinical experiments show that inhibition of HIF-1α effectively prevents immune suppression and improves anti-tumor immunity. A combination of HIF-1α inhibitors with immunotherapy with checkpoint blocking antibodies may represent a novel approach to boost anti-tumor immunity and enhance the efficacy of SABR. Abstract High-dose hypofractionated radiation such as SABR (stereotactic ablative radiotherapy) evokes an anti-tumor immune response by promoting a series of immune-stimulating processes, including the release of tumor-specific antigens from damaged tumor cells and the final effector phase of immune-mediated lysis of target tumor cells. High-dose hypofractionated radiation also causes vascular damage in tumors, thereby increasing tumor hypoxia and upregulation of hypoxia-inducible factors HIF-1α and HIF-2α, the master transcription factors for the cellular response to hypoxia. HIF-1α and HIF-2α are critical factors in the upregulation of immune suppression and are the master regulators of immune evasion of tumors. Consequently, SABR-induced increase in anti-tumor immunity is counterbalanced by the increase in immune suppression mediated by HIFα. Inhibition of HIF-1α with small molecules such as metformin downregulates immunosuppressive pathways, including the expression of immune checkpoints, and it improves or restores the anti-tumor immunity stimulated by irradiation. Combinations of HIFα inhibitors, particularly HIF-1α inhibitors, with immune checkpoint blocking antibodies may represent a novel approach to boost the overall anti-tumor immune profile in patients and thus enhance outcomes after SABR.
Collapse
|
8
|
Allam N, Jeffrey Zabel W, Demidov V, Jones B, Flueraru C, Taylor E, Alex Vitkin I. Longitudinal in-vivo quantification of tumour microvascular heterogeneity by optical coherence angiography in pre-clinical radiation therapy. Sci Rep 2022; 12:6140. [PMID: 35414078 PMCID: PMC9005734 DOI: 10.1038/s41598-022-09625-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an emerging cancer treatment due to its logistical and potential therapeutic benefits as compared to conventional radiotherapy. However, its mechanism of action is yet to be fully understood, likely involving the ablation of tumour microvasculature by higher doses per fraction used in SBRT. In this study, we hypothesized that longitudinal imaging and quantification of the vascular architecture may elucidate the relationship between the microvasculature and tumour response kinetics. Pancreatic human tumour xenografts were thus irradiated with single doses of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10$$\end{document}10, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$20$$\end{document}20 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$30$$\end{document}30 Gy to simulate the first fraction of a SBRT protocol. Tumour microvascular changes were monitored with optical coherence angiography for up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$8$$\end{document}8 weeks following irradiation. The temporal kinetics of two microvascular architectural metrics were studied as a function of time and dose: the diffusion-limited fraction, representing poorly vascularized tissue \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$>150$$\end{document}>150 μm from the nearest detected vessel, and the vascular distribution convexity index, a measure of vessel aggregation at short distances. These biological metrics allowed for dose dependent temporal evaluation of tissue (re)vascularization and vessel aggregation after radiotherapy, showing promise for determining the SBRT dose–response relationship.
Collapse
Affiliation(s)
- Nader Allam
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada.
| | - W Jeffrey Zabel
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Valentin Demidov
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada.,Geisel School of Medicine at Dartmouth, 1 Rope Ferry Rd, Hanover, NH, 03755, USA
| | - Blake Jones
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Costel Flueraru
- National Research Council Canada, Information Communication Technology, 1200 Montreal Rd, Ottawa, ON, K1A 0R6, Canada
| | - Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.,Department of Radiation Oncology, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada
| | - I Alex Vitkin
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada. .,Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada. .,Department of Radiation Oncology, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada.
| |
Collapse
|
9
|
Orlova A, Pavlova K, Kurnikov A, Maslennikova A, Myagcheva M, Zakharov E, Skamnitskiy D, Perekatova V, Khilov A, Kovalchuk A, Moiseev A, Turchin I, Razansky D, Subochev P. Noninvasive optoacoustic microangiography reveals dose and size dependency of radiation-induced deep tumor vasculature remodeling. Neoplasia 2022; 26:100778. [PMID: 35220045 PMCID: PMC8889238 DOI: 10.1016/j.neo.2022.100778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/07/2023]
Abstract
Tumor microvascular responses may provide a sensitive readout indicative of radiation therapy efficacy, its time course and dose dependencies. However, direct high-resolution observation and longitudinal monitoring of large-scale microvascular remodeling in deep tissues remained challenging with the conventional microscopy approaches. We report on a non-invasive longitudinal study of morphological and functional neovascular responses by means of scanning optoacoustic (ОА) microangiography. In vivo imaging of CT26 tumor response to a single irradiation at varying dose (6, 12, and 18 Gy) has been performed over ten days following treatment. Tumor oxygenation levels were further estimated using diffuse optical spectroscopy (DOS) with a contact fiber probe. OA revealed the formation of extended vascular structures on the whole tumor scale during its proliferation, whereas only short fragmented vascular regions were identified following irradiation. On the first day post treatment, a decrease in the density of small (capillary-sized) and medium-sized vessels was revealed, accompanied by an increase in their fragmentation. Larger vessels exhibited an increase in their density accompanied by a decline in the number of vascular segments. Short-lasting response has been observed after 6 and 12 Gy irradiations, whereas 18 Gy treatment resulted in prolonged responses, up to the tenth day after irradiation. DOS measurements further revealed a delayed increase of tumor oxygenation levels for 18 Gy irradiations, commencing on the sixth day post treatment. The ameliorated oxygenation is attributed to diminished oxygen consumption by inhibited tumor cells but not to the elevation of oxygen supply. This work is the first to demonstrate the differential (size-dependent) nature of vascular responses to radiation treatments at varying doses in vivo. The OA approach thus facilitates the study of radiation-induced vascular changes in an unperturbed in vivo environment while enabling deep tissue high-resolution observations at the whole tumor scale.
Collapse
|
10
|
Zabel WJ, Allam N, Foltz WD, Flueraru C, Taylor E, Vitkin IA. Bridging the macro to micro resolution gap with angiographic optical coherence tomography and dynamic contrast enhanced MRI. Sci Rep 2022; 12:3159. [PMID: 35210476 PMCID: PMC8873467 DOI: 10.1038/s41598-022-07000-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu \mathrm{m}$$\end{document}μm scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model. Both semi and fully quantitative (Toft’s model) DCE-MRI metrics were tested for correlation with microvascular svOCT biomarkers. svOCT’s derived vascular volume fraction (VVF) and the mean distance to nearest vessel (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{\mathrm{DNV} }$$\end{document}DNV¯) metrics were correlated with DCE-MRI vascular biomarkers such as time to peak contrast enhancement (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=-0.81$$\end{document}r=-0.81 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.83$$\end{document}0.83 respectively, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P<0.0001$$\end{document}P<0.0001 for both), the area under the gadolinium-time concentration curve (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=0.50$$\end{document}r=0.50 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-0.48$$\end{document}-0.48 respectively, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P<0.0001$$\end{document}P<0.0001 for both) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{trans}$$\end{document}ktrans (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=0.64$$\end{document}r=0.64 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-0.61$$\end{document}-0.61 respectively, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P<0.0001$$\end{document}P<0.0001 for both). Several other correlated micro–macro vascular metric pairs were also noted. The microvascular insights afforded by svOCT may help improve the clinical utility of DCE-MRI for tissue functional status assessment and therapeutic response monitoring applications.
Collapse
Affiliation(s)
- W Jeffrey Zabel
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Nader Allam
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Warren D Foltz
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Costel Flueraru
- National Research Council Canada, Information Communication Technology, Ottawa, Canada
| | - Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - I Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Demidov V, Demidova N, Pires L, Demidova O, Flueraru C, Wilson BC, Alex Vitkin I. Volumetric tumor delineation and assessment of its early response to radiotherapy with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:2952-2967. [PMID: 34123510 PMCID: PMC8176804 DOI: 10.1364/boe.424045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Texture analyses of optical coherence tomography (OCT) images have shown initial promise for differentiation of normal and tumor tissues. This work develops a fully automatic volumetric tumor delineation technique employing quantitative OCT image speckle analysis based on Gamma distribution fits. We test its performance in-vivo using immunodeficient mice with dorsal skin window chambers and subcutaneously grown tumor models. Tumor boundaries detection is confirmed using epi-fluorescence microscopy, combined photoacoustic-ultrasound imaging, and histology. Pilot animal study of tumor response to radiotherapy demonstrates high accuracy, objective nature, novelty of the proposed method in the volumetric separation of tumor and normal tissues, and the sensitivity of the fitting parameters to radiation-induced tissue changes. Overall, the developed methodology enables hitherto impossible longitudinal studies for detecting subtle tissue alterations stemming from therapeutic insult.
Collapse
Affiliation(s)
- Valentin Demidov
- University of Toronto, Faculty of Medicine, Department of Medical Biophysics, 101 College St., Toronto, M5G 1L7, Canada
- University Health Network, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, M5G 2M9, Canada
- Authors contributed equally to this work
| | - Natalia Demidova
- University of Toronto at Mississauga, Department of Mathematical and Computational Sciences, 3359 Mississauga Road, Mississauga, L5L1C6, Canada
- Authors contributed equally to this work
| | - Layla Pires
- University Health Network, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, M5G 2M9, Canada
| | - Olga Demidova
- Seneca College, Department of Arts and Science, 1750 Finch Ave. East, Toronto, M2J 2X5, Canada
| | - Costel Flueraru
- National Research Council Canada, Information Communication Technology, 1200 Montreal Road, Ottawa, K1A 0R6, Canada
| | - Brian C. Wilson
- University of Toronto, Faculty of Medicine, Department of Medical Biophysics, 101 College St., Toronto, M5G 1L7, Canada
- University Health Network, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, M5G 2M9, Canada
| | - I. Alex Vitkin
- University of Toronto, Faculty of Medicine, Department of Medical Biophysics, 101 College St., Toronto, M5G 1L7, Canada
- University Health Network, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, M5G 2M9, Canada
- University of Toronto, Faculty of Medicine, Department of Radiation Oncology, 149 College Street, Toronto, M5 T 1P5, Canada
| |
Collapse
|
12
|
Andersen SB, Taghavi I, Hoyos CAV, Søgaard SB, Gran F, Lönn L, Hansen KL, Jensen JA, Nielsen MB, Sørensen CM. Super-Resolution Imaging with Ultrasound for Visualization of the Renal Microvasculature in Rats Before and After Renal Ischemia: A Pilot Study. Diagnostics (Basel) 2020; 10:diagnostics10110862. [PMID: 33105888 PMCID: PMC7690607 DOI: 10.3390/diagnostics10110862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
In vivo monitoring of the microvasculature is relevant since diseases such as diabetes, ischemia, or cancer cause microvascular impairment. Super-resolution ultrasound imaging allows in vivo examination of the microvasculature by detecting and tracking sparsely distributed intravascular microbubbles over a minute-long period. The ability to create detailed images of the renal vasculature of Sprague-Dawley rats using a modified clinical ultrasound platform was investigated in this study. Additionally, we hypothesized that early ischemic damage to the renal microcirculation could be visualized. After a baseline scan of the exposed kidney, 10 rats underwent clamping of the renal vein (n = 5) or artery (n = 5) for 45 min. The kidneys were rescanned at the onset of clamp release and after 60 min of reperfusion. Using a processing pipeline for tissue motion compensation and microbubble tracking, super-resolution images with a very high level of detail were constructed. Image filtration allowed further characterization of the vasculature by isolating specific vessels such as the ascending vasa recta with a 15–20 μm diameter. Using the super-resolution images alone, it was only possible for six assessors to consistently distinguish the healthy renal microvasculature from the microvasculature at the onset of vein clamp release. Future studies will aim at attaining quantitative estimations of alterations in the renal microvascular blood flow using super-resolution ultrasound imaging.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.S.); (L.L.); (K.L.H.); (M.B.N.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | | | - Stinne Byrholdt Søgaard
- Department of Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.S.); (L.L.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Fredrik Gran
- BK Medical ApS, 2730 Herlev, Denmark; (C.A.V.H.); (F.G.)
| | - Lars Lönn
- Department of Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.S.); (L.L.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristoffer Lindskov Hansen
- Department of Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.S.); (L.L.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Michael Bachmann Nielsen
- Department of Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.S.); (L.L.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | | |
Collapse
|
13
|
Forrest WF, Alicke B, Mayba O, Osinska M, Jakubczak M, Piatkowski P, Choniawko L, Starr A, Gould SE. Generalized Additive Mixed Modeling of Longitudinal Tumor Growth Reduces Bias and Improves Decision Making in Translational Oncology. Cancer Res 2020; 80:5089-5097. [PMID: 32978171 DOI: 10.1158/0008-5472.can-20-0342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
Scientists working in translational oncology regularly conduct multigroup studies of mice with serially measured tumors. Longitudinal data collected can feature mid-study dropouts and complex nonlinear temporal response patterns. Parametric statistical models such as ones assuming exponential growth are useful for summarizing tumor volume over ranges for which the growth model holds, with the advantage that the model's parameter estimates can be used to summarize between-group differences in tumor volume growth with statistical measures of uncertainty. However, these same assumed growth models are too rigid to recapitulate patterns observed in many experiments, which in turn diminishes the effectiveness of their parameter estimates as summary statistics. To address this problem, we generalized such models by adopting a nonparametric approach in which group-level response trends for logarithmically scaled tumor volume are estimated as regression splines in a generalized additive mixed model. We also describe a novel summary statistic for group level splines over user-defined, experimentally relevant time ranges. This statistic reduces to the log-linear growth rate for data well described by exponential growth and also has a sampling distribution across groups that is well approximated by a multivariate Gaussian, thus facilitating downstream analysis. Real-data examples show that this nonparametric approach not only enhances fidelity in describing nonlinear growth scenarios but also improves statistical power to detect interregimen differences when compared with the simple exponential model so that it generalizes the linear mixed effects paradigm for analysis of log-linear growth to nonlinear scenarios in a useful way. SIGNIFICANCE: This work generalizes the statistical linear mixed modeling paradigm for summarizing longitudinally measured preclinical tumor volume studies to encompass studies with nonlinear and nonmonotonic group response patterns in a statistically rigorous manner.
Collapse
Affiliation(s)
- William F Forrest
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, California.
| | - Bruno Alicke
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| | - Oleg Mayba
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, California
| | - Magdalena Osinska
- Department of Research Engineering and Software Informatics, Genentech, Inc., South San Francisco, California
| | | | - Pawel Piatkowski
- Roche Global IT Solutions Centre: Research and Early Development Support, Roche Pharmaceuticals, Warsaw, Poland
| | - Lech Choniawko
- Roche Global IT Solutions Centre: Regions, Diagnostics, and Research Technology Center, Roche Pharmaceuticals, Wroclaw, Poland
| | - Alice Starr
- Insitro, Inc., South San Francisco, California
| | - Stephen E Gould
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| |
Collapse
|
14
|
Pires L, Demidov V, Wilson BC, Salvio AG, Moriyama L, Bagnato VS, Vitkin IA, Kurachi C. Dual-Agent Photodynamic Therapy with Optical Clearing Eradicates Pigmented Melanoma in Preclinical Tumor Models. Cancers (Basel) 2020; 12:cancers12071956. [PMID: 32708501 PMCID: PMC7409296 DOI: 10.3390/cancers12071956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Treatment using light-activated photosensitizers (photodynamic therapy, PDT) has shown limited efficacy in pigmented melanoma, mainly due to the poor penetration of light in this tissue. Here, an optical clearing agent (OCA) was applied topically to a cutaneous melanoma model in mice shortly before PDT to increase the effective treatment depth by reducing the light scattering. This was used together with cellular and vascular-PDT, or a combination of both. The effect on tumor growth was measured by longitudinal ultrasound/photoacoustic imaging in vivo and by immunohistology after sacrifice. In a separate dorsal window chamber tumor model, angiographic optical coherence tomography (OCT) generated 3D tissue microvascular images, enabling direct in vivo assessment of treatment response. The optical clearing had minimal therapeutic effect on the in control, non-pigmented cutaneous melanomas but a statistically significant effect (p < 0.05) in pigmented lesions for both single- and dual-photosensitizer treatment regimes. The latter enabled full-depth eradication of tumor tissue, demonstrated by the absence of S100 and Ki67 immunostaining. These studies are the first to demonstrate complete melanoma response to PDT in an immunocompromised model in vivo, with quantitative assessment of tumor volume and thickness, confirmed by (immuno) histological analyses, and with non-pigmented melanomas used as controls to clarify the critical role of melanin in the PDT response. The results indicate the potential of OCA-enhanced PDT for the treatment of pigmented lesions, including melanoma.
Collapse
Affiliation(s)
- Layla Pires
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Valentin Demidov
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Brian C. Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Correspondence: ; Tel.: +1-416-634-8778
| | | | - Lilian Moriyama
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| | - I. Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| |
Collapse
|
15
|
Chuang YC, Chu CH, Cheng SH, Liao LD, Chu TS, Chen NT, Paldino A, Hsia Y, Chen CT, Lo LW. Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics. Theranostics 2020; 10:6758-6773. [PMID: 32550902 PMCID: PMC7295068 DOI: 10.7150/thno.41752] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/04/2020] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT), which involves the generation of reactive oxygen species (ROS) through interactions of a photosensitizer (PS) with light and oxygen, has been applied in oncology. Over the years, PDT techniques have been developed for the treatment of deep-seated cancers. However, (1) the tissue penetration limitation of excitation photon, (2) suppressed efficiency of PS due to multiple energy transfers, and (3) insufficient oxygen source in hypoxic tumor microenvironment still constitute major challenges facing the clinical application of PDT for achieving effective treatment. We present herein a PS-independent, ionizing radiation-induced PDT agent composed of yttrium oxide nanoscintillators core and silica shell (Y2O3:Eu@SiO2) with an annealing process. Our results revealed that annealed Y2O3:Eu@SiO2 could directly induce comprehensive photodynamic effects under X-ray irradiation without the presence of PS molecules. The crystallinity of Y2O3:Eu@SiO2 was demonstrated to enable the generation of electron-hole (e--h+) pairs in Y2O3 under ionizing irradiation, giving rise to the formation of ROS including superoxide, hydroxyl radical and singlet oxygen. In particular, combining Y2O3:Eu@SiO2 with fractionated radiation therapy increased radio-resistant tumor cell damage. Furthermore, photoacoustic imaging of tumors showed re-distribution of oxygen saturation (SO2) and reoxygenation of the hypoxia region. The results of this study support applicability of the integration of fractionated radiation therapy with Y2O3:Eu@SiO2, achieving synchronously in-depth and oxygen-insensitive X-ray PDT. Furthermore, we demonstrate Y2O3:Eu@SiO2 exhibited radioluminescence (RL) under X-ray irradiation and observed the virtually linear correlation between X-ray-induced radioluminescence (X-RL) and the Y2O3:Eu@SiO2 concentration in vivo. With the pronounced X-RL for in-vivo imaging and dosimetry, it possesses significant potential for utilization as a precision theranostics producing highly efficient X-ray PDT for deep-seated tumors.
Collapse
|
16
|
Jelvehgaran P, de Bruin DM, Khmelinskii A, Borst G, Steinberg JD, Song J, de Vos J, van Leeuwen TG, Alderliesten T, de Boer JF, van Herk M. Optical coherence tomography to detect acute esophageal radiation-induced damage in mice: A validation study. JOURNAL OF BIOPHOTONICS 2019; 12:e201800440. [PMID: 31058437 PMCID: PMC7065648 DOI: 10.1002/jbio.201800440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 05/19/2023]
Abstract
Radiation therapy for patients with non-small-cell lung cancer is hampered by acute radiation-induced toxicity in the esophagus. This study aims to validate that optical coherence tomography (OCT), a minimally invasive imaging technique with high resolution (~10 μm), is able to visualize and monitor acute radiation-induced esophageal damage (ARIED) in mice. We compare our findings with histopathology as the gold standard. Irradiated mice receive a single dose of 40 Gy at proximal and distal spots of the esophagus of 10.0 mm in diameter. We scan mice using OCT at two, three, and seven days post-irradiation. In OCT analysis, we define ARIED as a presence of distorted esophageal layering, change in backscattering signal properties, or change in the esophageal wall thickness. The average esophageal wall thickness is 0.53 mm larger on OCT when ARIED is present based on histopathology. The overall sensitivity and specificity of OCT to detect ARIED compared to histopathology are 94% and 47%, respectively. However, the overall sensitivity of OCT to assess ARIED is 100% seven days post-irradiation. We validate the capability of OCT to detect ARIED induced by high doses in mice. Nevertheless, clinical studies are required to assess the potential role of OCT to visualize ARIED in humans.
Collapse
Affiliation(s)
- Pouya Jelvehgaran
- Department of Biomedical Engineering and PhysicsCancer Center Amsterdam, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Department of Radiation OncologyAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Department of Physics and AstronomyInstitute for Laser Life and Biophotonics AmsterdamAmsterdamthe Netherlands
| | - Daniel M. de Bruin
- Department of Biomedical Engineering and PhysicsCancer Center Amsterdam, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Department of UrologyAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Artem Khmelinskii
- Department of Radiation OncologyThe Netherlands Cancer Institute (NKI)Amsterdamthe Netherlands
| | - Gerben Borst
- Department of Radiation OncologyThe Netherlands Cancer Institute (NKI)Amsterdamthe Netherlands
| | - Jeffrey D. Steinberg
- Mouse Clinic for Cancer and Aging (MCCA) Imaging UnitThe Netherlands Cancer InstituteAmsterdamthe Netherlands
| | - Ji‐Ying Song
- Department of Experimental Animal PathologyThe Netherlands Cancer Institute (NKI)Amsterdamthe Netherlands
| | - Judith de Vos
- Department of Biomedical Engineering and PhysicsCancer Center Amsterdam, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Ton G. van Leeuwen
- Department of Biomedical Engineering and PhysicsCancer Center Amsterdam, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Tanja Alderliesten
- Department of Radiation OncologyAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Johannes F. de Boer
- Department of Physics and AstronomyInstitute for Laser Life and Biophotonics AmsterdamAmsterdamthe Netherlands
| | - Marcel van Herk
- Department of Biomedical Engineering and PhysicsCancer Center Amsterdam, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine, and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| |
Collapse
|
17
|
Demidov V, Matveev LA, Demidova O, Matveyev AL, Zaitsev VY, Flueraru C, Vitkin IA. Analysis of low-scattering regions in optical coherence tomography: applications to neurography and lymphangiography. BIOMEDICAL OPTICS EXPRESS 2019; 10:4207-4219. [PMID: 31453005 PMCID: PMC6701530 DOI: 10.1364/boe.10.004207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 05/19/2023]
Abstract
Analysis of semi-transparent low scattering biological structures in optical coherence tomography (OCT) has been actively pursued in the context of lymphatic imaging, with most approaches relying on the relative absence of signal as a means of detection. Here we present an alternate methodology based on spatial speckle statistics, utilizing the similarity of a distribution of given voxel intensities to the power distribution function of pure noise, to visualize the low-scattering biological structures of interest. In a human tumor xenograft murine model, we show that these correspond to lymphatic vessels and nerves; extensive histopathologic validation studies are reported to unequivocally establish this correspondence. The emerging possibility of OCT lymphangiography and neurography is novel and potentially impactful (especially the latter), although further methodology refinement is needed to distinguish between the visualized lymphatics and nerves.
Collapse
Affiliation(s)
- Valentin Demidov
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, M5G 1L7, Canada
| | - Lev A. Matveev
- Institute of Applied Physics Russian Academy of Sciences, 46 Ulyanov Street, Nizhniy Novgorod, 603950, Russia
| | - Olga Demidova
- Department of Arts and Science, Seneca College, 1750 Finch Avenue East, Toronto, M2J 2X5, Canada
| | - Alexander L. Matveyev
- Institute of Applied Physics Russian Academy of Sciences, 46 Ulyanov Street, Nizhniy Novgorod, 603950, Russia
| | - Vladimir Y. Zaitsev
- Institute of Applied Physics Russian Academy of Sciences, 46 Ulyanov Street, Nizhniy Novgorod, 603950, Russia
| | - Costel Flueraru
- National Research Council Canada, Information Communication Technology, 1200 Montreal Rd, Ottawa, K1A0R6, Canada
| | - I. Alex Vitkin
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, M5G 1L7, Canada
- University Health Network, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada
- University of Toronto, Department of Radiation Oncology, 150 College St, Toronto, M5S 3E2, Canada
| |
Collapse
|
18
|
Karrobi K, Tank A, Tabassum S, Pera V, Roblyer D. Diffuse and nonlinear imaging of multiscale vascular parameters for in vivo monitoring of preclinical mammary tumors. JOURNAL OF BIOPHOTONICS 2019; 12:e201800379. [PMID: 30706695 DOI: 10.1002/jbio.201800379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Diffuse optical imaging (DOI) techniques provide a wide-field or macro assessment of the functional tumor state and have shown substantial promise for monitoring treatment efficacy in cancer. Conversely, intravital microscopy provides a high-resolution view of the tumor state and has played a key role in characterizing treatment response in the preclinical setting. There has been little prior work in investigating how the macro and micro spatial scales can be combined to develop a more comprehensive and translational view of treatment response. To address this, a new multiscale preclinical imaging technique called diffuse and nonlinear imaging (DNI) was developed. DNI combines multiphoton microscopy with spatial frequency domain imaging (SFDI) to provide multiscale data sets of tumor microvascular architecture coregistered within wide-field hemodynamic maps. A novel method was developed to match the imaging depths of both modalities by utilizing informed SFDI spatial frequency selection. An in vivo DNI study of murine mammary tumors revealed multiscale relationships between tumor oxygen saturation and microvessel diameter, and tumor oxygen saturation and microvessel length (|Pearson's ρ| ≥ 0.5, P < 0.05). Going forward, DNI will be uniquely enabling for the investigation of multiscale relationships in tumors during treatment.
Collapse
Affiliation(s)
- Kavon Karrobi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Anup Tank
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Syeda Tabassum
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | - Vivian Pera
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
19
|
Orlova A, Sirotkina M, Smolina E, Elagin V, Kovalchuk A, Turchin I, Subochev P. Raster-scan optoacoustic angiography of blood vessel development in colon cancer models. PHOTOACOUSTICS 2019; 13:25-32. [PMID: 30555784 PMCID: PMC6275215 DOI: 10.1016/j.pacs.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
Raster-scan optoacoustic angiography at 532 nm wavelength with 50 μm lateral resolution at 2 mm diagnostic depth was used for quantitative characterization of neoangiogenesis in colon cancer models. Two tumor models of human colon adenocarcinoma (HT-29) and murine colon carcinoma (CT26) different in their histology and vascularization were compared. Tumors of both origins showed an inhomogeneous distribution of areas with high and low vascularization. Rapidly growing CT26 tumor demonstrated a higher rate of vessel growth from the periphery to the center. Peculiarities of the vascularity of tumor models revealed by optoacoustic imaging were confirmed by fluorescent microscopy with FITC-dextran and morphological analysis. The obtained results may be important for the investigation of tumor development and for improvement of colon cancer treatment strategies.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
- Corresponding author.
| | - Marina Sirotkina
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Ekaterina Smolina
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Vadim Elagin
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Andrey Kovalchuk
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Ilya Turchin
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Pavel Subochev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
20
|
Emerging Functional Imaging Biomarkers of Tumour Responses to Radiotherapy. Cancers (Basel) 2019; 11:cancers11020131. [PMID: 30678055 PMCID: PMC6407112 DOI: 10.3390/cancers11020131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Tumour responses to radiotherapy are currently primarily assessed by changes in size. Imaging permits non-invasive, whole-body assessment of tumour burden and guides treatment options for most tumours. However, in most tumours, changes in size are slow to manifest and can sometimes be difficult to interpret or misleading, potentially leading to prolonged durations of ineffective treatment and delays in changing therapy. Functional imaging techniques that monitor biological processes have the potential to detect tumour responses to treatment earlier and refine treatment options based on tumour biology rather than solely on size and staging. By considering the biological effects of radiotherapy, this review focusses on emerging functional imaging techniques with the potential to augment morphological imaging and serve as biomarkers of early response to radiotherapy.
Collapse
|
21
|
Demidov V, Zhao X, Demidova O, Pang HYM, Flueraru C, Liu FF, Vitkin IA. Preclinical quantitative in-vivo assessment of skin tissue vascularity in radiation-induced fibrosis with optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 30315644 DOI: 10.1117/1.jbo.23.10.106003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/19/2018] [Indexed: 05/16/2023]
Abstract
Radiation therapy (RT) is widely and effectively used for cancer treatment but can also cause deleterious side effects, such as a late-toxicity complication called radiation-induced fibrosis (RIF). Accurate diagnosis of RIF requires analysis of histological sections to assess extracellular matrix infiltration. This is invasive, prone to sampling limitations, and thus rarely used; instead, current practice relies on subjective clinical surrogates, including visual observation, palpation, and patient symptomatology questionnaires. This preclinical study demonstrates that functional optical coherence tomography (OCT) is a useful tool for objective noninvasive in-vivo assessment and quantification of fibrosis-associated microvascular changes in tissue. Data were collected from murine hind limbs 6 months after 40-Gy single-dose irradiation and compared with nonirradiated contralateral tissues of the same animals. OCT-derived vascular density and average vessel diameter metrics were compared to quantitative vascular analysis of stained histological slides. Results indicate that RIF manifests significant microvascular changes at this time point posttreatment. Abnormal microvascular changes visualized by OCT in this preclinical setting suggest the potential of this label-free high-resolution noninvasive functional imaging methodology for RIF diagnosis and assessment in the context of clinical RT.
Collapse
Affiliation(s)
- Valentin Demidov
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Toronto, Canada
| | - Xiao Zhao
- University of Toronto, Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine, To, Canada
| | - Olga Demidova
- Seneca College, Department of Arts and Science, Toronto, Canada
| | - Hilary Y M Pang
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Toronto, Canada
| | - Costel Flueraru
- National Research Council Canada, Information Communication Technology, Ottawa, Canada
| | - Fei-Fei Liu
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Toronto, Canada
- University of Toronto, Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine, To, Canada
- University Health Network, Princess Margaret Cancer Centre, Toronto, Canada
| | - I Alex Vitkin
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Toronto, Canada
- University Health Network, Princess Margaret Cancer Centre, Toronto, Canada
- University of Toronto, Department of Radiation Oncology, Faculty of Medicine, Toronto, Canada
| |
Collapse
|
22
|
Jelvehgaran P, de Bruin DM, Salguero FJ, Borst GR, Song JY, van Leeuwen TG, de Boer JF, Alderliesten T, van Herk M. Feasibility of using optical coherence tomography to detect acute radiation-induced esophageal damage in small animal models. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-12. [PMID: 29651825 DOI: 10.1117/1.jbo.23.4.046004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/26/2018] [Indexed: 05/25/2023]
Abstract
Lung cancer survival is poor, and radiation therapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to acute radiation-induced esophageal damage (ARIED). We investigated the feasibility of optical coherence tomography (OCT) for minimally invasive imaging of the esophagus with high resolution (10 μm) to detect ARIED in mice. Thirty mice underwent cone-beam computed tomography imaging for initial setup assessment and dose planning followed by a single-dose delivery of 4.0, 10.0, 16.0, and 20.0 Gy on 5.0-mm spots, spaced 10.0 mm apart in the esophagus. They were repeatedly imaged using OCT up to three months postirradiation. We compared OCT findings with histopathology obtained three months postirradiation qualitatively and quantitatively using the contrast-to-background-noise ratio (CNR). Histopathology mostly showed inflammatory infiltration and edema at higher doses; OCT findings were in agreement with most of the histopathological reports. We were able to identify the ARIED on OCT as a change in tissue scattering and layer thickness. Our statistical analysis showed significant difference between the CNR values of healthy tissue, edema, and inflammatory infiltration. Overall, the average CNR for inflammatory infiltration and edema damages was 1.6-fold higher and 1.6-fold lower than for the healthy esophageal wall, respectively. Our results showed the potential role of OCT to detect and monitor the ARIED in mice, which may translate to humans.
Collapse
Affiliation(s)
- Pouya Jelvehgaran
- Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Academic Medical Center, Department of Radiation Oncology, Amsterdam, The Netherlands
- Institute for Laser Life and Biophotonics Amsterdam, Department of Physics and Astronomy, Amsterdam, The Netherlands
| | - Daniel Martijn de Bruin
- Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Academic Medical Center, Department of Urology, Amsterdam, The Netherlands
| | - F Javier Salguero
- The Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam, The Netherlands
| | - Gerben Roelof Borst
- The Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam, The Netherlands
| | - Ji-Ying Song
- The Netherlands Cancer Institute, Department of Experimental Animal Pathology, Amsterdam, The Netherlands
| | - Ton G van Leeuwen
- Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Johannes F de Boer
- Institute for Laser Life and Biophotonics Amsterdam, Department of Physics and Astronomy, Amsterdam, The Netherlands
| | - Tanja Alderliesten
- Academic Medical Center, Department of Radiation Oncology, Amsterdam, The Netherlands
| | - Marcel van Herk
- Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- University of Manchester, Institute of Cancer Sciences, Manchester, United Kingdom
| |
Collapse
|