1
|
Jia X, Lin L, Guo S, Zhou L, Jin G, Dong J, Xiao J, Xie X, Li Y, He S, Wei Z, Yu C. CLASP-mediated competitive binding in protein condensates directs microtubule growth. Nat Commun 2024; 15:6509. [PMID: 39095354 PMCID: PMC11297316 DOI: 10.1038/s41467-024-50863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Microtubule organization in cells relies on targeting mechanisms. Cytoplasmic linker proteins (CLIPs) and CLIP-associated proteins (CLASPs) are key regulators of microtubule organization, yet the underlying mechanisms remain elusive. Here, we reveal that the C-terminal domain of CLASP2 interacts with a common motif found in several CLASP-binding proteins. This interaction drives the dynamic localization of CLASP2 to distinct cellular compartments, where CLASP2 accumulates in protein condensates at the cell cortex or the microtubule plus end. These condensates physically contact each other via CLASP2-mediated competitive binding, determining cortical microtubule targeting. The phosphorylation of CLASP2 modulates the dynamics of the condensate-condensate interaction and spatiotemporally navigates microtubule growth. Moreover, we identify additional CLASP-interacting proteins that are involved in condensate contacts in a CLASP2-dependent manner, uncovering a general mechanism governing microtubule targeting. Our findings not only unveil a tunable multiphase system regulating microtubule organization, but also offer general mechanistic insights into intricate protein-protein interactions at the mesoscale level.
Collapse
Affiliation(s)
- Xuanyan Jia
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, 518055, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Leishu Lin
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, 518055, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Siqi Guo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lulu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Gaowei Jin
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiayuan Dong
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, 518055, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jinman Xiao
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xingqiao Xie
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, 518055, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Sicong He
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhiyi Wei
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, 518055, China.
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Cong Yu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Ramella M, Ribolla LM, Surini S, Sala K, Tonoli D, Cioni JM, Rai AK, Pelkmans L, de Curtis I. Dual specificity kinase DYRK3 regulates cell migration by influencing the stability of protrusions. iScience 2024; 27:109440. [PMID: 38510137 PMCID: PMC10952033 DOI: 10.1016/j.isci.2024.109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Plasma membrane-associated platforms (PMAPs) form at specific sites of plasma membrane by scaffolds including ERC1 and Liprin-α1. We identify a mechanism regulating PMAPs assembly, with consequences on motility/invasion. Silencing Ser/Thr kinase DYRK3 in invasive breast cancer cells inhibits their motility and invasive capacity. Similar effects on motility were observed by increasing DYRK3 levels, while kinase-dead DYRK3 had limited effects. DYRK3 overexpression inhibits PMAPs formation and has negative effects on stability of lamellipodia and adhesions in migrating cells. Liprin-α1 depletion results in unstable lamellipodia and impaired cell motility. DYRK3 causes increased Liprin-α1 phosphorylation. Increasing levels of Liprin-α1 rescue the inhibitory effects of DYRK3 on cell spreading, suggesting that an equilibrium between Liprin-α1 and DYRK3 levels is required for lamellipodia stability and tumor cell motility. Our results show that DYRK3 is relevant to tumor cell motility, and identify a PMAP target of the kinase, highlighting a new mechanism regulating cell edge dynamics.
Collapse
Affiliation(s)
- Martina Ramella
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lucrezia Maria Ribolla
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Surini
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Kristyna Sala
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diletta Tonoli
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jean-Michel Cioni
- RNA Biology of the Neuron Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Arpan Kumar Rai
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ivan de Curtis
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
3
|
Pehkonen H, Filippou A, Väänänen J, Lindfors I, Vänttinen M, Ianevski P, Mäkelä A, Munne P, Klefström J, Toppila‐Salmi S, Grénman R, Hagström J, Mäkitie AA, Karhemo P, Monni O. Liprin-α1 contributes to oncogenic MAPK signaling by counteracting ERK activity. Mol Oncol 2024; 18:662-676. [PMID: 38264964 PMCID: PMC10920090 DOI: 10.1002/1878-0261.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
PTPRF interacting protein alpha 1 (PPFIA1) encodes for liprin-α1, a member of the leukocyte common antigen-related protein tyrosine phosphatase (LAR-RPTPs)-interacting protein family. Liprin-α1 localizes to adhesive and invasive structures in the periphery of cancer cells, where it modulates migration and invasion in head and neck squamous cell carcinoma (HNSCC) and breast cancer. To study the possible role of liprin-α1 in anticancer drug responses, we screened a library of oncology compounds in cell lines with high endogenous PPFIA1 expression. The compounds with the highest differential responses between high PPFIA1-expressing and silenced cells across cell lines were inhibitors targeting mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinases (ERK) signaling. KRAS proto-oncogene, GTPase (KRAS)-mutated MDA-MB-231 cells were more resistant to trametinib upon PPFIA1 knockdown compared with control cells. In contrast, liprin-α1-depleted HNSCC cells with low RAS activity showed a context-dependent response to MEK/ERK inhibitors. Importantly, we showed that liprin-α1 depletion leads to increased p-ERK1/2 levels in all our studied cell lines independent of KRAS mutational status, suggesting a role of liprin-α1 in the regulation of MAPK oncogenic signaling. Furthermore, liprin-α1 depletion led to more pronounced redistribution of RAS proteins to the cell membrane. Our data suggest that liprin-α1 is an important contributor to oncogenic RAS/MAPK signaling, and the status of liprin-α1 may assist in predicting drug responses in cancer cells in a context-dependent manner.
Collapse
Affiliation(s)
- Henna Pehkonen
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Artemis Filippou
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Juho Väänänen
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Iida Lindfors
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Mira Vänttinen
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Philipp Ianevski
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiFinland
| | - Anne Mäkelä
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Pauliina Munne
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical FacultyUniversity of HelsinkiFinland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical FacultyUniversity of HelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Sanna Toppila‐Salmi
- Skin and Allergy HospitalHelsinki University Hospital and University of HelsinkiFinland
- Department of Otorhinolaryngology, Kuopio University Hospital and School of Medicine, Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
| | - Reidar Grénman
- Department of Otorhinolaryngology‐Head and Neck SurgeryUniversity of Turku and Turku University HospitalFinland
| | - Jaana Hagström
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalFinland
- Institute of DentistryUniversity of TurkuFinland
| | - Antti A. Mäkitie
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
- Department of Otorhinolaryngology‐Head and Neck Surgery, Research Program in Systems OncologyUniversity of Helsinki and Helsinki University HospitalFinland
| | - Piia‐Riitta Karhemo
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
- Department of Oncology, Faculty of MedicineUniversity of HelsinkiFinland
| |
Collapse
|
4
|
Ribolla LM, Sala K, Tonoli D, Ramella M, Bracaglia L, Bonomo I, Gonnelli L, Lamarca A, Brindisi M, Pierattelli R, Provenzani A, de Curtis I. Interfering with the ERC1-LL5β interaction disrupts plasma membrane-Associated platforms and affects tumor cell motility. PLoS One 2023; 18:e0287670. [PMID: 37437062 DOI: 10.1371/journal.pone.0287670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/10/2023] [Indexed: 07/14/2023] Open
Abstract
Cell migration requires a complex array of molecular events to promote protrusion at the front of motile cells. The scaffold protein LL5β interacts with the scaffold ERC1, and recruits it at plasma membrane-associated platforms that form at the front of migrating tumor cells. LL5 and ERC1 proteins support protrusion during migration as shown by the finding that depletion of either endogenous protein impairs tumor cell motility and invasion. In this study we have tested the hypothesis that interfering with the interaction between LL5β and ERC1 may be used to interfere with the function of the endogenous proteins to inhibit tumor cell migration. For this, we identified ERC1(270-370) and LL5β(381-510) as minimal fragments required for the direct interaction between the two proteins. The biochemical characterization demonstrated that the specific regions of the two proteins, including predicted intrinsically disordered regions, are implicated in a reversible, high affinity direct heterotypic interaction. NMR spectroscopy further confirmed the disordered nature of the two fragments and also support the occurrence of interaction between them. We tested if the LL5β protein fragment interferes with the formation of the complex between the two full-length proteins. Coimmunoprecipitation experiments showed that LL5β(381-510) hampers the formation of the complex in cells. Moreover, expression of either fragment is able to specifically delocalize endogenous ERC1 from the edge of migrating MDA-MB-231 tumor cells. Coimmunoprecipitation experiments show that the ERC1-binding fragment of LL5β interacts with endogenous ERC1 and interferes with the binding of endogenous ERC1 to full length LL5β. Expression of LL5β(381-510) affects tumor cell motility with a reduction in the density of invadopodia and inhibits transwell invasion. These results provide a proof of principle that interfering with heterotypic intermolecular interactions between components of plasma membrane-associated platforms forming at the front of tumor cells may represent a new approach to inhibit cell invasion.
Collapse
Affiliation(s)
- Lucrezia Maria Ribolla
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milano, Italy
| | - Kristyna Sala
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milano, Italy
| | - Diletta Tonoli
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milano, Italy
| | - Martina Ramella
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milano, Italy
| | - Lorenzo Bracaglia
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Isabelle Bonomo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Leonardo Gonnelli
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Andrea Lamarca
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milano, Italy
| | - Matteo Brindisi
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milano, Italy
| | - Roberta Pierattelli
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Ivan de Curtis
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
5
|
Clements CM, Henen MA, Vögeli B, Shellman YG. The Structural Dynamics, Complexity of Interactions, and Functions in Cancer of Multi-SAM Containing Proteins. Cancers (Basel) 2023; 15:3019. [PMID: 37296980 PMCID: PMC10252437 DOI: 10.3390/cancers15113019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
SAM domains are crucial mediators of diverse interactions, including those important for tumorigenesis or metastasis of cancers, and thus SAM domains can be attractive targets for developing cancer therapies. This review aims to explore the literature, especially on the recent findings of the structural dynamics, regulation, and functions of SAM domains in proteins containing more than one SAM (multi-SAM containing proteins, MSCPs). The topics here include how intrinsic disorder of some SAMs and an additional SAM domain in MSCPs increase the complexity of their interactions and oligomerization arrangements. Many similarities exist among these MSCPs, including their effects on cancer cell adhesion, migration, and metastasis. In addition, they are all involved in some types of receptor-mediated signaling and neurology-related functions or diseases, although the specific receptors and functions vary. This review also provides a simple outline of methods for studying protein domains, which may help non-structural biologists to reach out and build new collaborations to study their favorite protein domains/regions. Overall, this review aims to provide representative examples of various scenarios that may provide clues to better understand the roles of SAM domains and MSCPs in cancer in general.
Collapse
Affiliation(s)
- Christopher M. Clements
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.A.H.); (B.V.)
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.A.H.); (B.V.)
| | - Yiqun G. Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Charles C. Gates Regenerative Medicine and Stem Cell Biology Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Ripamonti M, Lamarca A, Davey NE, Tonoli D, Surini S, de Curtis I. A functional interaction between liprin-α1 and B56γ regulatory subunit of protein phosphatase 2A supports tumor cell motility. Commun Biol 2022; 5:1025. [PMID: 36171301 PMCID: PMC9519923 DOI: 10.1038/s42003-022-03989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Scaffold liprin-α1 is required to assemble dynamic plasma membrane-associated platforms (PMAPs) at the front of migrating breast cancer cells, to promote protrusion and invasion. We show that the N-terminal region of liprin-α1 contains an LxxIxE motif interacting with B56 regulatory subunits of serine/threonine protein phosphatase 2A (PP2A). The specific interaction of B56γ with liprin-α1 requires an intact motif, since two point mutations strongly reduce the interaction. B56γ mediates the interaction of liprin-α1 with the heterotrimeric PP2A holoenzyme. Most B56γ protein is recovered in the cytosolic fraction of invasive MDA-MB-231 breast cancer cells, where B56γ is complexed with liprin-α1. While mutation of the short linear motif (SLiM) does not affect localization of liprin-α1 to PMAPs, localization of B56γ at these sites specifically requires liprin-α1. Silencing of B56γ or liprin-α1 inhibits to similar extent cell spreading on extracellular matrix, invasion, motility and lamellipodia dynamics in migrating MDA-MB-231 cells, suggesting that B56γ/PP2A is a novel component of the PMAPs machinery regulating tumor cell motility. In this direction, inhibition of cell spreading by silencing liprin-α1 is not rescued by expression of B56γ binding-defective liprin-α1 mutant. We propose that liprin-α1-mediated recruitment of PP2A via B56γ regulates cell motility by controlling protrusion in migrating MDA-MB-231 cells.
Collapse
Affiliation(s)
- Marta Ripamonti
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Andrea Lamarca
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Diletta Tonoli
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Sara Surini
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Ivan de Curtis
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
8
|
Luo M, Cai G, Ho KKY, Wen K, Tong Z, Deng L, Liu AP. Compression enhances invasive phenotype and matrix degradation of breast Cancer cells via Piezo1 activation. BMC Mol Cell Biol 2022; 23:1. [PMID: 34979904 PMCID: PMC8722159 DOI: 10.1186/s12860-021-00401-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Uncontrolled growth in solid breast cancer generates mechanical compression that may drive the cancer cells into a more invasive phenotype, but little is known about how such compression affects the key events and corresponding regulatory mechanisms associated with invasion of breast cancer cells including cellular behaviors and matrix degradation. Results Here we show that compression enhanced invasion and matrix degradation of breast cancer cells. We also identified Piezo1 as the putative mechanosensitive cellular component that transmitted compression to not only enhance the invasive phenotype, but also induce calcium influx and downstream Src signaling. Furthermore, we demonstrated that Piezo1 was mainly localized in caveolae, and both Piezo1 expression and compression-enhanced invasive phenotype of the breast cancer cells were reduced when caveolar integrity was compromised by either knocking down caveolin1 expression or depleting cholesterol content. Conclusions Taken together, our data indicate that mechanical compression activates Piezo1 channels to mediate enhanced breast cancer cell invasion, which involves both cellular events and matrix degradation. This may be a critical mechanotransduction pathway during breast cancer metastasis, and thus potentially a novel therapeutic target for the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00401-6.
Collapse
Affiliation(s)
- Mingzhi Luo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Present address: Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Kang Wen
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China
| | - Zhaowen Tong
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China.
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Applied Physics Program, University of Michigan, Ann Arbor, MI, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Liprins in oncogenic signaling and cancer cell adhesion. Oncogene 2021; 40:6406-6416. [PMID: 34654889 PMCID: PMC8602034 DOI: 10.1038/s41388-021-02048-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Liprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.
Collapse
|
10
|
Ramella M, Ribolla LM, de Curtis I. Liquid-Liquid Phase Separation at the Plasma Membrane-Cytosol Interface: Common Players in Adhesion, Motility, and Synaptic Function. J Mol Biol 2021; 434:167228. [PMID: 34487789 DOI: 10.1016/j.jmb.2021.167228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/09/2023]
Abstract
Networks of scaffold proteins and enzymes assemble at the interface between the cytosol and specific sites of the plasma membrane, where these networks guide distinct cellular functions. Some of these plasma membrane-associated platforms (PMAPs) include shared core components that are able to establish specific protein-protein interactions, to produce distinct supramolecular assemblies regulating dynamic processes as diverse as cell adhesion and motility, or the formation and function of neuronal synapses. How cells organize such dynamic networks is still an open question. In this review we introduce molecular networks assembling at the edge of migrating cells, and at pre- and postsynaptic sites, which share molecular players that can drive the assembly of biomolecular condensates. Very recent experimental evidence has highlighted the emerging role of some of these multidomain/scaffold proteins belonging to the GIT, liprin-α and ELKS/ERC families as drivers of liquid-liquid phase separation (LLPS). The data point to an important role of LLPS: (i) in the formation of PMAPs at the edge of migrating cells, where LLPS appears to be involved in promoting protrusion and the turnover of integrin-mediated adhesions, to allow forward cell translocation; (ii) in the assembly of the presynaptic active zone and of the postsynaptic density deputed to the release and reception of neurotransmitter signals, respectively. The recent results indicate that LLPS at cytosol-membrane interfaces is suitable not only for the regulation of active cellular processes, but also for the continuous spatial rearrangements of the molecular interactions involved in these dynamic processes.
Collapse
Affiliation(s)
- Martina Ramella
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milano, Italy.
| | - Lucrezia Maria Ribolla
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milano, Italy.
| | - Ivan de Curtis
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milano, Italy.
| |
Collapse
|
11
|
Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux. Neurotherapeutics 2021; 18:2040-2060. [PMID: 34235635 PMCID: PMC8609074 DOI: 10.1007/s13311-021-01079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/04/2023] Open
Abstract
Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, 420111, Kazan, Russia
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, 420012, Kazan, Russia
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
12
|
Regulation of invadosomes by microtubules: Not only a matter of railways. Eur J Cell Biol 2020; 99:151109. [DOI: 10.1016/j.ejcb.2020.151109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
|
13
|
Progranulin/EphA2 axis: A novel oncogenic mechanism in bladder cancer. Matrix Biol 2020; 93:10-24. [PMID: 32417448 DOI: 10.1016/j.matbio.2020.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/12/2023]
Abstract
The growth factor progranulin plays a critical role in bladder cancer by modulating tumor cell motility and invasion. Progranulin regulates remodeling of the actin cytoskeleton by interacting with drebrin, an actin binding protein that regulates tumor growth. We previously discovered that progranulin depletion inhibits epithelial-to-mesenchymal transition and markedly reduces in vivo tumor growth. Moreover, progranulin depletion sensitizes urothelial cancer cells to cisplatin treatment, further substantiating a pro-survival function of progranulin. Until recently, the progranulin signaling receptor remained unidentified, precluding a full understanding of progranulin action in tumor cell biology. We recently identified EphA2, a member of a large family of receptor tyrosine-kinases, as the functional receptor for progranulin. However, it is not established whether EphA2 plays an oncogenic role in bladder cancer. Here we demonstrate that progranulin, and not ephrin-A1, the canonical ligand for EphA2, is the predominant EphA2 ligand in bladder cancer. Progranulin evoked Akt- and Erk1/2-mediated EphA2 phosphorylation at Ser897, which could drive bladder tumorigenesis. We discovered that EphA2 depletion severely blunted progranulin-dependent motility and anchorage-independent growth, and sensitized bladder cancer cells to cisplatin treatment. We further defined the mechanisms of progranulin/EphA2-dependent motility by identifying liprin-α1 as a novel progranulin-dependent EphA2 interacting protein and establishing its critical role in cell motility. The discovery of EphA2 as the functional signaling receptor for progranulin and the identification of novel downstream effectors offer a new avenue for understanding the underlying mechanism of progranulin action and may constitute novel clinical and therapeutic targets in bladder cancer.
Collapse
|
14
|
Sala K, Corbetta A, Minici C, Tonoli D, Murray DH, Cammarota E, Ribolla L, Ramella M, Fesce R, Mazza D, Degano M, de Curtis I. The ERC1 scaffold protein implicated in cell motility drives the assembly of a liquid phase. Sci Rep 2019; 9:13530. [PMID: 31537859 PMCID: PMC6753080 DOI: 10.1038/s41598-019-49630-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Several cellular processes depend on networks of proteins assembled at specific sites near the plasma membrane. Scaffold proteins assemble these networks by recruiting relevant molecules. The scaffold protein ERC1/ELKS and its partners promote cell migration and invasion, and assemble into dynamic networks at the protruding edge of cells. Here by electron microscopy and single molecule analysis we identify ERC1 as an extended flexible dimer. We found that ERC1 scaffolds form cytoplasmic condensates with a behavior that is consistent with liquid phases that are modulated by a predicted disordered region of ERC1. These condensates specifically host partners of a network relevant to cell motility, including liprin-α1, which was unnecessary for the formation of condensates, but influenced their dynamic behavior. Phase separation at specific sites of the cell periphery may represent an elegant mechanism to control the assembly and turnover of dynamic scaffolds needed for the spatial localization and processing of molecules.
Collapse
Affiliation(s)
- Kristyna Sala
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132, Milano, Italy
| | - Agnese Corbetta
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132, Milano, Italy
| | - Claudia Minici
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132, Milano, Italy
| | - Diletta Tonoli
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132, Milano, Italy
| | - David H Murray
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Eugenia Cammarota
- Experimental Imaging Center, San Raffaele Scientific Institute, 20132, Milano, Italy
- Fondazione CEN, European Center for Nanomedicine, 20133, Milano, Italy
| | - Lucrezia Ribolla
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132, Milano, Italy
| | - Martina Ramella
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132, Milano, Italy
| | | | - Davide Mazza
- Experimental Imaging Center, San Raffaele Scientific Institute, 20132, Milano, Italy
- Fondazione CEN, European Center for Nanomedicine, 20133, Milano, Italy
| | - Massimo Degano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132, Milano, Italy
| | - Ivan de Curtis
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132, Milano, Italy.
| |
Collapse
|
15
|
Liprin-α1 modulates cancer cell signaling by transmembrane protein CD82 in adhesive membrane domains linked to cytoskeleton. Cell Commun Signal 2018; 16:41. [PMID: 30005669 PMCID: PMC6045882 DOI: 10.1186/s12964-018-0253-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Background PPFIA1 is located at the 11q13 region commonly amplified in cancer. The protein liprin-α1 encoded by PPF1A1 contributes to the adhesive and invasive structures of cytoskeletal elements and is located at the invadosomes in cancer cells. However, the precise mechanism of liprin-α1 function in cancer progression has remained elusive. Methods Invasion regulating activity of liprin-α1 was examined by analyzing the functions of squamous cell carcinoma of head and neck (HNSCC) cell lines in three-dimensional collagen I after RNAi mediated gene knockdown. Transcriptome profiling and Gene Set Enrichment Analysis from HNSCC and breast cancer cells were used to identify expression changes relevant to specific cellular localizations, biological processes and signaling pathways after PPFIA1 knockdown. The significance of the results was assessed by relevant statistical methods (Wald and Benjamini-Hochberg). Localization of proteins associated to liprin-α1 was studied by immunofluorescence in 2D and 3D conditions. The association of PPFIA1 amplification to HNSCC patient survival was explored using The Cancer Genome Atlas data. Results In this study, we show that liprin-α1 regulates biological processes related to membrane microdomains in breast carcinoma, as well as protein trafficking, cell-cell and cell-substrate contacts in HNSCC cell lines cultured in three-dimensional matrix. Importantly, we show that in all these cancer cells liprin-α1 knockdown leads to the upregulation of transmembrane protein CD82, which is a suppressor of metastasis in several solid tumors. Conclusions Our results provide novel information regarding the function of liprin-α1 in biological processes essential in cancer progression. The results reveal liprin-α1 as a novel regulator of CD82, linking liprin-α1 to the cancer cell invasion and metastasis pathways. Electronic supplementary material The online version of this article (10.1186/s12964-018-0253-y) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone. Int J Mol Sci 2018; 19:ijms19040984. [PMID: 29587415 PMCID: PMC5979552 DOI: 10.3390/ijms19040984] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Osteoclasts form a specialized cell-matrix adhesion structure, known as the "sealing zone", during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the "podosome belt". Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone.
Collapse
|