1
|
Ruggiero RN, Marques DB, Rossignoli MT, De Ross JB, Prizon T, Beraldo IJS, Bueno-Junior LS, Kandratavicius L, Peixoto-Santos JE, Lopes-Aguiar C, Leite JP. Dysfunctional hippocampal-prefrontal network underlies a multidimensional neuropsychiatric phenotype following early-life seizure. eLife 2024; 12:RP90997. [PMID: 38593008 PMCID: PMC11003745 DOI: 10.7554/elife.90997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Brain disturbances during development can have a lasting impact on neural function and behavior. Seizures during this critical period are linked to significant long-term consequences such as neurodevelopmental disorders, cognitive impairments, and psychiatric symptoms, resulting in a complex spectrum of multimorbidity. The hippocampus-prefrontal cortex (HPC-PFC) circuit emerges as a potential common link between such disorders. However, the mechanisms underlying these outcomes and how they relate to specific behavioral alterations are unclear. We hypothesized that specific dysfunctions of hippocampal-cortical communication due to early-life seizure would be associated with distinct behavioral alterations observed in adulthood. Here, we performed a multilevel study to investigate behavioral, electrophysiological, histopathological, and neurochemical long-term consequences of early-life Status epilepticus in male rats. We show that adult animals submitted to early-life seizure (ELS) present working memory impairments and sensorimotor disturbances, such as hyperlocomotion, poor sensorimotor gating, and sensitivity to psychostimulants despite not exhibiting neuronal loss. Surprisingly, cognitive deficits were linked to an aberrant increase in the HPC-PFC long-term potentiation (LTP) in a U-shaped manner, while sensorimotor alterations were associated with heightened neuroinflammation, as verified by glial fibrillary acidic protein (GFAP) expression, and altered dopamine neurotransmission. Furthermore, ELS rats displayed impaired HPC-PFC theta-gamma coordination and an abnormal brain state during active behavior resembling rapid eye movement (REM) sleep oscillatory dynamics. Our results point to impaired HPC-PFC functional connectivity as a possible pathophysiological mechanism by which ELS can cause cognitive deficits and psychiatric-like manifestations even without neuronal loss, bearing translational implications for understanding the spectrum of multidimensional developmental disorders linked to early-life seizures.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Jana Batista De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Ikaro Jesus Silva Beraldo
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | | | | | - Jose Eduardo Peixoto-Santos
- Neuroscience Discipline, Department of Neurology and Neurosurgery,Universidade Federal de São PauloSão PauloBrazil
| | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | - Joao Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| |
Collapse
|
2
|
Spero V, Paladini MS, Brivio P, Riva MA, Calabrese F, Molteni R. Altered responsiveness of the antioxidant system in chronically stressed animals: modulation by chronic lurasidone treatment. Psychopharmacology (Berl) 2022; 239:2547-2557. [PMID: 35459959 PMCID: PMC9294027 DOI: 10.1007/s00213-022-06140-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Although the occurrence of stressful events is very common during life, their impact may be different depending on the experience severity and duration. Specifically, acute challenges may trigger adaptive responses and even improve the individual's performance. However, such a physiological positive coping can only take place if the underlying molecular mechanisms are properly functioning. Indeed, if these systems are compromised by genetic factors or previous adverse conditions, the response set in motion by an acute challenge may be maladaptive and even cause the insurgence or the relapse of stress-related psychiatric disorders. OBJECTIVES On these bases, we evaluated in the rat brain the role of the antioxidant component of the redox machinery on the acute stress responsiveness and its modulation by potential detrimental or beneficial events. METHODS The expression of several antioxidant enzymes was assessed in different brain areas of adult male rats exposed to acute stress 3 weeks after a chronic immobilization paradigm with or without a concomitant treatment with the antipsychotic lurasidone. RESULTS The acute challenge was able to trigger a marked antioxidant response that, despite the washout period, was impaired by the previous adverse experience and restored by lurasidone in an anatomical-specific manner. CONCLUSIONS We found that a working antioxidant machinery takes part in acute stress response and may be differentially affected by other experiences. Given the essential role of stress responsiveness in almost every life process, the identification of the underlying mechanisms and their potential pharmacological modulation add further translational value to our data.
Collapse
Affiliation(s)
- Vittoria Spero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy ,Present Address: Department of Physical Therapy and Rehabilitation Science; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA USA
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
3
|
Ruggiero RN, Rossignoli MT, Marques DB, de Sousa BM, Romcy-Pereira RN, Lopes-Aguiar C, Leite JP. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders. Front Cell Neurosci 2021; 15:732360. [PMID: 34707481 PMCID: PMC8542677 DOI: 10.3389/fncel.2021.732360] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023] Open
Abstract
The hippocampus-prefrontal cortex (HPC-PFC) pathway plays a fundamental role in executive and emotional functions. Neurophysiological studies have begun to unveil the dynamics of HPC-PFC interaction in both immediate demands and long-term adaptations. Disruptions in HPC-PFC functional connectivity can contribute to neuropsychiatric symptoms observed in mental illnesses and neurological conditions, such as schizophrenia, depression, anxiety disorders, and Alzheimer's disease. Given the role in functional and dysfunctional physiology, it is crucial to understand the mechanisms that modulate the dynamics of HPC-PFC communication. Two of the main mechanisms that regulate HPC-PFC interactions are synaptic plasticity and modulatory neurotransmission. Synaptic plasticity can be investigated inducing long-term potentiation or long-term depression, while spontaneous functional connectivity can be inferred by statistical dependencies between the local field potentials of both regions. In turn, several neurotransmitters, such as acetylcholine, dopamine, serotonin, noradrenaline, and endocannabinoids, can regulate the fine-tuning of HPC-PFC connectivity. Despite experimental evidence, the effects of neuromodulation on HPC-PFC neuronal dynamics from cellular to behavioral levels are not fully understood. The current literature lacks a review that focuses on the main neurotransmitter interactions with HPC-PFC activity. Here we reviewed studies showing the effects of the main neurotransmitter systems in long- and short-term HPC-PFC synaptic plasticity. We also looked for the neuromodulatory effects on HPC-PFC oscillatory coordination. Finally, we review the implications of HPC-PFC disruption in synaptic plasticity and functional connectivity on cognition and neuropsychiatric disorders. The comprehensive overview of these impairments could help better understand the role of neuromodulation in HPC-PFC communication and generate insights into the etiology and physiopathology of clinical conditions.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Monteiro de Sousa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Does circadian rhythm disruption during their early development have lasting effects on cognition of the elder rats? Neuroreport 2021; 31:544-550. [PMID: 32282585 DOI: 10.1097/wnr.0000000000001443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to investigate the changes in learning and memory after chronic circadian disruption followed by a long period of circadian recovery. MATERIALS AND METHODS Eleven adult male spontaneously hypertensive rats were randomly divided into control group, 12-h light/12-h dark circadian disruption group (12L/12D) and 6-h light/6-h dark circadian disruption group (6L/6D). Rats in control group remained under the original 12-h light/12-h dark cycle throughout the experiment; rats in the 12L/12D group were exposed to 12-h light/12-h dark cycle with light-dark order changed every 3 days; rats in the 6L/6D group were exposed to 6-h light/6-h dark cycle. The disruption period continued for 18 weeks. Then after 8 weeks and 32 weeks of circadian re-entrainment, all animals were tested by Morris Water Maze (MWM), respectively, followed by an MRI examination. RESULTS Rats in the 12L/12D group demonstrated longer escape latency and swim distance in the MWM test than rats in the other two groups (P < 0.05). The MRI results showed volume% reduction and concentration% decrease of brain regions in the two circadian disruptive groups, while the changes were more significant and comprehensive in the 12L/12D group (P < 0.05). CONCLUSIONS Circadian disruption during early life accelerates cognition decline in later life in rats. Frequent light-dark order shift is more harmful.
Collapse
|
5
|
Mantanona CP, Božič T, Chudasama Y, Robbins TW, Dalley JW, Alsiö J, Pienaar IS. Dissociable contributions of mediodorsal and anterior thalamic nuclei in visual attentional performance: A comparison using nicotinic and muscarinic cholinergic receptor antagonists. J Psychopharmacol 2020; 34:1371-1381. [PMID: 33103560 PMCID: PMC7708668 DOI: 10.1177/0269881120965880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Thalamic subregions mediate various cognitive functions, including attention, inhibitory response control and decision making. Such neuronal activity is modulated by cholinergic thalamic afferents and deterioration of such modulatory signaling has been theorised to contribute to cognitive decline in neurodegenerative disorders. However, the thalamic subnuclei and cholinergic receptors involved in cognitive functioning remain largely unknown. AIMS We investigated whether muscarinic or nicotinic receptors in the mediodorsal thalamus and anterior thalamus contribute to rats' performance in the five-choice serial reaction time task, which measures sustained visual attention and impulsive action. METHODS Male Long-Evans rats were trained in the five-choice serial reaction time task then surgically implanted with guide cannulae targeting either the mediodorsal thalamus or anterior thalamus. Reversible inactivation of either the mediodorsal thalamus or anterior thalamus were achieved with infusions of the γ-aminobutyric acid-ergic agonists muscimol and baclofen prior to behavioural assessment. To investigate cholinergic mechanisms, we also assessed the behavioural effects of locally administered nicotinic (mecamylamine) and muscarinic (scopolamine) receptor antagonists. RESULTS Reversible inactivation of the mediodorsal thalamus severely impaired discriminative accuracy and response speed and increased omissions. Inactivation of the anterior thalamus produced less profound effects, with impaired accuracy at the highest dose. In contrast, blocking cholinergic transmission in these regions did not significantly affect five-choice serial reaction time task performance. CONCLUSIONS/INTERPRETATIONS These findings show the mediodorsal thalamus plays a key role in visuospatial attentional performance that is independent of local cholinergic neurotransmission.
Collapse
Affiliation(s)
- Craig P Mantanona
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Tadej Božič
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Yogita Chudasama
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, USA
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK,Department of Psychiatry, Hershel Smith Building for Brain and Mind Sciences, Forvie Site, Cambridge, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Brighton, UK,Ilse S Pienaar, School of Life Sciences, University of Sussex, John Maynard Smith building, Brighton, Falmer BN1 9PH, UK.
| |
Collapse
|
6
|
De Looze C, Williamson W, Hirst R, O'Connor J, Knight S, McCrory C, Carey D, Kenny R. Impaired orthostatic heart rate recovery is associated with smaller thalamic volume: Results from The Irish Longitudinal Study on Aging (
TILDA
). Hum Brain Mapp 2020; 41:3370-3378. [PMID: 32352604 PMCID: PMC7375046 DOI: 10.1002/hbm.25022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022] Open
Abstract
The thalamus is a central hub of the autonomic network and thalamic volume has been associated with high‐risk phenotypes for sudden cardiac death. Heart rate response to physiological stressors (e.g., standing) and the associated recovery patterns provide reliable indicators of both autonomic function and cardiovascular risk. Here we examine if thalamic volume may be a risk marker for impaired heart rate recovery in response to orthostatic challenge. The Irish Longitudinal Study on Aging involves a nationally representative sample of older individuals aged ≥50 years. Multimodal brain magnetic resonance imaging and orthostatic heart rate recovery were available for a cross‐sectional sample of 430 participants. Multivariable regression and linear mixed‐effects models were adjusted for head size, age, sex, education, body mass index, blood pressure, history of cardiovascular diseases and events, cardiovascular medication, diabetes mellitus, smoking, alcohol intake, timed up‐and‐go (a measure of physical frailty), physical exercise and depression. Smaller thalamic volume was associated with slower heart rate recovery (−1.4 bpm per 1 cm3 thalamic volume, 95% CI −2.01 to −0.82; p < .001). In multivariable analysis, participants with smaller thalamic volumes had a mean heart rate recovery −2.7 bpm slower than participants with larger thalamic volumes (95% CI −3.89 to −1.61; p < .001). Covariates associated with smaller thalamic volume included age, history of diabetes, and heavy alcohol consumption. Thalamic volume may be an indicator of the structural integrity of the central autonomic network. It may be a clinical biomarker for stratification of individuals at risk of autonomic dysfunction, cardiovascular events, and sudden cardiac death.
Collapse
Affiliation(s)
- Céline De Looze
- The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin Dublin Ireland
| | - Wilby Williamson
- The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin Dublin Ireland
- Department of PhysiologyTrinity College Dublin Dublin Ireland
- Global Brain Health Institute, Trinity College Dublin Dublin Ireland
- Oxford Cardiovascular Clinical Research Facility Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of Oxford Oxford UK
| | - Rebecca Hirst
- The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin Dublin Ireland
- School of Psychology and Institute of Neuroscience, Trinity College Dublin Dublin Ireland
| | - John O'Connor
- The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin Dublin Ireland
| | - Silvin Knight
- The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin Dublin Ireland
| | - Cathal McCrory
- The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin Dublin Ireland
| | - Daniel Carey
- The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin Dublin Ireland
| | - Rose‐Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin Dublin Ireland
| |
Collapse
|
7
|
Loane C, Argyropoulos GPD, Roca-Fernández A, Lage C, Sheerin F, Ahmed S, Zamboni G, Mackay C, Irani SR, Butler CR. Hippocampal network abnormalities explain amnesia after VGKCC-Ab related autoimmune limbic encephalitis. J Neurol Neurosurg Psychiatry 2019; 90:965-974. [PMID: 31072956 PMCID: PMC6820158 DOI: 10.1136/jnnp-2018-320168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Limbic encephalitis associated with antibodies to components of the voltage-gated potassium channel complex (VGKCC-Ab-LE) often leads to hippocampal atrophy and persistent memory impairment. Its long-term impact on regions beyond the hippocampus, and the relationship between brain damage and cognitive outcome, are poorly understood. We investigated the nature of structural and functional brain abnormalities following VGKCC-Ab-LE and its role in residual memory impairment. METHOD A cross-sectional group study was conducted. Twenty-four VGKCC-Ab-LE patients (20 male, 4 female; mean (SD) age 63.86 (11.31) years) were recruited post-acutely along with age- and sex-matched healthy controls for neuropsychological assessment, structural MRI and resting-state functional MRI (rs-fMRI). Structural abnormalities were determined using volumetry and voxel-based morphometry; rs-fMRI data were analysed to investigate hippocampal functional connectivity (FC). Associations of memory performance with neuroimaging measures were examined. RESULTS Patients showed selective memory impairment. Structural analyses revealed focal hippocampal atrophy within the medial temporal lobes, correlative atrophy in the mediodorsal thalamus, and additional volume reduction in the posteromedial cortex. There was no association between regional volumes and memory performance. Instead, patients demonstrated reduced posteromedial cortico-hippocampal and inter-hippocampal FC, which correlated with memory scores (r = 0.553; r = 0.582, respectively). The latter declined as a function of time since the acute illness (r = -0.531). CONCLUSION VGKCC-Ab-LE results in persistent isolated memory impairment. Patients have hippocampal atrophy with further reduced mediodorsal thalamic and posteromedial cortical volumes. Crucially, reduced FC of remaining hippocampal tissue correlates more closely with memory function than does regional atrophy.
Collapse
Affiliation(s)
- Clare Loane
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Institute of Cognitive Neuroscience, University College London Medical School, London, UK
| | | | | | - Carmen Lage
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Unidad de Deterioro Cognitivo, Servicio de Neurología, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Fintan Sheerin
- Department of Neuroradiology, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Samrah Ahmed
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Giovanna Zamboni
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Clare Mackay
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
8
|
Karimani F, Delphi L, Rezayof A. Nitric oxide blockade in mediodorsal thalamus impaired nicotine/ethanol-induced memory retrieval in rats via inhibition of prefrontal cortical pCREB/CREB signaling pathway. Neurobiol Learn Mem 2019; 162:15-22. [PMID: 31047996 DOI: 10.1016/j.nlm.2019.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/17/2019] [Accepted: 04/28/2019] [Indexed: 11/17/2022]
Abstract
Reciprocal connections between the mediodorsal thalamic nucleus (MD) and the prefrontal cortex (PFC) are important for memory processes. Since the co-abuse of nicotine and ethanol affects memory formation, this study investigated the effect of nitric oxide inhibition in the MD on memory retrieval induced by co-administration of nicotine and ethanol. Subsequently, western blot analysis was used to evaluate how this change would alter the PFC pCREB/CREB signaling pathway. Male Wistar rats were bilaterally cannulated into the MD and the memory retrieval was measured by passive avoidance task. Intraperitoneal (i.p.) administration of ethanol (1 g/kg, i.p) 30 min before the test impaired memory retrieval and caused ethanol-induced amnesia. Subcutaneous (s.c.) administration of nicotine (0.05-0.2 mg/kg, s.c.) prevented ethanol-induced amnesia and improved memory retrieval. Intra-MD microinjection of a nitric oxide synthase (NOS) inhibitor, L-NAME (0.5-1 μg/rat) inhibited the improving effect of nicotine (0.2 mg/kg, s.c.) on ethanol-induced amnesia, while intra-MD microinjection of a precursor of nitric oxide, l-arginine (0.25-1 μg/rat), potentiated such effect. Noteworthy, intra-MD microinjection of the same doses of L-NAME or l-arginine by itself had no effect on memory retrieval. Furthermore, intra-MD microinjection of L-NAME (0.05, 0.1 and 0.3 μg/rat) reversed the l-arginine improving effect on nicotine response. Successful memory retrieval significantly increased the p-CREB/CREB ratio in the PFC tissue. Ethanol-induced amnesia, however, decreased this ratio in the PFC while the co-administration of nicotine and ethanol increased the PFC CREB signaling. Interestingly, the inhibitory effect of L-NAME and the potentiating effect of l-arginine on nicotine response were associated with the decrease and increase of the PFC p-CREB/CREB ratio respectively. It can be concluded that MD-PFC connections are involved in the combined effects of nicotine and ethanol on memory retrieval. The mediodorsal thalamic NO system possibly mediated this interaction via the pCREB/CREB signaling pathways in the PFC.
Collapse
Affiliation(s)
- Farnaz Karimani
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
The ventral hippocampus is required for behavioral flexibility but not for allocentric/egocentric learning. Brain Res Bull 2019; 146:40-50. [DOI: 10.1016/j.brainresbull.2018.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022]
|
10
|
Peixoto-Santos JE, de Carvalho LED, Kandratavicius L, Diniz PRB, Scandiuzzi RC, Coras R, Blümcke I, Assirati JA, Carlotti CG, Matias CCMS, Salmon CEG, Dos Santos AC, Velasco TR, Moraes MFD, Leite JP. Manual Hippocampal Subfield Segmentation Using High-Field MRI: Impact of Different Subfields in Hippocampal Volume Loss of Temporal Lobe Epilepsy Patients. Front Neurol 2018; 9:927. [PMID: 30524352 PMCID: PMC6256705 DOI: 10.3389/fneur.2018.00927] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/12/2018] [Indexed: 11/17/2022] Open
Abstract
In patients with temporal lobe epilepsy (TLE), presurgical magnetic resonance imaging (MRI) often reveals hippocampal atrophy, while neuropathological assessment indicates the different types of hippocampal sclerosis (HS). Different HS types are not discriminated in MRI so far. We aimed to define the volume of each hippocampal subfield on MRI manually and to compare automatic and manual segmentations for the discrimination of HS types. The T2-weighted images from 14 formalin-fixed age-matched control hippocampi were obtained with 4.7T MRI to evaluate the volume of each subfield at the anatomical level of the hippocampal head, body, and tail. Formalin-fixed coronal sections at the level of the body of 14 control cases, as well as tissue samples from 24 TLE patients, were imaged with a similar high-resolution sequence at 3T. Presurgical three-dimensional (3D) T1-weighted images from TLE went through a FreeSurfer 6.0 hippocampal subfield automatic assessment. The manual delineation with the 4.7T MRI was identified using Luxol Fast Blue stained 10-μm-thin microscopy slides, collected at every millimeter. An additional section at the level of the body from controls and TLE cases was submitted to NeuN immunohistochemistry for neuronal density estimation. All TLE cases were classified according to the International League Against Epilepsy's (ILAE's) HS classification. Manual volumetry in controls revealed that the dentate gyrus (DG)+CA4 region, CA1, and subiculum accounted for almost 90% of the hippocampal volume. The manual 3T volumetry showed that all TLE patients with type 1 HS (TLE-HS1) had lower volumes for DG+CA4, CA2, and CA1, whereas those TLE patients with HS type 2 (TLE-HS2) had lower volumes only in CA1 (p ≤ 0.038). Neuronal cell densities always decreased in CA4, CA3, CA2, and CA1 of TLE-HS1 but only in CA1 of TLE-HS2 (p ≤ 0.003). In addition, TLE-HS2 had a higher volume (p = 0.016) and higher neuronal density (p < 0.001) than the TLE-HS1 in DG + CA4. Automatic segmentation failed to match the manual or histological findings and was unable to differentiate TLE-HS1 from TLE-HS2. Total hippocampal volume correlated with DG+CA4 and CA1 volumes and neuronal density. For the first time, we also identified subfield-specific pathology patterns in the manual evaluation of volumetric MRI scans, showing the importance of manual segmentation to assess subfield-specific pathology patterns.
Collapse
Affiliation(s)
- Jose Eduardo Peixoto-Santos
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Neuropathology Institute, University Hospitals Erlangen and Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Ludmyla Kandratavicius
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Renata Caldo Scandiuzzi
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Roland Coras
- Neuropathology Institute, University Hospitals Erlangen and Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ingmar Blümcke
- Neuropathology Institute, University Hospitals Erlangen and Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Joao Alberto Assirati
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Carlos Ernesto Garrido Salmon
- Department of Physics and Mathematics, Faculty of Philosophy, Science and Languages of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Antonio Carlos Dos Santos
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Tonicarlo R Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcio Flavio D Moraes
- Department of Physiology and Biophysics, Center for Technology and Research in Magneto-Resonance, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
11
|
Bueno-Junior LS, Leite JP. Input Convergence, Synaptic Plasticity and Functional Coupling Across Hippocampal-Prefrontal-Thalamic Circuits. Front Neural Circuits 2018; 12:40. [PMID: 29875637 PMCID: PMC5975431 DOI: 10.3389/fncir.2018.00040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 01/19/2023] Open
Abstract
Executive functions and working memory are long known to involve the prefrontal cortex (PFC), and two PFC-projecting areas: midline/paramidline thalamus (MLT) and cornus ammonis 1 (CA1)/subiculum of the hippocampal formation (HF). An increasing number of rodent electrophysiology studies are examining these substrates together, thus providing circuit-level perspectives on input convergence, synaptic plasticity and functional coupling, as well as insights into cognition mechanisms and brain disorders. Our review article puts this literature into a method-oriented narrative. As revisited throughout the text, limbic thalamic and hippocampal afferents to the PFC gate one another’s inputs, which in turn are modulated by PFC interneurons and ascending monoaminergic projections. In addition, long-term synaptic plasticity, paired-pulse facilitation (PPF), and event-related potentials (ERP) dynamically vary across PFC-related circuits during learning paradigms and drug effects. Finally, thalamic-prefrontal loops, which have been shown to amplify both cognitive processes and limbic seizures, are also being implicated as relays in the prefrontal-hippocampal feedback, contributing to spatial navigation and decision making. Based on these issues, we conclude the review with a critical synthesis and some research directions.
Collapse
Affiliation(s)
- Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|