1
|
Jessop M, Broadway BJ, Miller K, Guettler S. Regulation of PARP1/2 and the tankyrases: emerging parallels. Biochem J 2024; 481:1097-1123. [PMID: 39178157 DOI: 10.1042/bcj20230230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024]
Abstract
ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.
Collapse
Affiliation(s)
- Matthew Jessop
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Benjamin J Broadway
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Katy Miller
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| |
Collapse
|
2
|
Peters XQ, Elamin G, Aljoundi A, Alahmdi MI, Abo-Dya NE, Sidhom PA, Tawfeek AM, Ibrahim MAA, Soremekun O, Soliman MES. Therapeutic Path to Triple Knockout: Investigating the Pan-inhibitory Mechanisms of AKT, CDK9, and TNKS2 by a Novel 2-phenylquinazolinone Derivative in Cancer Therapy- An In-silico Investigation Therapy. Curr Pharm Biotechnol 2024; 25:1288-1303. [PMID: 37581526 DOI: 10.2174/1389201024666230815145001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Blocking the oncogenic Wnt//β-catenin pathway has of late been investigated as a viable therapeutic approach in the treatment of cancer. This involves the multi-targeting of certain members of the tankyrase-kinase family; Tankyrase 2 (TNKS2), Protein Kinase B (AKT), and Cyclin- Dependent Kinase 9 (CDK9), which propagate the oncogenic Wnt/β-catenin signalling pathway. METHODS During a recent investigation, the pharmacological activity of 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one was repurposed to serve as a 'triple-target' inhibitor of TNKS2, AKT and CDK9. Yet, the molecular mechanism that surrounds its multi-targeting activity remains unanswered. As such, this study aims to explore the pan-inhibitory mechanism of 2-(4-aminophenyl)-7-chloro-3H-quinazolin- 4-one towards AKT, CDK9, and TNKS2, using in silico techniques. RESULTS Results revealed favourable binding affinities of -34.17 kcal/mol, -28.74 kcal/mol, and -27.30 kcal/mol for 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards TNKS2, CDK9, and AKT, respectively. Pan-inhibitory binding of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one is illustrated by close interaction with specific residues on tankyrase-kinase. Structurally, 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one had an impact on the flexibility, solvent-accessible surface area, and stability of all three proteins, which was illustrated by numerous modifications observed in the unbound as well as the bound states of the structures, which evidenced the disruption of their biological function. Prediction of the pharmacokinetics and physicochemical properties of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4- one further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. CONCLUSION The following structural insights provide a starting point for understanding the paninhibitory activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one. Determining the criticality of the interactions that exist between the pyrimidine ring and catalytic residues could offer insight into the structure-based design of innovative tankyrase-kinase inhibitors with enhanced therapeutic effects.
Collapse
Affiliation(s)
- Xylia Q Peters
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ghazi Elamin
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohamed Issa Alahmdi
- Department of Pharmaceutical Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Peter A Sidhom
- Department of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Ahmed M Tawfeek
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Chemistry Department, Computational Chemistry Laboratory, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Opeyemi Soremekun
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mahmoud E S Soliman
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
3
|
Nizi MG, Sarnari C, Tabarrini O. Privileged Scaffolds for Potent and Specific Inhibitors of Mono-ADP-Ribosylating PARPs. Molecules 2023; 28:5849. [PMID: 37570820 PMCID: PMC10420676 DOI: 10.3390/molecules28155849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The identification of new targets to address unmet medical needs, better in a personalized way, is an urgent necessity. The introduction of PARP1 inhibitors into therapy, almost ten years ago, has represented a step forward this need being an innovate cancer treatment through a precision medicine approach. The PARP family consists of 17 members of which PARP1 that works by poly-ADP ribosylating the substrate is the sole enzyme so far exploited as therapeutic target. Most of the other members are mono-ADP-ribosylating (mono-ARTs) enzymes, and recent studies have deciphered their pathophysiological roles which appear to be very extensive with various potential therapeutic applications. In parallel, a handful of mono-ARTs inhibitors emerged that have been collected in a perspective on 2022. After that, additional very interesting compounds were identified highlighting the hot-topic nature of this research field and prompting an update. From the present review, where we have reported only mono-ARTs inhibitors endowed with the appropriate profile of pharmacological tools or drug candidate, four privileged scaffolds clearly stood out that constitute the basis for further drug discovery campaigns.
Collapse
Affiliation(s)
- Maria Giulia Nizi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | | | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
4
|
Murthy S, Nizi MG, Maksimainen MM, Massari S, Alaviuhkola J, Lippok BE, Vagaggini C, Sowa ST, Galera-Prat A, Ashok Y, Venkannagari H, Prunskaite-Hyyryläinen R, Dreassi E, Lüscher B, Korn P, Tabarrini O, Lehtiö L. [1,2,4]Triazolo[3,4- b]benzothiazole Scaffold as Versatile Nicotinamide Mimic Allowing Nanomolar Inhibition of Different PARP Enzymes. J Med Chem 2023; 66:1301-1320. [PMID: 36598465 PMCID: PMC9884089 DOI: 10.1021/acs.jmedchem.2c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report [1,2,4]triazolo[3,4-b]benzothiazole (TBT) as a new inhibitor scaffold, which competes with nicotinamide in the binding pocket of human poly- and mono-ADP-ribosylating enzymes. The binding mode was studied through analogues and cocrystal structures with TNKS2, PARP2, PARP14, and PARP15. Based on the substitution pattern, we were able to identify 3-amino derivatives 21 (OUL243) and 27 (OUL232) as inhibitors of mono-ARTs PARP7, PARP10, PARP11, PARP12, PARP14, and PARP15 at nM potencies, with 27 being the most potent PARP10 inhibitor described to date (IC50 of 7.8 nM) and the first PARP12 inhibitor ever reported. On the contrary, hydroxy derivative 16 (OUL245) inhibits poly-ARTs with a selectivity toward PARP2. The scaffold does not possess inherent cell toxicity, and the inhibitors can enter cells and engage with the target protein. This, together with favorable ADME properties, demonstrates the potential of TBT scaffold for future drug development efforts toward selective inhibitors against specific enzymes.
Collapse
Affiliation(s)
- Sudarshan Murthy
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Maria Giulia Nizi
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy
| | - Mirko M. Maksimainen
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Serena Massari
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy
| | - Juho Alaviuhkola
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Barbara E. Lippok
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Chiara Vagaggini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, SienaI-53100, Italy
| | - Sven T. Sowa
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Albert Galera-Prat
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Yashwanth Ashok
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Harikanth Venkannagari
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | | | - Elena Dreassi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, SienaI-53100, Italy
| | - Bernhard Lüscher
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Patricia Korn
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Oriana Tabarrini
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy,
| | - Lari Lehtiö
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland,
| |
Collapse
|
5
|
Pillay N, Mariotti L, Zaleska M, Inian O, Jessop M, Hibbs S, Desfosses A, Hopkins PCR, Templeton CM, Beuron F, Morris EP, Guettler S. Structural basis of tankyrase activation by polymerization. Nature 2022; 612:162-169. [PMID: 36418402 PMCID: PMC9712121 DOI: 10.1038/s41586-022-05449-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/13/2022] [Indexed: 11/25/2022]
Abstract
The poly-ADP-ribosyltransferase tankyrase (TNKS, TNKS2) controls a wide range of disease-relevant cellular processes, including WNT-β-catenin signalling, telomere length maintenance, Hippo signalling, DNA damage repair and glucose homeostasis1,2. This has incentivized the development of tankyrase inhibitors. Notwithstanding, our knowledge of the mechanisms that control tankyrase activity has remained limited. Both catalytic and non-catalytic functions of tankyrase depend on its filamentous polymerization3-5. Here we report the cryo-electron microscopy reconstruction of a filament formed by a minimal active unit of tankyrase, comprising the polymerizing sterile alpha motif (SAM) domain and its adjacent catalytic domain. The SAM domain forms a novel antiparallel double helix, positioning the protruding catalytic domains for recurring head-to-head and tail-to-tail interactions. The head interactions are highly conserved among tankyrases and induce an allosteric switch in the active site within the catalytic domain to promote catalysis. Although the tail interactions have a limited effect on catalysis, they are essential to tankyrase function in WNT-β-catenin signalling. This work reveals a novel SAM domain polymerization mode, illustrates how supramolecular assembly controls catalytic and non-catalytic functions, provides important structural insights into the regulation of a non-DNA-dependent poly-ADP-ribosyltransferase and will guide future efforts to modulate tankyrase and decipher its contribution to disease mechanisms.
Collapse
Affiliation(s)
- Nisha Pillay
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Laura Mariotti
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Mariola Zaleska
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Oviya Inian
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Matthew Jessop
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Sam Hibbs
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Ambroise Desfosses
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Paul C R Hopkins
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Catherine M Templeton
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK.
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK.
| |
Collapse
|
6
|
Wardana AP, Abdjan MI, Aminah NS, Fahmi MZ, Siswanto I, Kristanti AN, Saputra MA, Takaya Y. 3,4,3'-Tri- O-methylellagic acid as an anticancer agent: in vitro and in silico studies. RSC Adv 2022; 12:29884-29891. [PMID: 36321100 PMCID: PMC9580503 DOI: 10.1039/d2ra05246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
We report a natural product compound isolated from Syzygium polycephalum known as 3,4,3'-tri-O-methylellagic acid (T-EA) as a candidate drug for cancer treatment. The characterization of the isolated T-EA compound was carried out using various spectroscopic methods. The in vitro evaluation showcased the inhibition activity of T-EA towards the T47D and HeLa cell lines with EC50 values of 55.35 ± 6.28 μg mL-1 and 12.57 ± 2.22 μg mL-1, respectively. Meanwhile, the in silico evaluation aimed to understand the interaction of T-EA with enzymes responsible for cancer regulation at the molecular level by targeting the hindrance of cyclin-dependent kinase 9 (CDK9) and sirtuin 1 (SIRT1) enzymes. T-EA showed a binding free energy towards the SIRT1 protein of ΔG bind (MM-GBSA): -30.98 ± 0.25 kcal mol-1 and ΔG bind (MM-PBSA): -24.07 ± 0.30 kcal mol-1, while that of CDK9 was ΔG bind (MM-GBSA): -29.50 ± 0.22 kcal mol-1 and ΔG bind (MM-PBSA): -25.87 ± 0.40 kcal mol-1. The obtained results from this research could be considered as important information on 3,4,3'-tri-O-methylellagic acid as a drug to treat cervical and breast cancers.
Collapse
Affiliation(s)
- Andika Pramudya Wardana
- PhD Student of Mathematics and Natural Sciences, Faculty of Science and Technology, Universitas AirlanggaSurabaya 60115Indonesia,Department of Chemistry, Faculty of Science and Technology, Universitas AirlanggaSurabaya 60115Indonesia+62-31-5936502+62-31-5936501
| | - Muhammad Ikhlas Abdjan
- Department of Chemistry, Faculty of Science and Technology, Universitas AirlanggaSurabaya 60115Indonesia+62-31-5936502+62-31-5936501
| | - Nanik Siti Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas AirlanggaSurabaya 60115Indonesia+62-31-5936502+62-31-5936501,Biotechnology of Tropical Medicinal Plants Research Group, Universitas AirlanggaIndonesia
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Faculty of Science and Technology, Universitas AirlanggaSurabaya 60115Indonesia+62-31-5936502+62-31-5936501
| | - Imam Siswanto
- Department of Chemistry, Faculty of Science and Technology, Universitas AirlanggaSurabaya 60115Indonesia+62-31-5936502+62-31-5936501,Bioinformatic Laboratory, UCoE Research Center for Bio-Molecule Engineering, Universitas AirlanggaSurabayaIndonesia
| | - Alfinda Novi Kristanti
- Department of Chemistry, Faculty of Science and Technology, Universitas AirlanggaSurabaya 60115Indonesia+62-31-5936502+62-31-5936501,Biotechnology of Tropical Medicinal Plants Research Group, Universitas AirlanggaIndonesia
| | - Mirza Ardella Saputra
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas AirlanggaSurabaya 60115Indonesia
| | - Yoshiaki Takaya
- Faculty of Pharmacy, Meijo University150 Yagotoyama, TempakuNagoya468-8503Japan
| |
Collapse
|
7
|
Peters XQ, Agoni C, Soliman MES. Unravelling the Structural Mechanism of Action of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione in Dual-Targeting Tankyrase 1 and 2: A Novel Avenue in Cancer Therapy. Cell Biochem Biophys 2022; 80:505-518. [PMID: 35637423 DOI: 10.1007/s12013-022-01076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/21/2022] [Indexed: 11/03/2022]
Abstract
Tankyrase (TNKS) belonging to the poly(ADPribose) polymerase family, are known for their multi-functioning capabilities, and play an essential role in the Wnt β-catenin pathway and various other cellular processes. Although showing inhibitory potential at a nanomolar level, the structural dual-inhibitory mechanism of the novel TNKS inhibitor, 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione, remains unexplored. By employing advanced molecular modeling, this study provides these insights. Results of sequence alignments of binding site residues identified conserved residues; GLY1185 and ILE1224 in TNKS-1 and PHE1035 and PRO1034 in TNKS-2 as crucial mediators of the dual binding mechanism of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione, corroborated by high per-residue energy contributions and consistent high-affinity interactions of these residues. Estimation of the binding free energy of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione showed estimated total energy of -43.88 kcal/mol and -30.79 kcal/mol towards TNKS-1 and 2, respectively, indicating favorable analogous dual binding as previously reported. Assessment of the conformational dynamics of TNKS-1 and 2 upon the binding of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione revealed similar structural changes characterized by increased flexibility and solvent assessible surface area of the residues inferring an analogous structural binding mechanism. Insights from this study show that peculiar, conserved residues are the driving force behind the dual inhibitory mechanism of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione and could aid in the design of novel dual inhibitors of TNKS-1 and 2 with improved therapeutic properties.
Collapse
Affiliation(s)
- Xylia Q Peters
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.,West African Centre for Computational Analysis, Accra, Ghana
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
8
|
Yu M, Yang Y, Sykes M, Wang S. Small-Molecule Inhibitors of Tankyrases as Prospective Therapeutics for Cancer. J Med Chem 2022; 65:5244-5273. [PMID: 35306814 DOI: 10.1021/acs.jmedchem.1c02139] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tankyrases are multifunctional poly(adenosine diphosphate-ribose) polymerases that regulate diverse biological processes including telomere maintenance and cellular signaling. These processes are often implicated in a number of human diseases, with cancer being the most prevalent example. Accordingly, tankyrase inhibitors have gained increasing attention as potential therapeutics. Since the discovery of XAV939 and IWR-1 as the first tankyrase inhibitors over two decades ago, tankyrase-targeted drug discovery has made significant progress. This review starts with an introduction of tankyrases, with emphasis placed on their cancer-related functions. Small-molecule inhibitors of tankyrases are subsequently delineated based on their distinct modes of binding to the enzymes. In addition to inhibitors that compete with oxidized nicotinamide adenine dinucleotide (NAD+) for binding to the catalytic domain of tankyrases, non-NAD+-competitive inhibitors are detailed. This is followed by a description of three clinically trialled tankyrase inhibitors. To conclude, some of challenges and prospects in developing tankyrase-targeted cancer therapies are discussed.
Collapse
Affiliation(s)
- Mingfeng Yu
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Yuchao Yang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew Sykes
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
9
|
Analogs of TIQ-A as inhibitors of human mono-ADP-ribosylating PARPs. Bioorg Med Chem 2021; 52:116511. [PMID: 34801828 DOI: 10.1016/j.bmc.2021.116511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 01/02/2023]
Abstract
The scaffold of TIQ-A, a previously known inhibitor of human poly-ADP-ribosyltransferase PARP1, was utilized to develop inhibitors against human mono-ADP-ribosyltransferases through structure-guided design and activity profiling. By supplementing the TIQ-A scaffold with small structural changes, based on a PARP10 inhibitor OUL35, selectivity changed from poly-ADP-ribosyltransferases towards mono-ADP-ribosyltransferases. Binding modes of analogs were experimentally verified by determining complex crystal structures with mono-ADP-ribosyltransferase PARP15 and with poly-ADP-ribosyltransferase TNKS2. The best analogs of the study achieved 10-20-fold selectivity towards mono-ADP-ribosyltransferases PARP10 and PARP15 while maintaining micromolar potencies. The work demonstrates a route to differentiate compound selectivity between mono- and poly-ribosyltransferases of the human ARTD family.
Collapse
|
10
|
Abdelrehim ESM, El-Sayed DS. A New Synthesis of Poly Heterocyclic Compounds Containing [1,2,4]triazolo and [1,2,3,4]tetrazolo Moieties and their DFT Study as Expected Anti-cancer Reagents. Curr Org Synth 2021; 17:211-223. [PMID: 32101129 DOI: 10.2174/1570179417666200226092516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND 2-amino-3-cyanopyridines are good starting reagents that have been used in synthesis of many heterocyclic compounds such as pyridopyrimidines, [1,2,4]triazolo and [1,2,3,4] tetrazolo derivatives which have biological activities as anti-microbial and cytotoxic activities. Meanwhile [1,2,4]triazolo and [1,2,3,4]tetrazolo derivatives are well known to possess many physiological activities, such as anticancer , antifungal, muscle relaxant, hypnotic, anti-inflammatory, diuretic and antihypertensive activities. A broad class of heterocyclic compounds has been studied to demonstrate their biological activity on the structures of DNA and RNA. Several of important functions make Tankyrases acts as targets in potential drug. OBJECTIVE The article focuses on synthesis of [1,2,4]triazolo and [1,2,3,4]tetrazolo derivatives and their theoretical calculations that suggest they are anti-cancer substances. MATERIALS AND METHODS DFT and computational studies were performed on the structural properties of experimental molecules experimentally, and significant theoretical calculations were performed based on density functional theory (DFT) with Becke's three-parameter exchange function21-22 of correlation functional Lee Yang Parr (B3LYP) with the basis set 6-31G (d,p) using Gaussian 03 software23. Geometrical parameters of the optimized structures were calculated and also the charge on each atom (Mulliken charge). Chemcraft program24 was used to visualize the optimized structure and ChemBio3D ultra 12.0 was used to visualize the highest occupied and lowest unoccupied molecular orbitals. RESULTS Preliminary screening in five studied ligands acts as inhibitors for different active sites along the target. The molecular docking study also revealed that the compound 6c was the most effective compounds in inhibiting Tankyrase I enzyme (2rf5), this result can help strongly in inhibition of carcinogenic cells and cancer treatment. CONCLUSION We have described a new practical cyclocondensation synthesis for a series of [1,2,4]triazolo[4,3- c]pyrido[3,2-e] pyrimidine and pyrido[2',3':4,5] pyrimido[6,1-c][1,2,4] triazine from 2-amino-3-cyano-4.6- diarylpyridines. Also polyheterocyclic compounds containing [1,2,4]triazolo and [1,2,3,4]tetrazolo moieties were also synthesized through the reactions of 3-hydrazino-8,10-diaryl [1,2,4]triazolo[4,3-c]pyrido[3,2- e]pyrimidine with both formic acid and the formation of diazonuim salt respectively. Newly synthesized heterocycles structures were confirmed using elemental analysis, IR, 1H-NMR, 13C-NMR and mass spectral data. DFT and computational studies were carried out on five of the synthesized poly heterocyclic compounds to show their structural and geometrical parameters involved in the study. Molecular docking using Tankyrase I enzyme as a target showed how the studied heterocyclic compounds act as a ligand interacting most of active sites on Tankyrase I with a type of interactions specified for H-bonding and VDW. We investigated that the five studied ligands act as inhibitors for different active sites along the target. The molecular docking study also revealed that the compound 6c was the most effective compounds in inhibiting Tankyrase I enzyme (2rf5), this result can help strongly in inhibition of carcinogenic cells and cancer treatment.
Collapse
Affiliation(s)
| | - Doaa S El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Bioinformatic Analysis of the Nicotinamide Binding Site in Poly(ADP-Ribose) Polymerase Family Proteins. Cancers (Basel) 2021; 13:cancers13061201. [PMID: 33801950 PMCID: PMC8002165 DOI: 10.3390/cancers13061201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The PARP family consists of 17 proteins, and some of them are responsible for cancer cells’ viability. Much attention is therefore given to the search for chemical compounds with the ability to suppress distinct PARP family members (for example, PARP-5a and 5b). Here, we present the results of a family-wide bioinformatic analysis of an important functional region in the PARP structure and describe factors that can guide the design of highly selective compounds. Abstract The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.
Collapse
|
12
|
In silico family-wide profiling and 3D modelling of the poly(ADP-ribose) polymerase superfamily. Future Med Chem 2020; 12:2105-2122. [PMID: 33225737 DOI: 10.4155/fmc-2020-0274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Due to the conserved nature of the poly(ADP-ribose) polymerase (PARP) catalytic domain, the identification of unique residues is critical for the design of selective inhibitors. With inhibitors of the DNA-dependent PARP members already clinically approved, new efforts lie in discovering selective inhibitors for PARP5a and beyond. Targeting the noncatalytic domains, such as the macro2 and WWE domains may also provide a way to achieve selectivity. Methodology & results: This paper details the in silico profiling of x-ray crystal structures and homology models of the PARP catalytic, WWE and macro2 domains. PARP10 was the least conserved catalytic domain, with the macro2 and WWE domains possessing more unique residues than their catalytic counterparts. Conclusion: Overall, we identify unique residues to target when designing selective PARP inhibitors including HIS1610, TYR1620, ALA1627 and ARG1658 of the PARP14 catalytic domain, along with multiple unique residues across the PARP WWE and macro2 domains.
Collapse
|
13
|
Berishvili VP, Kuimov AN, Voronkov AE, Radchenko EV, Kumar P, Choonara YE, Pillay V, Kamal A, Palyulin VA. Discovery of Novel Tankyrase Inhibitors through Molecular Docking-Based Virtual Screening and Molecular Dynamics Simulation Studies. Molecules 2020; 25:molecules25143171. [PMID: 32664504 PMCID: PMC7397142 DOI: 10.3390/molecules25143171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022] Open
Abstract
Tankyrase enzymes (TNKS), a core part of the canonical Wnt pathway, are a promising target in the search for potential anti-cancer agents. Although several hundreds of the TNKS inhibitors are currently known, identification of their novel chemotypes attracts considerable interest. In this study, the molecular docking and machine learning-based virtual screening techniques combined with the physico-chemical and ADMET (absorption, distribution, metabolism, excretion, toxicity) profile prediction and molecular dynamics simulations were applied to a subset of the ZINC database containing about 1.7 M commercially available compounds. Out of seven candidate compounds biologically evaluated in vitro for their inhibition of the TNKS2 enzyme using immunochemical assay, two compounds have shown a decent level of inhibitory activity with the IC50 values of less than 10 nM and 10 μM. Relatively simple scores based on molecular docking or MM-PBSA (molecular mechanics, Poisson-Boltzmann, surface area) methods proved unsuitable for predicting the effect of structural modification or for accurate ranking of the compounds based on their binding energies. On the other hand, the molecular dynamics simulations and Free Energy Perturbation (FEP) calculations allowed us to further decipher the structure-activity relationships and retrospectively analyze the docking-based virtual screening performance. This approach can be applied at the subsequent lead optimization stages.
Collapse
Affiliation(s)
- Vladimir P. Berishvili
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.B.); (A.E.V.); (E.V.R.)
| | - Alexander N. Kuimov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Andrew E. Voronkov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.B.); (A.E.V.); (E.V.R.)
- Digital BioPharm Ltd., Hovseterveien 42 A, H0301, 0768 Oslo, Norway
| | - Eugene V. Radchenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.B.); (A.E.V.); (E.V.R.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (Y.E.C.); (V.P.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (Y.E.C.); (V.P.)
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (Y.E.C.); (V.P.)
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India;
| | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.B.); (A.E.V.); (E.V.R.)
- Correspondence:
| |
Collapse
|
14
|
Discovery of Novel Inhibitor for WNT/β-Catenin Pathway by Tankyrase 1/2 Structure-Based Virtual Screening. Molecules 2020; 25:molecules25071680. [PMID: 32268564 PMCID: PMC7180783 DOI: 10.3390/molecules25071680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
Aberrant activation of the WNT/β-catenin signaling pathway is implicated in various types of cancers. Inhibitors targeting the Wnt signaling pathway are intensively studied in the current cancer research field, the outcomes of which remain to be determined. In this study, we have attempted to discover novel potent WNT/β-catenin pathway inhibitors through tankyrase 1/2 structure-based virtual screening. After screening more than 13.4 million compounds through molecular docking, we experimentally verified one compound, LZZ-02, as the most potent inhibitor out of 11 structurally representative top hits. LiCl-induced HEK293 cells containing TOPFlash reporter showed that LZZ-02 inhibited the transcriptional activity of β-catenin with an IC50 of 10 ± 1.2 μM. Mechanistically, LZZ-02 degrades the expression of β-catenin by stabilizing axin 2, thereby diminishing downstream proteins levels, including c-Myc and cyclin D1. LZZ-02 also inhibits the growth of colonic carcinoma cell harboring constitutively active β-catenin. More importantly, LZZ-02 effectively shrinks tumor xenograft derived from colonic cell lines. Our study successfully identified a novel tankyrase 1/2 inhibitor and shed light on a novel strategy for developing inhibitors targeting the WNT/β-catenin signaling axis.
Collapse
|
15
|
Damale MG, Patil R, Ansari SA, Alkahtani HM, Almehizia AA, Pathan SK, Chhajed S, Sangshetti J. Identification of dual site inhibitors of tankyrase through virtual screening of protein-ligand interaction fingerprint (PLIF)–derived pharmacophore models, molecular dynamics, and ADMET studies. Struct Chem 2019. [DOI: 10.1007/s11224-019-01467-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Peters XQ, Malinga TH, Agoni C, Olotu FA, Soliman MES. Zoning in on Tankyrases: A Brief Review on the Past, Present and Prospective Studies. Anticancer Agents Med Chem 2019; 19:1920-1934. [PMID: 31648650 DOI: 10.2174/1871520619666191019114321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Tankyrases are known for their multifunctionalities within the poly(ADPribose) polymerases family and playing vital roles in various cellular processes which include the regulation of tumour suppressors. Tankyrases, which exist in two isoforms; Tankyrase 1 and 2, are highly homologous and an integral part of the Wnt β -catenin pathway that becomes overly dysregulated when hijacked by pro-carcinogenic machineries. METHODS In this review, we cover the distinct roles of the Tankyrase isoforms and their involvement in the disease pathogenesis. Also, we provide updates on experimentally and computationally derived antagonists of Tankyrase whilst highlighting the precedence of integrative computer-aided drug design methods towards the discovery of selective inhibitors. RESULTS Despite the high prospects embedded in the therapeutic targeting and blockade of Tankyrase isoforms, the inability of small molecule inhibitors to achieve selective targeting has remained a major setback, even until date. This explains numerous incessant drug design efforts geared towards the development of highly selective inhibitors of the respective Tankyrase isoforms since they mediate distinct aberrancies in disease progression. Therefore, considering the setbacks of conventional drug design methods, can computer-aided approaches actually save the day? CONCLUSION The implementation of computer-aided drug design techniques in Tankyrase research could help complement experimental methods and facilitate ligand/structure-based design and discovery of small molecule inhibitors with enhanced selectivity.
Collapse
Affiliation(s)
- Xylia Q Peters
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Thembeka H Malinga
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|