1
|
Wang C, Song Y, Liang J, Wang Y, Zhang D, Zhao Z. Antibiotic resistance genes are transferred from manure-contaminated water bodies to the gut microbiota of animals through the food chain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125087. [PMID: 39383990 DOI: 10.1016/j.envpol.2024.125087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Fecal-contaminated water may enter the food chain and become an important route for the transmission of antibiotic resistance genes (ARGs) to the human microbiome. However, little is known about the spread of ARGs from fecal contamination in water bodies along the aquatic food chain. In this study, laboratory-raised Daphnia magna and Aristichthys nobilis were used to investigate the effects of the addition of manure on target ARGs in water and their intestinal contents to determine the potential transmission route of ARGs in the aquatic food chain system. The abundance of target ARGs in water as well as D. magna and A. nobilis intestinal contents significantly increased when fecal contamination was present. ARGs bioaccumulated along the food chain, with four ARGs (tetM-01, tetX, qnrS, and sul2) detected regularly. Mn and Cr were key environmental factors that promoted the transfer of ARGs along the food chain. Fecal addition significantly changed the structure of microbial communities in water, D. magna gut, and A. nobilis gut. The ARG spectrum was significantly correlated with the composition and structure of the bacterial community. Proteobacteria, Bacteroidetes, and Firmicutes were identified as the main host bacteria and were likely to act as carriers of ARGs to promote the spread of antibiotic resistance in the food chain. The composition and structure of bacterial communities, along with mobile genetic elements, were two key drivers of ARG transfer. These findings provide new insights into the distribution and spread of ARGs along the freshwater food chain.
Collapse
Affiliation(s)
- Ce Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yuzi Song
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jingxuan Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Di Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
2
|
You R, Yu Y, Shen M, Zhang Y, Hong J, Kang Y. Applications of different forms of nitrogen fertilizers affect soil bacterial community but not core ARGs profile. Front Microbiol 2024; 15:1447782. [PMID: 39417080 PMCID: PMC11480956 DOI: 10.3389/fmicb.2024.1447782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
The objective of this study was to investigate the impact of various chemical nitrogen fertilizers on the profile of antibiotic resistance genes (ARGs) in soil. A microcosm experiment was conducted with four treatments, including CK (control with no nitrogen), AN (ammonium nitrogen), NN (nitrate nitrogen), and ON (urea nitrogen), and the abundance of ARGs was assessed over a 30-day period using a metagenomic sequencing approach. The levels of core ARGs varied between 0.16 and 0.22 copies per cell across different treatments over time. The abundance of core ARGs in the ON treatment closely resembled that of the CK treatment, suggesting that environmentally friendly nitrogen fertilizers, particularly those in controlled release formulations, may be preferable. The core ARG abundance in the AN and NN treatments exhibited noticeable fluctuations over time. Overall, chemical nitrogen fertilizers had minimal effects on the core ARG profile as determined by principal component analysis and clustering analyses. Conversely, distinct and significant changes in bacterial communities were observed with the use of different nitrogen fertilizers. However, the influence of nitrogen fertilizers on the core ARGs is limited due to the unaffected potential bacterial hosts. Nitrogen-cycling-related genes (NCRGs), such as those involved in nitrogen-fixing (nifK, nifD, nifH) and denitrification (narG, napA, nirK, norB, nosZ) processes, exhibit a positive correlation with ARGs (rosA, mexF, bacA, vanS), indicating a potential risk of ARG proliferation during intense denitrification activities. This study indicates that the application of chemical nitrogen has a minimal effect on the abundance of ARGs in soil, thereby alleviating concerns regarding the potential accumulation of ARGs due to the use of chemical nitrogen fertilizers.
Collapse
Affiliation(s)
- Ruiqiang You
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yang Yu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Min Shen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Yanzhou Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Jian Hong
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Yijun Kang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
| |
Collapse
|
3
|
Ali I, Naz B, Liu Z, Chen J, Yang Z, Attia K, Ayub N, Ali I, Mohammed AA, Faisal S, Sun L, Xiao S, Chen S. Interplay among manures, vegetable types, and tetracycline resistance genes in rhizosphere microbiome. Front Microbiol 2024; 15:1392789. [PMID: 39011147 PMCID: PMC11246966 DOI: 10.3389/fmicb.2024.1392789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
The rapid global emergence of antibiotic resistance genes (ARGs) is a substantial public health concern. Livestock manure serves as a key reservoir for tetracycline resistance genes (TRGs), serving as a means of their transmission to soil and vegetables upon utilization as a fertilizer, consequently posing a risk to human health. The dynamics and transfer of TRGs among microorganisms in vegetables and fauna are being investigated. However, the impact of different vegetable species on acquisition of TRGs from various manure sources remains unclear. This study investigated the rhizospheres of three vegetables (carrots, tomatoes, and cucumbers) grown with chicken, sheep, and pig manure to assess TRGs and bacterial community compositions via qPCR and high-throughput sequencing techniques. Our findings revealed that tomatoes exhibited the highest accumulation of TRGs, followed by cucumbers and carrots. Pig manure resulted in the highest TRG levels, compared to chicken and sheep manure, in that order. Bacterial community analyses revealed distinct effects of manure sources and the selective behavior of individual vegetable species in shaping bacterial communities, explaining 12.2% of TRG variation. Firmicutes had a positive correlation with most TRGs and the intl1 gene among the dominant phyla. Notably, both the types of vegetables and manures significantly influenced the abundance of the intl1 gene and soil properties, exhibiting strong correlations with TRGs and elucidating 30% and 17.7% of TRG variance, respectively. Our study delineated vegetables accumulating TRGs from manure-amended soils, resulting in significant risk to human health. Moreover, we elucidated the pivotal roles of bacterial communities, soil characteristics, and the intl1 gene in TRG fate and dissemination. These insights emphasize the need for integrated strategies to reduce selection pressure and disrupt TRG transmission routes, ultimately curbing the transmission of tetracycline resistance genes to vegetables.
Collapse
Affiliation(s)
- Izhar Ali
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Beenish Naz
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ziyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Jingwei Chen
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Zi Yang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Kotb Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nasir Ayub
- Korean Environmental Microorganism Resource Center, Department of Integrative Biotechnology, Sungkyuankwan University, Seoul, Republic of Korea
| | - Ikram Ali
- Center for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Kowloon Tong, China
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, China
| | - Likun Sun
- College of Animal Sciences, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Sa Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Shuyan Chen
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Pazra DF, Latif H, Basri C, Wibawan IWT, Rahayu P. Detection of tetracycline resistance genes and their diversity in Escherichia coli isolated from pig farm waste in Banten province, Indonesia. Vet World 2023; 16:1907-1916. [PMID: 37859956 PMCID: PMC10583874 DOI: 10.14202/vetworld.2023.1907-1916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Livestock waste in the form of feces and liquid represents an important reservoir of antibiotic resistance genes (ARGs). Because many ARGs can be horizontally transferred to other pathogens, livestock waste plays an essential role in the emergence and transmission of various ARGs in the environment. Therefore, this study aimed to detect and assess the diversity of tet genes in Escherichia coli isolated from pig farm waste in Banten province, Indonesia. Materials and Methods Solid waste (feces) and wastewater were collected from 44 pig farms in Banten province. The isolation and identification of E. coli referred to the Global Tricycle Surveillance extended-spectrum beta-lactamase E. coli World Health Organization (2021) guidelines. tet genes were detected using quantitative real-time polymerase chain reaction after dividing pig farms in the province into four clusters based on their adjacent areas and characteristics. Results tetA, tetB, tetC, tetM, tetO, and tetX were detected in solid waste and wastewater from pig farms, whereas tetE was not detected in either sample type. tetX (100%) and tetO (75%) were the most dominant genes in solid waste, whereas wastewater samples were dominated by tetA, tetM, tetO, and tetX (prevalence of 50% each). Furthermore, eight tet gene patterns were found in pig farm waste (prevalence of 12.5% each). Conclusion The results showed a high prevalence of tetO and tetX in solid waste and wastewater from pig farms in Banten province. This significant prevalence and diversity indicated the transmission of tet genes from pigs to the environment, posing a serious threat to public health.
Collapse
Affiliation(s)
- Debby Fadhilah Pazra
- Animal Biomedical Science Study Program, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
- Bogor Agricultural Development Polytechnic, Bogor, Indonesia
| | - Hadri Latif
- Division of Veterinary Public Health and Epidemiology, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
| | - Chaerul Basri
- Division of Veterinary Public Health and Epidemiology, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
| | - I. Wayan Teguh Wibawan
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
| | - Puji Rahayu
- Quality Control Laboratory and Certification of Animal Products, Bogor, Indonesia
| |
Collapse
|
5
|
Rawat N, Sabu B, Jamwal R, Devi PP, Yadav K, Raina HS, Rajagopal R. Understanding the role of insects in the acquisition and transmission of antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159805. [PMID: 36461578 DOI: 10.1016/j.scitotenv.2022.159805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance (AR) is a global healthcare threat that requires a comprehensive assessment. Poorly regulated antibiotic stewardship in clinical and non-clinical settings has led to a horizontal dissemination of AR. A variety of often neglected elements facilitate the circulation of AR from antibiotic sinks like concentrated animal feeding operations and healthcare settings to other environments that include healthy human communities. Insects are one of those elements that have received underwhelming attention as vectors of AR, despite their well-known role in transmitting clinically relevant pathogens. We here make an exhaustive attempt to highlight the role of insects as zoonotic reservoirs of AR by discussing the available literature and deriving realistic inferences. We review the AR associated with insects housing various human-relevant environments, namely, animal farm industry, edible-insects enterprise, healthcare institutes, human settlements, agriculture settings and the wild. We also provide evidence-based accounts of the events of the transmission of AR from insects to humans. We evaluate the clinical threats associated with insect-derived AR and propose the adoption of more sophisticated strategies to understand and mitigate future AR concerns facilitated by insects. Future works include a pan-region assessment of insects for AR in the form of AR bacteria (ARB) and AR determinants (ARDs) and the introduction of modern techniques like whole-genome sequencing, metagenomics, and in-silico modelling.
Collapse
Affiliation(s)
- Nitish Rawat
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Benoy Sabu
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Rohit Jamwal
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Pukhrambam Pushpa Devi
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Karuna Yadav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Harpreet Singh Raina
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India; Department of Zoology, Sri Guru Teg Bahadur Khalsa College, University of Delhi, Delhi 110007, India
| | - Raman Rajagopal
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India.
| |
Collapse
|
6
|
Pillay S, Calderón-Franco D, Urhan A, Abeel T. Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. Front Microbiol 2022; 13:1066995. [PMID: 36532424 PMCID: PMC9755710 DOI: 10.3389/fmicb.2022.1066995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 08/12/2023] Open
Abstract
The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance.
Collapse
Affiliation(s)
- Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | | | - Aysun Urhan
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
7
|
Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Food Sci Biotechnol 2022; 31:1481-1499. [PMID: 36065433 PMCID: PMC9435411 DOI: 10.1007/s10068-022-01157-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages.
Collapse
|
8
|
Qing L, Qigen D, Jian H, Hongjun W, Jingdu C. Profiles of tetracycline resistance genes in paddy soils with three different organic fertilizer applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119368. [PMID: 35489540 DOI: 10.1016/j.envpol.2022.119368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The rapid expansion of organic rice cultivation areas have been accompanied by increased application of organic fertilizers. The high prevalence of soil antibiotic resistance caused by organic fertilizer application poses a severe threat to the agricultural and soil ecosystems. To date, research efforts and understanding of the effects and mechanism of action of the various organic fertilizers on antibiotic resistance in paddy soils remain poorly investigated. Tetracycline resistance genes (TRGs, including tetB, tetC, tetL, tetZ, tetM, tetO, tetT, and tetX), class 1 integron-integrase gene (intI1) and bacterial communities were characterized using quantitative-PCR and Illumina MiSeq sequencing, in paddy soils exposed to inorganic fertilizer (NPK), animal-derived organic fertilizer (AOF, composted swine and/or chicken manure), plant-derived organic fertilizer (POF, rapeseed cake and/or astragalus) and commercial organic fertilizer (COF, composted of animal manure mix with crop residues) applications. Compared with NPK, AOF applications significantly increased the relative abundance of TRGs, which was predominantly expressed in the increase of the relative abundance of tetC, tetM, tetO, tetT, and tetX, while POF and COF had no significant effect on the relative abundance of TRGs. Principal coordinate analysis revealed that AOF and POF significantly altered bacterial communities in paddy soils relative to NPK, while COF had no significant change of bacterial communities. Variation partitioning analysis indicated that soil physicochemical properties were the decisive factors for the changes of TRGs in organic paddy fields. Furthermore, redundancy analysis and the Mantel test showed that TRG profiles in AOF applied paddy soils were strongly influenced by electrical conductivity (EC). Total nitrogen (TN) and organic matter (OM) affected the distribution of TRGs in COF and POF applied paddy soils through a different mechanism. This study provides insights into the impacts of different types of organic fertilizer on the profiles of TRGs in paddy soils.
Collapse
Affiliation(s)
- Li Qing
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Dai Qigen
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Hu Jian
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Wu Hongjun
- Yangzhou Supervision & Inspection Center for Agri-products, Yangzhou, 225101, China
| | - Chen Jingdu
- Yangzhou Municipal Bureau of Agriculture and Rural Affairs, Yangzhou, 225000, China
| |
Collapse
|
9
|
Nguyen TD, Itayama T, Ramaraj R, Iwami N, Shimizu K, Dao TS, Pham TL, Maseda H. Physiological response of Simocephalus vetulus to five antibiotics and their mixture under 48-h acute exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154585. [PMID: 35306083 DOI: 10.1016/j.scitotenv.2022.154585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 05/20/2023]
Abstract
Antibiotics, widely known as major environmental xenobiotics, are increasingly being released into ecosystems due to their essential functions in human health and production. During the COVID-19 pandemic waves, antibiotic use increases remarkably in treating bacterial coinfections. Antibiotics were initially expected only to affect prokaryotes, but recent research has shown that they can disturb the biological systems of eukaryotes, especially vulnerable aquatic creatures, through both direct and indirect processes. However, their toxicity to the freshwater cladoceran Simocephalus vetulus, an essential link in the aquatic food web, has never been evaluated. The effects of four fluoroquinolones (ciprofloxacin: CFX, ofloxacin: OFX, gatifloxacin: GFX, delafloxacin: DFX), tetracycline (TET), and a mixture of these medicines (MIX) on S. vetulus thoracic limb rate (TLR) were examined in this study. After S. vetulus was exposed to 20 and 40 mg GFX L-1, 90% and 100% mortality rates were recorded. At 2.5-10 mg L-1, GFX dramatically lowered the TLR of S. vetulus, resulting in a median effective concentration of 9.69 mg L-1. TLRs increased when the organisms were exposed to 10-40 mg L-1 of CFX and 1.25-40 mg L-1 of OFX. However, DFX and TET exposures did not affect TLRs. Exposure to MIX reduced TLR only at 40 mg L-1, suggesting an antagonistic interaction among the five pharmaceuticals. This study demonstrated that S. vetulus physiological responses to antibiotics, even in the same class, are complex and elusive. Beyond a common additive concentration principle, the antagonistic interaction of antibiotic mixture indicates a high level of uncertainty in terms of ecological dangers. We initially introduce S. vetulus to ecotoxicological studies of antibiotics, presenting the species as a low-cost model for physiological investigations of environmental xenobiotics.
Collapse
Affiliation(s)
- Tan-Duc Nguyen
- Graduate school of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Japan
| | - Tomoaki Itayama
- Graduate school of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Japan.
| | - Rameshprabu Ramaraj
- School of Renewable Energy, Maejo University, Sansai, Chiang Mai 50290, Thailand
| | - Norio Iwami
- School of Science and Engineering, Meise University, 2-1-1 Hodokubo, Hino-shi, Tokyo 191-8506, Japan
| | - Kazuya Shimizu
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki, Japan
| | - Thanh-Son Dao
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Thanh Luu Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 100000, Viet Nam; Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City 700000, Viet Nam
| | - Hideaki Maseda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
10
|
Herbert A, Hancock CN, Cox B, Schnabel G, Moreno D, Carvalho R, Jones J, Paret M, Geng X, Wang H. Oxytetracycline and Streptomycin Resistance Genes in Xanthomonas arboricola pv. pruni, the Causal Agent of Bacterial Spot in Peach. Front Microbiol 2022; 13:821808. [PMID: 35283838 PMCID: PMC8914263 DOI: 10.3389/fmicb.2022.821808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 01/12/2023] Open
Abstract
Xanthomonas arboricola pv. pruni (Xap) causes bacterial spot, a major worldwide disease of Prunus species. Very few chemical management options are available for this disease and frequent applications of oxytetracycline (OTC) in the United States peach orchards have raised concerns about resistance development. During 2017-2020, 430 Xap strains were collected from ten peach orchards in South Carolina. Seven OTC-resistant (OTC R ) Xap strains were found in 2017 and 2020 from four orchards about 20-270 km apart. Interestingly, the seven strains were also resistant to streptomycin (STR). Six strains grew on media amended with ≤100 μg/mL OTC, while one strain, R1, grew on ≤250 μg/mL OTC. Genome sequence analysis of four representative OTC R strains revealed a 14-20 kb plasmid carrying tetC, tetR, and strAB in each strain. These three genes were transferable to Xanthomonas perforans via conjugation, and they were PCR confirmed in all seven OTC R Xap strains. When tetC and tetR were cloned and expressed together in a sensitive strain, the transconjugants showed resistance to ≤100 μg/mL OTC. When tetC was cloned and expressed alone in a sensitive strain, the transconjugants showed resistance to ≤250 μg/mL OTC. TetC and tetR expression was inducible by OTC in all six wild-type strains resistant to ≤100 μg/mL OTC. However, in the R1 strain resistant to ≤250 μg/mL OTC, tetR was not expressed, possibly due to the presence of Tn3 in the tetR gene, and in this case tetC was constitutively expressed. These data suggest that tetC confers OTC resistance in Xap strains, and tetR regulates the level of OTC resistance conferred by tetC. To our knowledge, this is the first report of OTC resistance in plant pathogenic xanthomonads.
Collapse
Affiliation(s)
- Austin Herbert
- Edisto Research and Education Center, Clemson University, Blackville, SC, United States
| | - C. Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Brodie Cox
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Daniela Moreno
- Edisto Research and Education Center, Clemson University, Blackville, SC, United States
| | - Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Jeffrey Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Matthew Paret
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hehe Wang
- Edisto Research and Education Center, Clemson University, Blackville, SC, United States
| |
Collapse
|
11
|
Kang Y, Xu W, Zhang Y, Tang X, Bai Y, Hu J. Bloom of tetracycline resistance genes in mudflats following fertilization is attributed to the increases in the shared potential hosts between soil and organic fertilizers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13292-13304. [PMID: 34585344 DOI: 10.1007/s11356-021-16676-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
A field experiment was carried out in mudflats adjacent to the Yellow Sea, China, amended with sewage sludge and vermicompost by one-time input at different rates to reveal the fates of tetracycline resistance genes (TRGs) and their potential hosts in the soils. Quantitative PCR results showed that soils added with either sludge or vermicompost had more abundant TRGs compared with the non-fertilized soil. This situation was more obvious in sludge fertilized soils especially at high application rates. Vermicompost exhibited a promising outlook for improvement of the mudflats. The abundances of intI1 in the non-fertilized soils were significantly higher than those in fertilizers and fertilized soils. The potential hosts for intI1 were not shared with other TRGs-contained hosts, indicating that intI1 had little effects on the dissemination of TRGs in the mudflats. Moreover, the exclusive hosts for TRGs in fertilizers were not higher than those in the non-fertilized soils, illustrating little effects of fertilization on the introduction of exogenous TRGs into soil. The shared hosts between soil and fertilizers were highest among four possible sources, contributing vastly to the bloom of TRGs following fertilization. It was also shown that different organic fertilizers caused distinct categories of shared potential hosts for TRGs. RDA analysis further indicated that the abundances of the shared potential hosts were affected by soil nutrients. These results suggested that the development of TRGs in soil following fertilization depended on the shared potential hosts with similar ecological niches between soil and fertilizers.
Collapse
Affiliation(s)
- Yijun Kang
- Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, People's Republic of China
| | - Wenjie Xu
- Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yang Zhang
- Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Xingyao Tang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, People's Republic of China
| | - Yanchao Bai
- Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jian Hu
- Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.
- Yancheng Teachers University, 2 South Hope Avenue, Yancheng, Jiangsu, People's Republic of China, 224007.
| |
Collapse
|
12
|
Ye C, Huang S, Sha C, Wu J, Cui C, Su J, Ruan J, Tan J, Tang H, Xue J. Changes of bacterial community in arable soil after short-term application of fresh manures and organic fertilizer. ENVIRONMENTAL TECHNOLOGY 2022; 43:824-834. [PMID: 32757721 DOI: 10.1080/09593330.2020.1807608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The application of animal manure is highly recommended in agricultural production. However, the effect of different kinds of manures on bacterial community in farmland still remains unclear. In this study, a short-term field experiment was conducted to investigate the rapid effects of pig manure (PM), chicken manure (CM) and organic fertilizer (OF, composted by pig manure) application on soil physicochemical properties and soil bacterial community. The results showed that the application of CM and OF significantly increased soil bacterial richness (p < 0.05), mainly correlated with the increase of soil total nitrogen. Compared with CM and PM, OF had the greatest disturbance to soil bacterial structure. And total phosphorus showed the highest correlation with bacterial community. Meanwhile, the application of OF reduced the relative abundance of Actinobacteria, the organic matter synthetic bacteria, and Nitrospirae, the nitrifying bacteria, by 17.18% and 40.00%, respectively. 16S functional prediction analysis results shows that the application of OF increased the relative abundance of genes encoding Ribulose-1,5-bisphosphate carboxylase/oxyg (RuBsiCO), the genes involved in soil Calvin cycling, by 20.51%, and increased the relative abundance of genes encoding nitrous-oxide reductase by 44.86%. In conclusion, Short-term application of OF had greater disturbance to soil bacteria than CM and PM, and it had a significant influence on soil functional bacteria and genes involved in soil carbon and nitrogen cycling.
Collapse
Affiliation(s)
- Chunmei Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Shenfa Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
- Shanghai Academy of Environmental Sciences, Shanghai, People's Republic of China
| | - Chenyan Sha
- Shanghai Academy of Environmental Sciences, Shanghai, People's Republic of China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai, People's Republic of China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jinghua Su
- Shanghai Academy of Environmental Sciences, Shanghai, People's Republic of China
| | - Junjie Ruan
- Shanghai Academy of Environmental Sciences, Shanghai, People's Republic of China
| | - Juan Tan
- Shanghai Academy of Environmental Sciences, Shanghai, People's Republic of China
| | - Hao Tang
- Shanghai Academy of Environmental Sciences, Shanghai, People's Republic of China
| | - Jiajia Xue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Bamphensin N, Chopjitt P, Hatrongjit R, Boueroy P, Fittipaldi N, Gottschalk M, Kerdsin A. Non-Penicillin-Susceptible Streptococcus suis Isolated from Humans. Pathogens 2021; 10:pathogens10091178. [PMID: 34578210 PMCID: PMC8471365 DOI: 10.3390/pathogens10091178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis is a pathogen that causes invasive infections in humans and pigs. In this study, 448 S. suis isolates recovered from human infections in Thailand were characterized with regard to their antimicrobial susceptibility and antimicrobial resistance genes, including, for non-penicillin-susceptible isolates, sequence analyses of five genes encoding penicillin-binding proteins (pbp1a, pbp1b, pbp2a, pbp2b, and pbp2x). All 448 isolates were susceptible to cefepime and ceftriaxone, whereas 99.6%, 91.7%, and 72.9% of the isolates were susceptible to levofloxacin, penicillin, and chloramphenicol, respectively. Almost all isolates were resistant to tetracycline (98.2%), clindamycin (94%), erythromycin (92.4%), and azithromycin (82.6%). Genes tet(O) and ermB were the predominant resistance genes detected among macrolide- and tetracycline-resistant isolates. A total of 37 out of 448 isolates (8.2%) showed intermediately resistance to penicillin. Most of these isolates (59.5%) belonged to serotype 2-ST233. Comparison of the predicted translated sequences of five PBP proteins of a penicillin-susceptible isolate (strain P1/7) to the respective PBP sequences of ten non-penicillin-susceptible isolates revealed multiple amino acid substitutions. Isolates of CC221/234 showed highly variable amino acid substitutions in all PBP proteins. An ST104 isolate had a higher number of amino acid substitutions in PBP2X. Isolates belonging to CC233/379 had numerous substitutions in PBP2B and PBP2X. ST25 isolates exhibited fewer amino acid substitutions than isolates of other STs in all five PBPs. The antimicrobial resistance of S. suis is increasing worldwide; therefore, restrictions on antimicrobial use, continuous control, and the surveillance of this bacterium throughout the pork supply chain are crucial for ensuring public health and must be a priority concern.
Collapse
Affiliation(s)
- Nichari Bamphensin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
| | - Nahuel Fittipaldi
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (N.F.); (M.G.)
| | - Marcelo Gottschalk
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (N.F.); (M.G.)
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
- Correspondence: ; Tel.: +66-42-725-025
| |
Collapse
|
14
|
Ezugworie FN, Igbokwe VC, Onwosi CO. Proliferation of antibiotic-resistant microorganisms and associated genes during composting: An overview of the potential impacts on public health, management and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147191. [PMID: 33905939 DOI: 10.1016/j.scitotenv.2021.147191] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 05/28/2023]
Abstract
Antibiotic residues together with non-antibiotic drugs and heavy metals act as a selective pressure for the spread of antibiotic-resistant microorganisms (ARMs), antibiotic-resistant genes (ARGs), and mobile genetic elements (MGEs) during composting of livestock manure. ARMs, ARGs and MGEs have become emerging contaminants since they are regularly implicated in the majority of compost produced from livestock manure. The prevalence of these contaminants in agricultural soil receiving compost has drawn huge attention globally due to the risks they pose to the total environment. Although a large body of literature exists on the application of composting methods in minimizing the relative abundance of these contaminants, there is a paucity of information on the robustness, limitations and opportunities and threats of various composting protocols currently deployed. To address this knowledge gap, the current review compiled literature on the origin and mechanisms of the proliferation of ARMs, ARGs, and MGEs during composting of livestock manure. The effectiveness of current composting protocols in the reduction or removal of emerging contaminants was evaluated. Furthermore, the potential environmental impacts and human health risks of these contaminants following land application of compost were also presented. Finally, we propose some strategic approaches for the reduction of ARGs and MGEs during composting of livestock manure.
Collapse
Affiliation(s)
- Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Victor C Igbokwe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
15
|
Sanchez-Cid C, Guironnet A, Wiest L, Vulliet E, Vogel TM. Gentamicin Adsorption onto Soil Particles Prevents Overall Short-Term Effects on the Soil Microbiome and Resistome. Antibiotics (Basel) 2021; 10:191. [PMID: 33672037 PMCID: PMC7919497 DOI: 10.3390/antibiotics10020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Antibiotics used in agriculture may reach the environment and stimulate the development and dissemination of antibiotic resistance in the soil microbiome. However, the scope of this phenomenon and the link to soil properties needs to be elucidated. This study compared the short-term effects of a range of gentamicin concentrations on the microbiome and resistome of bacterial enrichments and microcosms of an agricultural soil using a metagenomic approach. Gentamicin impact on bacterial biomass was roughly estimated by the number of 16SrRNA gene copies. In addition, the soil microbiome and resistome response to gentamicin pollution was evaluated by 16SrRNA gene and metagenomic sequencing, respectively. Finally, gentamicin bioavailability in soil was determined. While gentamicin pollution at the scale of µg/g strongly influenced the bacterial communities in soil enrichments, concentrations up to 1 mg/g were strongly adsorbed onto soil particles and did not cause significant changes in the microbiome and resistome of soil microcosms. This study demonstrates the differences between the response of bacterial communities to antibiotic pollution in enriched media and in their environmental matrix, and exposes the limitations of culture-based studies in antibiotic-resistance surveillance. Furthermore, establishing links between the effects of antibiotic pollution and soil properties is needed.
Collapse
Affiliation(s)
- Concepcion Sanchez-Cid
- Environmental Microbial Genomics, Laboratoire Ampère, UMR 5005, CNRS, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully, France;
- Promega France, 69100 Charbonnières-les-Bains, France
| | - Alexandre Guironnet
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, CNRS, Université de Lyon, 69100 Villeurbanne, France; (A.G.); (L.W.); (E.V.)
| | - Laure Wiest
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, CNRS, Université de Lyon, 69100 Villeurbanne, France; (A.G.); (L.W.); (E.V.)
| | - Emmanuelle Vulliet
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, CNRS, Université de Lyon, 69100 Villeurbanne, France; (A.G.); (L.W.); (E.V.)
| | - Timothy M. Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, UMR 5005, CNRS, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully, France;
| |
Collapse
|
16
|
Liu N, Xu L, Han L, Huang G, Ciric L. Microbiological safety and antibiotic resistance risks at a sustainable farm under large-scale open-air composting and composting toilet systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123391. [PMID: 32653795 DOI: 10.1016/j.jhazmat.2020.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/10/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the microbial safety and antibiotic resistance risks of a sustainable ecological farm under large-scale open-air composting (OC) and green composting toilet systems (CT). Samples of livestock manure, compost, soil, vegetables, and rainwater were analysed to determine the best treatment of wastes and risk assessment of land application. Results showed that pathogenic bacteria (PB) in livestock manure was significantly greater than that in the surrounding topsoil, while the distribution of bacteria resistant to amoxicillin (AMX), tetracycline (TC), and amoxicillin-tetracycline (AMX- TC) was the opposite through long-term resistance selection pressure. E. coli and Enterococcus were the dominant pathogens in feces and surrounding soil, respectively, and AMX-resistant bacteria dominated soil, compost, and vegetable samples. Overall, while OC may significantly increase antibiotic resistance and effectively remove fecal PB, CT offers faster consumption with greater antibiotic resistant bacteria (ARB) removal but more PB. Moreover, PB and ARB were concentrated in mature compost, soil in planting areas, vegetables, and rainwater. In farm soil and vegetables, AMX-resistant and AMX-TC-resistant bacterial communities displayed similar composition. These findings may explain the main pathways of PB transmission, migration and accumulation of ARB in farms, and the potential risks to human health through the food chain.
Collapse
Affiliation(s)
- Ning Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Like Xu
- Healthy Infrastructure Research Group, Department of Civil, Environmental & Geomatic Engineering, University College London, Gower Street, WC1E 6BT London, UK
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Lena Ciric
- Healthy Infrastructure Research Group, Department of Civil, Environmental & Geomatic Engineering, University College London, Gower Street, WC1E 6BT London, UK.
| |
Collapse
|
17
|
Tetracycline Induces the Formation of Biofilm of Bacteria from Different Phases of Wastewater Treatment. Processes (Basel) 2020. [DOI: 10.3390/pr8080989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The study monitored the effect of tetracycline on bacterial biofilm formation and compared biofilm formation by resistant bacterial strains in different phases of the wastewater treatment process in wastewater treatment plant (WWTP). The crystal violet staining method was used to evaluate the biofilm formation. Biofilm-related bacterial properties were characterized by hydrophobicity, autoaggregation and motility tests. The relative abundance of tetracycline resistance genes (tetW, tetM, tetO, tetA and tetB) in wastewaters were subsequently quantified using qPCR. The results show that the isolates from the nitrification tank produce biofilm with up to 10 times greater intensity relative to the isolates from the sedimentation tank. In isolates of Aeromonas sp. from the nitrification tank, increased biofilm production in the occurrence of tetracycline from a concentration of 0.03125 µg/mL was observed. The tetW gene showed the highest relative abundance out of all the tested genes. From the sampling points, its abundance was the highest in the sedimentation tank of the WWTP. Based on these results, it can be assumed that resistant bacteria are able to form a biofilm and sub-inhibitory tetracycline concentrations induce biofilm formation. WWTPs thus represent a reservoir of antibiotic resistance genes and contribute to the spread of resistance in the natural environment.
Collapse
|
18
|
Li N, Zhu C, Liu C, Zhang X, Ding J, Zandi P, Li H. The persistence of antimicrobial resistance and related environmental factors in abandoned and working swine feedlots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113116. [PMID: 31622957 DOI: 10.1016/j.envpol.2019.113116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Swine feedlots that have operated in the absence of adequate disposal facilities are being demolished under the new environmental protection policies in China. The environmental behavior and transmission risks of antimicrobial resistance genes (ARGs) are unclear for these abandoned swine feedlots. We examined 40 soil samples that originated from the soils adjacent to two abandoned and two working swine feedlots to explore: 1) the distribution patterns and vertical transmission of 17 ARGs and two integron genes and 2) the bacterial community as well as their correlation with environmental factors and target genes. We found that seven and nine out of forty-eight subtypes of veterinary antimicrobials (VAs) were detected in the soil near abandoned feedlots and working feedlots, respectively. Three tet genes (tetM, tetO and tetW) were particularly enriched in the soil adjacent to both abandoned and working feedlots. The tetM gene was a "hub" on the network of the topsoil. The relative abundance of Firmicutes ranged from 2.5 to 9% in the soil near two Beijing feedlots and was significantly higher than that in the upstream blank control (CK soil) (ANOVA, p < 0.05). Overall, the ARG distribution patterns in the soils adjacent to abandoned swine feedlots were similar to the working feedlots. This study offers basic information on the prevalence and transmission risk of ARGs in abandoned swine feedlots and provides a reference for the restoration and reuse of demolished feedlots.
Collapse
Affiliation(s)
- Na Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chong Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Ximei Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Junjun Ding
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Peiman Zandi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
19
|
Pérez-Valera E, Kyselková M, Ahmed E, Sladecek FXJ, Goberna M, Elhottová D. Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. Sci Rep 2019; 9:6760. [PMID: 31043618 PMCID: PMC6494816 DOI: 10.1038/s41598-019-42734-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial genes responsible for resistance to antibiotic agents (ARG) are spread from livestock to soil through application of manure, threatening environmental and human health. We investigated the mechanisms of ARG dissemination and persistence to disentangle i) the influence of nutrients and microorganisms on the soil tetracycline (TET) resistome, and ii) the role of indigenous soil microbiota in preventing ARG spread. We analysed short-term (7 days) and persistent (84 days) effects of manure on the resistome of three antibiotic-free pasture soils. Four microcosm treatments were evaluated: control, mineral nutrient fertilization, and deposition of a layer of fresh manure onto soil or γ-irradiated soil. We quantified five TET-resistance genes, isolated 135 TET-resistant bacteria and sequenced both culturable TET-resistant and whole bacterial communities. Manure amendments, but not nutrient addition, increased the abundance of TET-r genes such as tet(Y). Such changes persisted with time, in contrast with the TET-resistant bacterial composition, which partially recovered after manure amendments. Manured γ-irradiated soils showed significantly lower nutrient content and higher TET-r gene abundance than non-irradiated soils, suggesting that native soil bacteria are essential for the fertilization effect of manure on soil as well as control the dissemination of potentially risky TET-r genes.
Collapse
Affiliation(s)
- Eduardo Pérez-Valera
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| | - Martina Kyselková
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Engy Ahmed
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Frantisek Xaver Jiri Sladecek
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Marta Goberna
- Department of Environment, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Carretera de la Coruña, Km 7.5, E-28040, Madrid, Spain
| | - Dana Elhottová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
20
|
Blau K, Jacquiod S, Sørensen SJ, Su JQ, Zhu YG, Smalla K, Jechalke S. Manure and Doxycycline Affect the Bacterial Community and Its Resistome in Lettuce Rhizosphere and Bulk Soil. Front Microbiol 2019; 10:725. [PMID: 31057496 PMCID: PMC6477490 DOI: 10.3389/fmicb.2019.00725] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/22/2019] [Indexed: 12/23/2022] Open
Abstract
Manure application to agricultural soil introduces antibiotic residues and increases the abundance of antibiotic-resistant bacteria (ARB) carrying antibiotic resistance genes (ARGs), often located on mobile genetic elements (MGEs). The rhizosphere is regarded as a hotspot of microbial activity and gene transfer, which can alter and prolong the effects of organic fertilizers containing antibiotics. However, not much is known about the influence of plants on the effects of doxycycline applied to soil via manure. In this study, the effects of manure spiked with or without doxycycline on the prokaryotic community composition as well as on the relative abundance of ARGs and MGEs in lettuce rhizosphere and bulk soil were investigated by means of a polyphasic cultivation-independent approach. Samples were taken 42 days after manure application, and total community DNA was extracted. Besides a pronounced manure effect, doxycycline spiking caused an additional enrichment of ARGs and MGEs. High-throughput quantitative PCR revealed an increase in tetracycline, aminoglycoside, and macrolide-lincosamide-streptogramin B (MLSB) resistance genes associated with the application of manure spiked with doxycycline. This effect was unexpectedly lower in the rhizosphere than in bulk soil, suggesting a faster dissipation of the antibiotic and a more resilient prokaryotic community in the rhizosphere. Interestingly, the tetracycline resistance gene tetA(P) was highly enriched in manure-treated bulk soil and rhizosphere, with highest values observed in doxycycline-treated bulk soil, concurring with an enrichment of Clostridia. Thus, the gene tetA(P) might be a suitable marker of soil contamination by ARB, ARGs, and antibiotics of manure origin. These findings illustrate that the effects of manure and doxycycline on ARGs and MGEs differ between rhizosphere and bulk soil, which needs to be considered when assessing risks for human health connected to the spread of ARGs in the environment.
Collapse
Affiliation(s)
- Khald Blau
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Samuel Jacquiod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J. Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kornelia Smalla
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
21
|
Phylogenetic Groups and Antimicrobial Susceptibility Patterns of Escherichia coli from Healthy Chicken in Eastern and Central Uganda. J Vet Med 2018; 2018:9126467. [PMID: 30159337 PMCID: PMC6106960 DOI: 10.1155/2018/9126467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/25/2018] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial resistance is an emerging problem in both humans and animals due to misuse and excessive use of drugs. Resistance in commensal E. coli isolates can be used to predict emergence of resistance in other gut microflora. The aim of this study is to determine the phylogenetic groups and antimicrobial resistance patterns of E. coli from healthy chickens in Uganda. The phylogenetic grouping of 120 fecal E. coli isolates from eastern and central Uganda was derived using the triplex PCR assay and their susceptibility patterns determined by agar disc diffusion method to 5 antimicrobial drugs. Most E. coli is segregated into phylogenetic group A comprising 84%, while 12% and 4% were in groups D and B1, respectively. Similarly most E. coli from central (87%) and eastern Uganda (82%) belonged to group A. Overall, 85 (70%) of E. coli were resistant to antimicrobial drugs, of which 72/101 (70%) are in PG A, 10 of 14 (71.4%) in PG D, and 3 of 5 (60%) in PG B1. Significantly, most of the isolates in PG A from both central (66.7%) and (60.6%) eastern Uganda were resistant to one antimicrobial. Resistance to tetracycline alone or in combination with other drugs for central and eastern Uganda in PG A is 51% and 55%, respectively. Multidrug resistance to tetracycline and ciprofloxacin or nalidixic acid was 10% and 18% in isolates from central and 10% and 12% in isolates from eastern region, respectively. Phylogenetic group A accounts for most of the E. coli in chicken from Uganda. No difference in the resistance rates between the phylogenetic groups of E. coli has been observed. The high prevalence of resistant E. coli strains from different phylogenetic groups in healthy chickens suggests antimicrobial drug selection pressure due to excessive drug in the rearing layer chickens.
Collapse
|