1
|
Mishra AK, Tripathi MK, Kumar D, Gupta SP. Neurons Specialize in Presynaptic Autophagy: A Perspective to Ameliorate Neurodegeneration. Mol Neurobiol 2024:10.1007/s12035-024-04399-8. [PMID: 39141193 DOI: 10.1007/s12035-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
The efficient and prolonged neurotransmission is reliant on the coordinated action of numerous synaptic proteins in the presynaptic compartment that remodels synaptic vesicles for neurotransmitter packaging and facilitates their exocytosis. Once a cycle of neurotransmission is completed, membranes and associated proteins are endocytosed into the cytoplasm for recycling or degradation. Both exocytosis and endocytosis are closely regulated in a timely and spatially constrained manner. Recent research demonstrated the impact of dysfunctional synaptic vesicle retrieval in causing retrograde degeneration of midbrain neurons and has highlighted the importance of such endocytic proteins, including auxilin, synaptojanin1 (SJ1), and endophilin A (EndoA) in neurodegenerative diseases. Additionally, the role of other associated proteins, including leucine-rich repeat kinase 2 (LRRK2), adaptor proteins, and retromer proteins, is being investigated for their roles in regulating synaptic vesicle recycling. Research suggests that the degradation of defective vesicles via presynaptic autophagy, followed by their recycling, not only revitalizes them in the active zone but also contributes to strengthening synaptic plasticity. The presynaptic autophagy rejuvenating terminals and maintaining neuroplasticity is unique in autophagosome formation. It involves several synaptic proteins to support autophagosome construction in tiny compartments and their retrograde trafficking toward the cell bodies. Despite having a comprehensive understanding of ATG proteins in autophagy, we still lack a framework to explain how autophagy is triggered and potentiated in compact presynaptic compartments. Here, we reviewed synaptic proteins' involvement in forming presynaptic autophagosomes and in retrograde trafficking of terminal cargos. The review also discusses the status of endocytic proteins and endocytosis-regulating proteins in neurodegenerative diseases and strategies to combat neurodegeneration.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, 494 337, Chhattisgarh, India.
| | - Manish Kumar Tripathi
- School of Pharmacy, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Dipak Kumar
- Department of Zoology, Munger University, Munger, Bihar, India
| | - Satya Prakash Gupta
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| |
Collapse
|
2
|
Wu A, Lee D, Xiong WC. VPS35 or retromer as a potential target for neurodegenerative disorders: barriers to progress. Expert Opin Ther Targets 2024; 28:701-712. [PMID: 39175128 PMCID: PMC11583022 DOI: 10.1080/14728222.2024.2392700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Vacuolar Protein Sorting 35 (VPS35) is pivotal in the retromer complex, governing transmembrane protein trafficking within cells, and its dysfunction is implicated in neurodegenerative diseases. A missense mutation, Asp620Asn (D620N), specifically ties to familial late-onset Parkinson's, while reduced VPS35 levels are observed in Alzheimer's, amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and tauopathies. VPS35's absence in certain neurons during development can initiate neurodegeneration, highlighting its necessity for neural health. Present therapeutic research mainly targets the clearance of harmful protein aggregates and symptom management. Innovative treatments focusing on VPS35 are under investigation, although fully understanding the mechanisms and optimal targeting strategies remain a challenge. AREAS COVERED This review offers a detailed account of VPS35's discovery, its role in neurodegenerative mechanisms - especially in Parkinson's and Alzheimer's - and its link to other disorders. It shines alight on recent insights into VPS35's function in development, disease, and as a therapeutic target. EXPERT OPINION VPS35 is integral to cellular function and disease association, making it a significant candidate for developing therapies. Progress in modulating VPS35's activity may lead to breakthrough treatments that not only slow disease progression but may also act as biomarkers for neurodegeneration risk, marking a step forward in managing these complex conditions.
Collapse
Affiliation(s)
- Anika Wu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
3
|
Fu C, Yang N, Chuang JZ, Nakajima N, Iraha S, Roy N, Wu Z, Jiang Z, Otsu W, Radu RA, Yang HH, Lee MP, Worgall TS, Xiong WC, Sung CH. Mutant mice with rod-specific VPS35 deletion exhibit retinal α-synuclein pathology-associated degeneration. Nat Commun 2024; 15:5970. [PMID: 39043666 PMCID: PMC11266608 DOI: 10.1038/s41467-024-50189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Vacuolar protein sorting 35 (VPS35), the core component of the retromer complex which regulates endosomal trafficking, is genetically linked with Parkinson's disease (PD). Impaired vision is a common non-motor manifestation of PD. Here, we show mouse retinas with VPS35-deficient rods exhibit synapse loss and visual deficit, followed by progressive degeneration concomitant with the emergence of Lewy body-like inclusions and phospho-α-synuclein (P-αSyn) aggregation. Ultrastructural analyses reveal VPS35-deficient rods accumulate aggregates in late endosomes, deposited as lipofuscins bound to P-αSyn. Mechanistically, we uncover a protein network of VPS35 and its interaction with HSC70. VPS35 deficiency promotes sequestration of HSC70 and P-αSyn aggregation in late endosomes. Microglia which engulf lipofuscins and P-αSyn aggregates are activated, displaying autofluorescence, observed as bright dots in fundus imaging of live animals, coinciding with pathology onset and progression. The Rod∆Vps35 mouse line is a valuable tool for further mechanistic investigation of αSyn lesions and retinal degenerative diseases.
Collapse
Affiliation(s)
- Cheng Fu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nan Yang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nobuyuki Nakajima
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Urology, Tokai University School of Medicipne, Tokyo, Japan
| | - Satoshi Iraha
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University; Department of Ophthalmology, National Sanatorium Kikuchi Keifuen, Kumamoto, Japan
| | - Neeta Roy
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhenquan Wu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Roxana A Radu
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Howard Hua Yang
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Ping Lee
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Kuijpers M. Keeping synapses in shape: degradation pathways in the healthy and aging brain. Neuronal Signal 2022; 6:NS20210063. [PMID: 35813265 PMCID: PMC9208270 DOI: 10.1042/ns20210063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Synapses maintain their molecular composition, plasticity and function through the concerted action of protein synthesis and removal. The complex and polarized neuronal architecture poses specific challenges to the logistics of protein and organelle turnover since protein synthesis and degradation mainly happen in the cell soma. In addition, post-mitotic neurons accumulate damage over a lifetime, challenging neuronal degradative pathways and making them particularly susceptible to the effects of aging. This review will summarize the current knowledge on neuronal protein turnover mechanisms with a particular focus on the presynapse, including the proteasome, autophagy and the endolysosomal route and their roles in regulating presynaptic proteostasis and function. In addition, the author will discuss how physiological brain aging, which entails a progressive decline in cognitive functions, affects synapses and the degradative machinery.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Ivanova D, Cousin MA. Synaptic Vesicle Recycling and the Endolysosomal System: A Reappraisal of Form and Function. Front Synaptic Neurosci 2022; 14:826098. [PMID: 35280702 PMCID: PMC8916035 DOI: 10.3389/fnsyn.2022.826098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
The endolysosomal system is present in all cell types. Within these cells, it performs a series of essential roles, such as trafficking and sorting of membrane cargo, intracellular signaling, control of metabolism and degradation. A specific compartment within central neurons, called the presynapse, mediates inter-neuronal communication via the fusion of neurotransmitter-containing synaptic vesicles (SVs). The localized recycling of SVs and their organization into functional pools is widely assumed to be a discrete mechanism, that only intersects with the endolysosomal system at specific points. However, evidence is emerging that molecules essential for endolysosomal function also have key roles within the SV life cycle, suggesting that they form a continuum rather than being isolated processes. In this review, we summarize the evidence for key endolysosomal molecules in SV recycling and propose an alternative model for membrane trafficking at the presynapse. This includes the hypotheses that endolysosomal intermediates represent specific functional SV pools, that sorting of cargo to SVs is mediated via the endolysosomal system and that manipulation of this process can result in both plastic changes to neurotransmitter release and pathophysiology via neurodegeneration.
Collapse
Affiliation(s)
- Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Daniela Ivanova,
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Michael A. Cousin,
| |
Collapse
|
6
|
Gock N, Follett J, Rintoul GL, Beischlag TV, Lee FJ. Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. Synapse 2022; 76:e22224. [DOI: 10.1002/syn.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Gock
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience Department of Neurology University of Florida 1149 Newell Dr Gainesville FL 32610‐0236 United States
| | - Gordon L Rintoul
- Department of Biological Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| |
Collapse
|
7
|
Kadgien CA, Kamesh A, Milnerwood AJ. Endosomal traffic and glutamate synapse activity are increased in VPS35 D620N mutant knock-in mouse neurons, and resistant to LRRK2 kinase inhibition. Mol Brain 2021; 14:143. [PMID: 34530877 PMCID: PMC8447518 DOI: 10.1186/s13041-021-00848-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Vacuolar protein sorting 35 (VPS35) regulates neurotransmitter receptor recycling from endosomes. A missense mutation (D620N) in VPS35 leads to autosomal-dominant, late-onset Parkinson's disease. Here, we study the basic neurobiology of VPS35 and Parkinson's disease mutation effects in the D620N knock-in mouse and the effect of leucine-rich repeat kinase 2 (LRRK2) inhibition on synaptic phenotypes. The study was conducted using a VPS35 D620N knock-in mouse that expresses VPS35 at endogenous levels. Protein levels, phosphorylation states, and binding ratios in brain lysates from knock-in mice and wild-type littermates were assayed by co-immunoprecipitation and western blot. Dendritic protein co-localization, AMPA receptor surface expression, synapse density, and glutamatergic synapse activity in primary cortical cultures from knock-in and wild-type littermates were assayed using immunocytochemistry and whole-cell patch clamp electrophysiology. In brain tissue, we confirm VPS35 forms complexes with LRRK2 and AMPA-type glutamate receptor GluA1 subunits, in addition to NMDA-type glutamate receptor GluN1 subunits and D2-type dopamine receptors. Receptor and LRRK2 binding was unaltered in D620N knock-in mice, but we confirm the mutation results in reduced binding of VPS35 with WASH complex member FAM21, and increases phosphorylation of the LRRK2 kinase substrate Rab10, which is reversed by LRRK2 kinase inhibition in vivo. In cultured cortical neurons from knock-in mice, pRab10 is also increased, and reversed by LRRK2 inhibition. The mutation also results in increased endosomal recycling protein cluster density (VPS35-FAM21 co-clusters and Rab11 clusters), glutamate transmission, and GluA1 surface expression. LRRK2 kinase inhibition, which reversed Rab10 hyper-phosphorylation, did not rescue elevated glutamate release or surface GluA1 expression in knock-in neurons, but did alter AMPAR traffic in wild-type cells. The results improve our understanding of the cell biology of VPS35, and the consequences of the D620N mutation in developing neuronal networks. Together the data support a chronic synaptopathy model for latent neurodegeneration, providing phenotypes and candidate pathophysiological stresses that may drive eventual transition to late-stage parkinsonism in VPS35 PD. The study demonstrates the VPS35 mutation has effects that are independent of ongoing LRRK2 kinase activity, and that LRRK2 kinase inhibition alters basal physiology of glutamate synapses in vitro.
Collapse
Affiliation(s)
- Chelsie A Kadgien
- Graduate Program in Neuroscience and Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Anusha Kamesh
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Austen J Milnerwood
- Graduate Program in Neuroscience and Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
8
|
Walsh RB, Dresselhaus EC, Becalska AN, Zunitch MJ, Blanchette CR, Scalera AL, Lemos T, Lee SM, Apiki J, Wang S, Isaac B, Yeh A, Koles K, Rodal AA. Opposing functions for retromer and Rab11 in extracellular vesicle traffic at presynaptic terminals. J Cell Biol 2021; 220:212178. [PMID: 34019080 PMCID: PMC8144913 DOI: 10.1083/jcb.202012034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer's disease, and suggest that misregulated EV traffic may be an underlying defect.
Collapse
Affiliation(s)
- Rylie B Walsh
- Department of Biology, Brandeis University, Waltham, MA
| | | | | | | | | | - Amy L Scalera
- Department of Biology, Brandeis University, Waltham, MA
| | - Tania Lemos
- Department of Biology, Brandeis University, Waltham, MA
| | - So Min Lee
- Department of Biology, Brandeis University, Waltham, MA
| | - Julia Apiki
- Department of Biology, Brandeis University, Waltham, MA
| | - ShiYu Wang
- Department of Biology, Brandeis University, Waltham, MA
| | - Berith Isaac
- Department of Biology, Brandeis University, Waltham, MA
| | - Anna Yeh
- Department of Biology, Brandeis University, Waltham, MA
| | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | | |
Collapse
|
9
|
Macías-Calvio V, Fuentealba LM, Marzolo MP. An update on cellular and molecular determinants of Parkinson's disease with emphasis on the role of the retromer complex. J Neurosci Res 2020; 99:163-179. [PMID: 32633426 DOI: 10.1002/jnr.24675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a highly prevalent neurodegenerative condition. The disease involves the progressive degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Among late-onset, familial forms of Parkinson are cases with mutations in the PARK17 locus encoding the vacuolar protein sorting 35 (Vps35), a subunit of the retromer complex. The retromer complex is composed of a heterotrimeric protein core (Vps26-Vps35-Vps29). The best-known role of retromer is the retrieval of cargoes from endosomes to the Golgi complex or the plasma membrane. However, recent literature indicates that retromer performs roles associated with lysosomal and mitochondrial functions and degradative pathways such as autophagy. A common point mutation affecting the retromer subunit Vps35 is D620N, which has been linked to the alterations in the aforementioned cellular processes as well as with neurodegeneration. Here, we review the main aspects of the malfunction of the retromer complex and its implications for PD pathology. Besides, we highlight several controversies still awaiting clarification.
Collapse
Affiliation(s)
- Vania Macías-Calvio
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luz-María Fuentealba
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Sassone J, Reale C, Dati G, Regoni M, Pellecchia MT, Garavaglia B. The Role of VPS35 in the Pathobiology of Parkinson's Disease. Cell Mol Neurobiol 2020; 41:199-227. [PMID: 32323152 DOI: 10.1007/s10571-020-00849-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
The vacuolar protein sorting 35 (VPS35) gene located on chromosome 16 has recently emerged as a cause of late-onset familial Parkinson's disease (PD) (PARK17). The gene encodes a 796-residue protein nearly ubiquitously expressed in human tissues. The protein localizes on endosomes where it assembles with other peripheral membrane proteins to form the retromer complex. How VPS35 mutations induce dopaminergic neuron degeneration in humans is still unclear. Because the retromer complex recycles the receptors that mediate the transport of hydrolase to lysosome, it has been suggested that VPS35 mutations lead to impaired lysosomal and autophagy function. Recent studies also demonstrated that VPS35 and the retromer complex influence mitochondrial homeostasis, suggesting that VPS35 mutations elicit mitochondrial dysfunction. More recent studies have identified a key role of VPS35 in neurotransmission, whilst others reported a functional interaction between VPS35 and other genes associated with familial PD, including α-SYNUCLEIN-PARKIN-LRRK2. Here, we review the biological role of VPS35 protein, the VPS35 mutations identified in human PD patients, and the potential molecular mechanism by which VPS35 mutations can induce progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanna Dati
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
11
|
Ye H, Ojelade SA, Li-Kroeger D, Zuo Z, Wang L, Li Y, Gu JYJ, Tepass U, Rodal AA, Bellen HJ, Shulman JM. Retromer subunit, VPS29, regulates synaptic transmission and is required for endolysosomal function in the aging brain. eLife 2020; 9:e51977. [PMID: 32286230 PMCID: PMC7182434 DOI: 10.7554/elife.51977] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/11/2020] [Indexed: 12/13/2022] Open
Abstract
Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson's and Alzheimer's disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.
Collapse
Affiliation(s)
- Hui Ye
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Neurology, Baylor College of MedicineHoustonUnited States
| | | | - David Li-Kroeger
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Liping Wang
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Yarong Li
- Department of Neurology, Baylor College of MedicineHoustonUnited States
| | - Jessica YJ Gu
- Department of Cell and Systems Biology, University of TorontoOntarioCanada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of TorontoOntarioCanada
| | | | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical InstituteHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Neurology, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| |
Collapse
|
12
|
Jullié D, Stoeber M, Sibarita JB, Zieger HL, Bartol TM, Arttamangkul S, Sejnowski TJ, Hosy E, von Zastrow M. A Discrete Presynaptic Vesicle Cycle for Neuromodulator Receptors. Neuron 2020; 105:663-677.e8. [PMID: 31837915 PMCID: PMC7035187 DOI: 10.1016/j.neuron.2019.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/02/2019] [Accepted: 11/11/2019] [Indexed: 01/27/2023]
Abstract
A major function of GPCRs is to inhibit presynaptic neurotransmitter release, requiring ligand-activated receptors to couple locally to effectors at terminals. The current understanding of how this is achieved is through receptor immobilization on the terminal surface. Here, we show that opioid peptide receptors, GPCRs that mediate highly sensitive presynaptic inhibition, are instead dynamic in axons. Opioid receptors diffuse rapidly throughout the axon surface and internalize after ligand-induced activation specifically at presynaptic terminals. We delineate a parallel regulated endocytic cycle for GPCRs operating at the presynapse, separately from the synaptic vesicle cycle, which clears activated receptors from the surface of terminals and locally reinserts them to maintain the diffusible surface pool. We propose an alternate strategy for achieving local control of presynaptic effectors that, opposite to using receptor immobilization and enforced proximity, is based on lateral mobility of receptors and leverages the inherent allostery of GPCR-effector coupling.
Collapse
Affiliation(s)
- Damien Jullié
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California 94158, USA,Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, California 94158, USA
| | - Miriam Stoeber
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California 94158, USA,Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, California 94158, USA,Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
| | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, 33077 Bordeaux, France,Interdisciplinary Institute for Neuroscience, University of Bordeaux, 33077 Bordeaux, France
| | - Hanna L. Zieger
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, 33077 Bordeaux, France,Interdisciplinary Institute for Neuroscience, University of Bordeaux, 33077 Bordeaux, France
| | - Thomas M. Bartol
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Seksiri Arttamangkul
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Terrence J. Sejnowski
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, 33077 Bordeaux, France,Interdisciplinary Institute for Neuroscience, University of Bordeaux, 33077 Bordeaux, France
| | - Mark von Zastrow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California 94158, USA,Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, California 94158, USA,Lead contact,Correspondence:
| |
Collapse
|
13
|
Choi SA, Kim YH, Park YH, Yang HJ, Jeong PS, Cha JJ, Yoon SB, Kim JS, Song BS, Lee JH, Sim BW, Huh JW, Song IS, Lee SR, Kim MK, Kim JM, Bae YS, Imakawa K, Kim SU, Chang KT. Novel crosstalk between Vps26a and Nox4 signaling during neurogenesis. Cell Death Differ 2018; 26:1582-1599. [PMID: 30464227 PMCID: PMC6748115 DOI: 10.1038/s41418-018-0226-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022] Open
Abstract
Despite numerous studies on the molecular switches governing the conversion of stemness to differentiation in embryonic stem cells (ESCs), little is known about the involvement of the retromer complex. Under neural differentiation conditions, Vps26a deficiency (Vps26a-/-) or knockdown suppressed the loss of stemness and subsequent neurogenesis from ESCs or embryonic carcinoma cells, respectively, as evidenced by the long-lasting expression of stemness markers and the slow appearance of neuronal differentiation markers. Interestingly, relatively low reactive oxygen species (ROS) levels were generated during differentiation of Vps26a-/- ESCs, and treatment with an antioxidant or inhibitor of NADPH oxidase (Nox), a family of ROS-generating enzymes, led to restoration of stemness in wild-type cells to the level of Vps26a-/- cells during neurogenesis. Importantly, a novel interaction between Vps26a and Nox4 linked to the activation of ERK1/2 depended highly on ROS levels during neurogenesis, which were strongly suppressed in differentiating Vps26a-/- ESCs. Moreover, inhibition of phosphorylated ERK1/2 (pERK1/2) resulted in decreased ROS and Nox4 levels, indicating the mutual dependency between pERK1/2 and Nox4-derived ROS during neurogenesis. These results suggest that Vps26a regulates stemness by actively cooperating with the Nox4/ROS/ERK1/2 cascade during neurogenesis. Our findings have important implications for understanding the regulation of stemness via crosstalk between the retromer molecule and redox signaling, and may contribute to the development of ESC-based therapeutic strategies for the mass production of target cells.
Collapse
Affiliation(s)
- Seon-A Choi
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Jae-Jin Cha
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Seung-Bin Yoon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Ji-Su Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jong-Hee Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Jae-Won Huh
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - In-Sung Song
- Department of Biomedical Sciences, College of Medicine, Ulsan University, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sang-Rae Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Min-Kyu Kim
- Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jin-Man Kim
- College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan.,Institute of Agricultural Sciences, Tokai University, Kumamoto, 862-8652, Japan
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea. .,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
14
|
Brodin L, Shupliakov O. Retromer in Synaptic Function and Pathology. Front Synaptic Neurosci 2018; 10:37. [PMID: 30405388 PMCID: PMC6207580 DOI: 10.3389/fnsyn.2018.00037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
The retromer complex mediates export of select transmembrane proteins from endosomes to the trans-Golgi network (TGN) or to the plasma membrane. Dysfunction of retromer has been linked with slowly progressing neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease (AD and PD). As these disorders affect synapses it is of key importance to clarify the function of retromer-dependent protein trafficking pathways in pre- and postsynaptic compartments. Here we discuss recent insights into the roles of retromer in the trafficking of synaptic vesicle proteins, neurotransmitter receptors and other synaptic proteins. We also consider evidence that implies synapses as sites of early pathology in neurodegenerative disorders, pointing to a possible role of synaptic retromer dysfunction in the initiation of disease.
Collapse
Affiliation(s)
- Lennart Brodin
- Department of Neuroscience, Karolinska Institutet (KI), Stockholm, Sweden
| | - Oleg Shupliakov
- Department of Neuroscience, Karolinska Institutet (KI), Stockholm, Sweden.,Institute of Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia
| |
Collapse
|
15
|
Limanaqi F, Biagioni F, Gambardella S, Ryskalin L, Fornai F. Interdependency Between Autophagy and Synaptic Vesicle Trafficking: Implications for Dopamine Release. Front Mol Neurosci 2018; 11:299. [PMID: 30186112 PMCID: PMC6110820 DOI: 10.3389/fnmol.2018.00299] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy (ATG) and the Ubiquitin Proteasome (UP) are the main clearing systems of eukaryotic cells, in that being ultimately involved in degrading damaged and potentially harmful cytoplasmic substrates. Emerging evidence implicates that, in addition to their classic catalytic function in the cytosol, autophagy and the proteasome act as modulators of neurotransmission, inasmuch as they orchestrate degradation and turnover of synaptic vesicles (SVs) and related proteins. These findings are now defining a novel synaptic scenario, where clearing systems and secretory pathways may be considered as a single system, which senses alterations in quality and distribution (in time, amount and place) of both synaptic proteins and neurotransmitters. In line with this, in the present manuscript we focus on evidence showing that, a dysregulation of secretory and trafficking pathways is quite constant in the presence of an impairment of autophagy-lysosomal machinery, which eventually precipitates synaptic dysfunction. Such a dual effect appears not to be just incidental but it rather represents the natural evolution of archaic cell compartments. While discussing these issues, we pose a special emphasis on the role of autophagy upon dopamine (DA) neurotransmission, which is early affected in several neurological and psychiatric disorders. In detail, we discuss how autophagy is engaged not only in removing potentially dangerous proteins, which can interfere with the mechanisms of DA release, but also the fate of synaptic DA vesicles thus surveilling DA neurotransmission. These concepts contribute to shed light on early mechanisms underlying intersection of autophagy with DA-related synaptic disorders.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|