1
|
Guo W, Yu Z, Li T, Lu L, Lin H, Liao Y, Zheng Y, Liu Y, Alevtinovna GM, Barysavets DS, Chen J, Zan J, Lu J. Development of a time-resolved immunochromatographic test strip for rapid and quantitative determination of retinol-binding protein 4 in urine. Mikrochim Acta 2024; 191:311. [PMID: 38717575 DOI: 10.1007/s00604-024-06381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
Urine retinol-binding protein 4 (RBP4) has recently been reported as a novel earlier biomarker of chronic kidney disease (CKD) which is a global public health problem with high morbidity and mortality. Accurate and rapid detection of urine RBP4 is essential for early monitor of impaired kidney function and prevention of CKD progression. In the present study, we developed a time-resolved fluorescence immunochromatographic test strip (TRFIS) for the quantitative and rapid detection of urine RBP4. This TRFIS possessed excellent linearity ranging from 0.024 to 12.50 ng/mL for the detection of urine RBP4, and displayed a good linearity (Y = 239,581 × X + 617,238, R2 = 0.9902), with the lowest visual detection limit of 0.049 ng/mL. This TRFIS allows for quantitative detection of urine RBP4 within 15 min and shows high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 8%, respectively. Additionally, this TRFIS was applied to detect RBP4 in the urine samples from healthy donors and patients with CKD, and the results of TRFIS could efficiently discern the patients with CKD from the healthy donors. The developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range, and is suitable for rapid and quantitative determination of urine RBP4.
Collapse
Affiliation(s)
- Wenjie Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhiyong Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Tianxu Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Lingfei Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Huiqi Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ying Liao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yanghao Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, University of Chinese Medicine, Guangzhou, Guangdong, China
| | | | - Dzmitry S Barysavets
- Institute of Experimental Veterinary Medicine named of S.N. Vyshelessky, Minsk, Belarus
| | - Jinping Chen
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
- The Second Affiliated Hospital of Guangzhou, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
2
|
Moabelo KL, Lerga TM, Jauset-Rubio M, Sibuyi NRS, O’Sullivan CK, Meyer M, Madiehe AM. A Label-Free Gold Nanoparticles-Based Optical Aptasensor for the Detection of Retinol Binding Protein 4. BIOSENSORS 2022; 12:1061. [PMID: 36551028 PMCID: PMC9775657 DOI: 10.3390/bios12121061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 05/31/2023]
Abstract
Retinol-binding protein 4 (RBP4) has been implicated in insulin resistance in rodents and humans with obesity and T2DM, making it a potential biomarker for the early diagnosis of T2DM. However, diagnostic tools for low-level detection of RBP4 are still lagging behind. Therefore, there is an urgent need for the development of T2DM diagnostics that are rapid, cost-effective and that can be used at the point-of-care (POC). Recently, nano-enabled biosensors integrating highly selective optical detection techniques and specificity of aptamers have been widely developed for the rapid detection of various targets. This study reports on the development of a rapid gold nanoparticles (AuNPs)-based aptasensor for the detection of RBP4. The retinol-binding protein aptamer (RBP-A) is adsorbed on the surface of the AuNPs through van der Waals and hydrophobic interactions, stabilizing the AuNPs against sodium chloride (NaCl)-induced aggregation. Upon the addition of RBP4, the RBP-A binds to RBP4 and detaches from the surface of the AuNPs, leaving the AuNPs unprotected. Addition of NaCl causes aggregation of AuNPs, leading to a visible colour change of the AuNPs solution from ruby red to purple/blue. The test result was available within 5 min and the assay had a limit of detection of 90.76 ± 2.81 nM. This study demonstrates the successful development of a simple yet effective, specific, and colorimetric rapid assay for RBP4 detection.
Collapse
Affiliation(s)
- Koena L. Moabelo
- Nanobiotechnology Research Group, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
| | - Teresa M. Lerga
- Interfibio Research Group, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Miriam Jauset-Rubio
- Interfibio Research Group, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
| | - Ciara K. O’Sullivan
- Interfibio Research Group, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
| | - Abram M. Madiehe
- Nanobiotechnology Research Group, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
| |
Collapse
|
3
|
Li H, He X, Wen S, Yang L, Chen Q, Li Y, Huang S, Huang X, Wan F, He M. Optimised expression and purification of RBP4 and preparation of anti-RBP4 monoclonal antibody. FEBS Open Bio 2021; 12:430-442. [PMID: 34889069 PMCID: PMC8804599 DOI: 10.1002/2211-5463.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/26/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022] Open
Abstract
The expression level of retinol-binding protein 4 (RBP4) protein is closely related to liver damage and plays an important role in the diagnosis and prognosis of cancer. However, the preparation of anti-RBP4 mAb or exploration on the application of anti-RBP4 mAb has not been reported thus far. In the present study, we constructed a pET30a-RBP4 recombinant vector, used E. coli BL21 (DE3) as the vector to express the RBP4 recombinant protein and prepared anti-RBP4 mAb using hybridoma technology. We performed immunohistochemical analysis on hepatocellular carcinoma (HCC) and adjacent tissues by using this anti-RBP4 mAb. In addition to the high-purity RBP4 recombinant protein, we successfully developed the anti-RBP4 mAb with high affinity and specificity; it binds to natural RBP4 protein and is suitable for immunohistochemical analysis.
Collapse
Affiliation(s)
- Hui Li
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiao He
- School of Public Health, Guilin Medical School, China
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning, China.,Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Qiuli Chen
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Yasi Li
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Shiping Huang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Fengjie Wan
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning, China.,Laboratory Animal Center, Guangxi Medical University, Nanning, China.,Ministry of Education, Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Torabi R, Ghourchian H. Ultrasensitive nano-aptasensor for monitoring retinol binding protein 4 as a biomarker for diabetes prognosis at early stages. Sci Rep 2020; 10:594. [PMID: 31953481 PMCID: PMC6969062 DOI: 10.1038/s41598-019-57396-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/30/2019] [Indexed: 11/09/2022] Open
Abstract
Prognosis of diabetes risk at early stages has become an important challenge due to the prevalence of this disease. Retinol binding protein 4 (RBP4), a recently identified adipokine, has been introduced as a predictor for the onset of diabetes type 2 in coming future. In the present report a sensitive aptasensor for detection of RBP4 is introduced. The immune sandwich was prepared by immobilizing biotinylated RBP4 aptamers on streptavidin coated polystyrene micro-wells and then incubation of RBP4 as target and finally addition of luminol-antibody bearing intercross-linked gold nanoparticles as reporter. The chemiluminescence intensity was recorded in the presence of hydrogen peroxide as oxidant agent and Au3+ as an efficient catalyst for luminol oxidation. The aptasensor responded to RBP4 in the linear concentration range from 0.001 to 2 ng/mL and detection limit was slightly less than 1 pg/mL. The proposed method has successfully applied to determine the RBP4 in patient real serums. By using the intercross-linked gold nanoparticles, it is possible to provide more accessible surface for immobilizing luminol and enhance the chemiluminescence signal. Therefore, the analytical parameters such as sensitivity, specificity, detection limit and linear range were improved in compare to the biosensors reported in the literature.
Collapse
Affiliation(s)
- Raheleh Torabi
- Laboratory of Bioanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hedayatollah Ghourchian
- Laboratory of Bioanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran. .,Nanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran.
| |
Collapse
|