1
|
Liang W, Zhou C, Deng Y, Fu L, Zhao J, Long H, Ming W, Shang J, Zeng B. The current status of various preclinical therapeutic approaches for tendon repair. Ann Med 2024; 56:2337871. [PMID: 38738394 PMCID: PMC11095292 DOI: 10.1080/07853890.2024.2337871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Yongjun Deng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
2
|
Shen C, Sun X, Li Z, Zhang R, Huang J, Tang K, Wang T, Xie Y, Chen L, Nie M. Panda Rope Bridge Technique promoted Achilles tendon regeneration in a novel rat tendon defect model. Knee Surg Sports Traumatol Arthrosc 2024. [PMID: 39342498 DOI: 10.1002/ksa.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE This study aimed to determine whether the Achilles tendon tissue can undergo the pathological process of Achilles tendon regeneration after the Panda Rope Bridge Technique (PRBT). METHODS Rats (n = 120) that operated with Achilles tendon rupture were divided into three treatment groups: Defect group (D group), PRBT group and Defect + Fix group (DF group). The D group represented natural healing with no treatment, the PRBT group represented healing receiving PRBT treatment and the DF group represented healing through conservative treatment by ankle fixation. The morphological, histological and biomechanical properties of the defective Achilles tendon were assessed at 7, 10, 12, 14, 28 and 56 days postoperatively. RESULTS Compared to that observed in the other two groups, defected rat Achilles tendons that underwent PRBT recruited more cells earlier, eventually forming mature tendons, as revealed by histological analysis. PRBT also enabled defected tendons to regain stronger mechanical properties, thereby improving the prognosis. This improvement may be related to the earlier polarization of macrophages. CONCLUSION By establishing and using a novel surgical model of Achilles tendon rupture in rats, most injured Achilles tendons can regenerate and regain normal histological properties, whereas tendons with other interventions formed fibrotic scar tissue. The strong regenerative capacity of tendon tissue enabled us to describe the pathological process of tendon regeneration after PRBT surgery in detail, which would aid in the treatment of tendon injuries. PRBT promotes Achilles tendon regeneration and has the potential to become a standard treatment. LEVEL OF EVIDENCE Not applicable.
Collapse
Affiliation(s)
- Chen Shen
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Li
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruobin Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junlan Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Kaiying Tang
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangli Xie
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Mao Nie
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Graham JP, Castro JG, Werba LC, Fardone LC, Francis KP, Ramamurthi A, Layden M, McCarthy HO, Gonzalez-Fernandez T. Versatile Cell Penetrating Peptide for Multimodal CRISPR Gene Editing in Primary Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614499. [PMID: 39386541 PMCID: PMC11463527 DOI: 10.1101/2024.09.23.614499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
CRISPR gene editing offers unprecedented genomic and transcriptomic control for precise regulation of cell function and phenotype. However, delivering the necessary CRISPR components to therapeutically relevant cell types without cytotoxicity or unexpected side effects remains challenging. Viral vectors risk genomic integration and immunogenicity while non-viral delivery systems are challenging to adapt to different CRISPR cargos, and many are highly cytotoxic. The arginine-alanine-leucine-alanine (RALA) cell penetrating peptide is an amphiphilic peptide that self-assembles into nanoparticles through electrostatic interactions with negatively charged molecules before delivering them across the cell membrane. This system has been used to deliver DNAs, RNAs, and small anionic molecules to primary cells with lower cytotoxicity compared to alternative non-viral approaches. Given the low cytotoxicity, versatility, and competitive transfection rates of RALA, we aimed to establish this peptide as a new CRISPR delivery system in a wide range of molecular formats across different editing modalities. We report that RALA was able to effectively encapsulate and deliver CRISPR in DNA, RNA, and ribonucleic protein (RNP) formats to primary mesenchymal stem cells (MSCs). Comparisons between RALA and commercially available reagents revealed superior cell viability leading to higher numbers of transfected cells and the maintenance of cell proliferative capacity. We then used the RALA peptide for the knock-in and knock-out of reporter genes into the MSC genome as well as for the transcriptional activation of therapeutically relevant genes. In summary, we establish RALA as a powerful tool for safer and effective delivery of CRISPR machinery in multiple cargo formats for a wide range of gene editing strategies.
Collapse
Affiliation(s)
- Josh P. Graham
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | | | - Lisette C. Werba
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Luke C. Fardone
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | | | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Michael Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | | |
Collapse
|
4
|
Bai Y, Harvey T, Bilyou C, Hu M, Fan CM. Skeletal Muscle Satellite Cells Co-Opt the Tenogenic Gene Scleraxis to Instruct Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.10.570982. [PMID: 38168349 PMCID: PMC10760055 DOI: 10.1101/2023.12.10.570982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Skeletal muscles connect bones and tendons for locomotion and posture. Understanding the regenerative processes of muscle, bone and tendon is of importance to basic research and clinical applications. Despite their interconnections, distinct transcription factors have been reported to orchestrate each tissue's developmental and regenerative processes. Here we show that Scx expression is not detectable in adult muscle stem cells (also known as satellite cells, SCs) during quiescence. Scx expression begins in activated SCs and continues throughout regenerative myogenesis after injury. By SC-specific Scx gene inactivation (ScxcKO), we show that Scx function is required for SC expansion/renewal and robust new myofiber formation after injury. We combined single-cell RNA-sequencing and CUT&RUN to identify direct Scx target genes during muscle regeneration. These target genes help explain the muscle regeneration defects of ScxcKO, and are not overlapping with Scx -target genes identified in tendon development. Together with a recent finding of a subpopulation of Scx -expressing connective tissue fibroblasts with myogenic potential during early embryogenesis, we propose that regenerative and developmental myogenesis co-opt the Scx gene via different mechanisms.
Collapse
|
5
|
Niu X, Melendez DL, Raj S, Cai J, Senadeera D, Mandelbaum J, Shestopalov IA, Martin SD, Zon LI, Schlaeger TM, Lai LP, McMahon AP, Craft AM, Galloway JL. A conserved transcription factor regulatory program promotes tendon fate. Dev Cell 2024:S1534-5807(24)00489-1. [PMID: 39216481 DOI: 10.1016/j.devcel.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Tendons, which transmit force from muscles to bones, are highly prone to injury. Understanding the mechanisms driving tendon fate would impact efforts to improve tendon healing, yet this knowledge is limited. To find direct regulators of tendon progenitor emergence, we performed a zebrafish high-throughput chemical screen. We established forskolin as a tenogenic inducer across vertebrates, functioning through Creb1a, which is required and sufficient for tendon fate. Putative enhancers containing cyclic AMP (cAMP) response elements (CREs) in humans, mice, and fish drove specific expression in zebrafish cranial and fin tendons. Analysis of these genomic regions identified motifs for early B cell factor (Ebf/EBF) transcription factors. Mutation of CRE or Ebf/EBF motifs significantly disrupted enhancer activity and specificity in tendons. Zebrafish ebf1a/ebf3a mutants displayed defects in tendon formation. Notably, Creb1a/CREB1 and Ebf1a/Ebf3a/EBF1 overexpression facilitated tenogenic induction in zebrafish and human pluripotent stem cells. Together, our work identifies the functional conservation of two transcription factors in promoting tendon fate.
Collapse
Affiliation(s)
- Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Delmy L Melendez
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suyash Raj
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Junming Cai
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dulanjalee Senadeera
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Mandelbaum
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ilya A Shestopalov
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Scott D Martin
- Department of Sports Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Leonard I Zon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Thorsten M Schlaeger
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lick Pui Lai
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - April M Craft
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Wang K, Wang A, Cheng TS, Landao-Bassonga E, Lee C, Tai A, Damiani M, Zheng MH. Impact of age and donor sites on bioactivities of tendon cells in autologous tenocyte implantation (OrthoATI™) for treatment of chronic tendinopathy. J ISAKOS 2024; 9:603-608. [PMID: 38754838 DOI: 10.1016/j.jisako.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Autologous tenocyte implantation (OrthoATI™) therapy has demonstrated efficacy in treating patients with tendinopathy at various anatomical sites. This study evaluates the effect of patient age, gender, and tendon biopsy site on morphology, growth, and gene expression of autologous tendon cells used to treat chronic tendinopathy. METHODS Patients undergoing OrthoATI™ for tendinopathies between 2020 and 2022 were initially treated by biopsies taken from patella tendon (PT) or palmaris longus tendon (PL). The biopsies were sent to a Good Manufacturing Practice (GMP) cell laboratory where tendon cells were isolated, cultured, and expanded for four to six weeks. Cell morphology was assessed using phase contrast microscopy. Droplet digital PCR (ddPCR) was utilized for gene expression analysis. Dichotomous results were compared between groups using x2 or Fisher's exact tests with no adjustment for multiple comparisons. The nonparametric Mann-Whitney U and Kruskal-Wallis tests were utilized for the sex and age (<35y, 35-44y, 45-54y, >55y) analyses, respectively. All analyses were performed using IBM SPSS v27, and a two-tailed P-value of <0.05 was considered statistically significant. RESULTS 149 patients were included in the analysis. The PT was biopsied in 63 patients, and PL in 86 patients. There were no observer effects for age and gender between the PT and PL groups. There was no statistical significance between the PT and PL tendons for cell morphology, average cell population doubling time (PDT) (PT 83.9 vs PL 82.7 h, p = 0.482), cellular yield (PT 16.2 vs PL 15.2 × 106, p = 0.099), and cell viability (PT 98.7 vs PL 99.0%, p = 0.277). Additionally, ddPCR analyses showed no statistical significance found in tenogenic gene expression, including collagen type I (COL1, p = 0.86), tenomodulin (TNMD, p = 0.837) and scleraxis (SCX, p = 0.331) between PT- and PL-derived tendon cells. An age stratification analysis found no effect on growth and gene expression. COL1 was found to be higher in males when compared to females (P < 0.001), but otherwise no difference was seen in growth and gene expression in the gender analysis. No postbiopsy clinical complications were reported for either group. CONCLUSION This study has shown that the growth and bioactivities of tendon cells from tendon biopsies for OrthoATI™ are not affected by tendon donor site and age. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Katie Wang
- Department of Orthopaedics, Sir Charles Gairdner Hospital, WA, Australia
| | - Allan Wang
- Centre for Orthopaedic Research, University of Western Australia, WA, Australia
| | - Tak Sum Cheng
- Centre for Orthopaedic Research, University of Western Australia, WA, Australia
| | | | - Clair Lee
- Centre for Orthopaedic Research, University of Western Australia, WA, Australia
| | - Andrew Tai
- Centre for Orthopaedic Research, University of Western Australia, WA, Australia
| | - Maurizio Damiani
- Department of Orthopaedics, Australian National University Medical School, ACT, Australia.
| | - Ming Hao Zheng
- Centre for Orthopaedic Research, University of Western Australia, WA, Australia.
| |
Collapse
|
7
|
Haidar-Montes AA, Mauro A, El Khatib M, Prencipe G, Pierdomenico L, Tosi U, Wouters G, Cerveró-Varona A, Berardinelli P, Russo V, Barboni B. Mechanobiological Strategies to Enhance Ovine ( Ovis aries) Adipose-Derived Stem Cells Tendon Plasticity for Regenerative Medicine and Tissue Engineering Applications. Animals (Basel) 2024; 14:2233. [PMID: 39123758 PMCID: PMC11310997 DOI: 10.3390/ani14152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) hold promise for tendon repair, even if their tenogenic plasticity and underlying mechanisms remain only partially understood, particularly in cells derived from the ovine animal model. This study aimed to characterize oADSCs during in vitro expansion to validate their phenotypic properties pre-transplantation. Moreover, their tenogenic potential was assessed using two in vitro-validated approaches: (1) teno-inductive conditioned media (CM) derived from a co-culture between ovine amniotic stem cells and fetal tendon explants, and (2) short- (48 h) and long-term (14 days) seeding on highly aligned PLGA (ha-PLGA) electrospun scaffold. Our findings indicate that oADSCs can be expanded without senescence and can maintain the expression of stemness (Sox2, Oct4, Nanog) and mesenchymal (CD29, CD166, CD44, CD90) markers while remaining negative for hematopoietic (CD31, CD45) and MHC-II antigens. Of note, oADSCs' tendon differentiation potential greatly depended on the in vitro strategy. oADSCs exposed to CM significantly upregulated tendon-related genes (COL1, TNMD, THBS4) but failed to accumulate TNMD protein at 14 days of culture. Conversely, oADSCs seeded on ha-PLGA fleeces quickly upregulated the tendon-related genes (48 h) and in 14 days accumulated high levels of the TNMD protein into the cytoplasm of ADSCs, displaying a tenocyte-like morphology. This mechano-sensing cellular response involved a complete SOX9 downregulation accompanied by YAP activation, highlighting the efficacy of biophysical stimuli in promoting tenogenic differentiation. These findings underscore oADSCs' long-term self-renewal and tendon differentiative potential, thus opening their use in a preclinical setting to develop innovative stem cell-based and tissue engineering protocols for tendon regeneration, applied to the veterinary field.
Collapse
Affiliation(s)
- Arlette A. Haidar-Montes
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Laura Pierdomenico
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Guy Wouters
- FAT STEM Company, Erembodegem, 9300 Aalst, Belgium;
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| |
Collapse
|
8
|
Hirsinger E, Blavet C, Bonnin MA, Bellenger L, Gharsalli T, Duprez D. Limb connective tissue is organized in a continuum of promiscuous fibroblast identities during development. iScience 2024; 27:110305. [PMID: 39050702 PMCID: PMC11267076 DOI: 10.1016/j.isci.2024.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Connective tissue (CT), which includes tendon and muscle CT, plays critical roles in development, in particular as positional cue provider. Nonetheless, our understanding of fibroblast developmental programs is hampered because fibroblasts are highly heterogeneous and poorly characterized. Combining single-cell RNA-sequencing-based strategies including trajectory inference and in situ hybridization analyses, we address the diversity of fibroblasts and their developmental trajectories during chicken limb fetal development. We show that fibroblasts switch from a positional information to a lineage diversification program at the fetal period onset. Muscle CT and tendon are composed of several fibroblast populations that emerge asynchronously. Once the final muscle pattern is set, transcriptionally close populations are found in neighboring locations in limbs, prefiguring the adult fibroblast layers. We propose that the limb CT is organized in a continuum of promiscuous fibroblast identities, allowing for the robust and efficient connection of muscle to bone and skin.
Collapse
Affiliation(s)
- Estelle Hirsinger
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Cédrine Blavet
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Marie-Ange Bonnin
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Léa Bellenger
- Sorbonne Université, CNRS FR3631, Inserm U1156, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Paris, Institut Français de Bioinformatique (IFB), 75005 Paris, France
| | - Tarek Gharsalli
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Delphine Duprez
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| |
Collapse
|
9
|
Kaplan MM, Zeidler M, Knapp A, Hölzl M, Kress M, Fritsch H, Krogsdam A, Flucher BE. Spatial transcriptomics in embryonic mouse diaphragm muscle reveals regional gradients and subdomains of developmental gene expression. iScience 2024; 27:110018. [PMID: 38883818 PMCID: PMC11177202 DOI: 10.1016/j.isci.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The murine embryonic diaphragm is a primary model for studying myogenesis and neuro-muscular synaptogenesis, both representing processes regulated by spatially organized genetic programs of myonuclei located in distinct myodomains. However, a spatial gene expression pattern of embryonic mouse diaphragm has not been reported. Here, we provide spatially resolved gene expression data for horizontally sectioned embryonic mouse diaphragms at embryonic days E14.5 and E18.5. These data reveal gene signatures for specific muscle regions with distinct maturity and fiber type composition, as well as for a central neuromuscular junction (NMJ) and a peripheral myotendinous junction (MTJ) compartment. Comparing spatial expression patterns of wild-type mice with those of transgenic mice lacking either the skeletal muscle calcium channel CaV1.1 or β-catenin, reveals curtailed muscle development and dysregulated expression of genes potentially involved in NMJ formation. Altogether, these datasets provide a powerful resource for further studies of muscle development and NMJ formation in the mouse.
Collapse
Affiliation(s)
| | - Maximilian Zeidler
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Annabella Knapp
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Martina Hölzl
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Helga Fritsch
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Anne Krogsdam
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Yambe S, Yoshimoto Y, Ikeda K, Maki K, Takimoto A, Tokuyama A, Higuchi S, Yu X, Uchibe K, Miura S, Watanabe H, Sakuma T, Yamamoto T, Tanimoto K, Kondoh G, Kasahara M, Mizoguchi T, Docheva D, Adachi T, Shukunami C. Sclerostin modulates mineralization degree and stiffness profile in the fibrocartilaginous enthesis for mechanical tissue integrity. Front Cell Dev Biol 2024; 12:1360041. [PMID: 38895158 PMCID: PMC11183276 DOI: 10.3389/fcell.2024.1360041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024] Open
Abstract
Fibrocartilaginous entheses consist of tendons, unmineralized and mineralized fibrocartilage, and subchondral bone, each exhibiting varying stiffness. Here we examined the functional role of sclerostin, expressed in mature mineralized fibrochondrocytes. Following rapid mineralization of unmineralized fibrocartilage and concurrent replacement of epiphyseal hyaline cartilage by bone, unmineralized fibrocartilage reexpanded after a decline in alkaline phosphatase activity at the mineralization front. Sclerostin was co-expressed with osteocalcin at the base of mineralized fibrocartilage adjacent to subchondral bone. In Scx-deficient mice with less mechanical loading due to defects of the Achilles tendon, sclerostin+ fibrochondrocyte count significantly decreased in the defective enthesis where chondrocyte maturation was markedly impaired in both fibrocartilage and hyaline cartilage. Loss of the Sost gene, encoding sclerostin, elevated mineral density in mineralized zones of fibrocartilaginous entheses. Atomic force microscopy analysis revealed increased fibrocartilage stiffness. These lines of evidence suggest that sclerostin in mature mineralized fibrochondrocytes acts as a modulator for mechanical tissue integrity of fibrocartilaginous entheses.
Collapse
Affiliation(s)
- Shinsei Yambe
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazutaka Ikeda
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Orthodontics and Craniofacial Developmental Biology, Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aki Takimoto
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Shinnosuke Higuchi
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Xinyi Yu
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenta Uchibe
- Department of Maxillofacial Anatomy and Neuroscience, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigenori Miura
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Kasula V, Padala V, Gupta N, Doyle D, Bagheri K, Anastasio A, Adams SB. The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines 2024; 12:942. [PMID: 38790904 PMCID: PMC11117955 DOI: 10.3390/biomedicines12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Achilles tendon (AT) pathologies are common musculoskeletal conditions that can significantly impair function. Despite various traditional treatments, recovery is often slow and may not restore full functionality. The use of extracellular vesicles (EVs) has emerged as a promising therapeutic option due to their role in cell signaling and tissue regeneration. This systematic review aims to consolidate current in vivo animal study findings on the therapeutic effects of EVs on AT injuries. An extensive literature search was conducted using the PubMed, Scopus, and Embase databases for in vivo animal studies examining the effects of EVs on AT pathologies. The extracted variables included but were not limited to the study design, type of EVs used, administration methods, efficacy of treatment, and proposed therapeutic mechanisms. After screening, 18 studies comprising 800 subjects were included. All but one study reported that EVs augmented wound healing processes in the AT. The most proposed mechanisms through which this occurred were gene regulation of the extracellular matrix (ECM), the enhancement of macrophage polarization, and the delivery of therapeutic microRNAs to the injury site. Further research is warranted to not only explore the therapeutic potential of EVs in the context of AT pathologies, but also to establish protocols for their clinical application.
Collapse
Affiliation(s)
- Varun Kasula
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Vikram Padala
- Department of Orthopedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nithin Gupta
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - David Doyle
- Department of Orthopedic Surgery, Central Michigan University College of Medicine, Saginaw, MI 48602, USA
| | - Kian Bagheri
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Albert Anastasio
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel Bruce Adams
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Russo V, Prencipe G, Mauro A, El Khatib M, Haidar-Montes AA, Cambise N, Turriani M, Stöckl J, Steinberger P, Lancia L, Schnabelrauch M, Berardinelli P, Barboni B. Assessing the functional potential of conditioned media derived from amniotic epithelial stem cells engineered on 3D biomimetic scaffolds: An in vitro model for tendon regeneration. Mater Today Bio 2024; 25:101001. [PMID: 38420144 PMCID: PMC10899023 DOI: 10.1016/j.mtbio.2024.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
Tendon diseases pose a significant challenge in regenerative medicine due to the limited healing capacity of this tissue. Successful tendon regeneration requires a combination of angiogenesis, immune response, and tenogenesis processes. An effective tendon engineering (TE) strategy must finely tune this systems' interplay toward homeostasis. This study explores in vitro the paracrine influence of amniotic epithelial stem cells (AECs) engineered on a validated 3D electrospun PLGA scaffolds on HUVECs (angiogenesis), PBMCs/Jurkat (immune response), and AECs (tenogenic stem cell activation). The results revealed the role of scaffold's topology and topography in significantly modulating the paracrine profile of the cells. In detail, AECs basal release of bioactive molecules was boosted in the cells engineered on 3D scaffolds, in particular VEGF-D, b-FGF, RANTES, and PDGF-BB (p < 0.0001 vs. CMCTR). Moreover, biological tests demonstrated 3D scaffolds' proactive role in potentiating AECs' paracrine inhibition on PBMCs proliferation (CM3Dvs. CTR, p < 0.001) and LPS-mediated Jurkat activation with respect to controls (CM3D and CM2Dvs. CTR, p < 0.01 and p < 0.05, respectively), without exerting any in vitro pro-angiogenic role in promoting HUVECs proliferation and tubule formation. Teno-inductive paracrine ability of AECs engineered on 3D scaffolds was assessed on co-cultured ones, which formed tendon-like structures. These latter demonstrated an upregulation of tendon-related genes (SCX, THBS4, COL1, and TNMD) and the expression TNMD and COL1 proteins. Overall, this research underscores the pivotal role of the 3D topology and topography of PLGA tendon mimetic scaffolds in orchestrating effective tendon regeneration through modulating cell behavior and crosstalk between engineered stem cells and different subpopulations in the damaged tendon.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Arlette A Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Nico Cambise
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
- Research & Development Department, Assut Europe S.p.A., Magliano dei Marsi, 67062 L'Aquila, Italy
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
13
|
Chainani PH, Buzo Mena M, Yeritsyan D, Caro D, Momenzadeh K, Galloway JL, DeAngelis JP, Ramappa AJ, Nazarian A. Successive tendon injury in an in vivo rat overload model induces early damage and acute healing responses. Front Bioeng Biotechnol 2024; 12:1327094. [PMID: 38515627 PMCID: PMC10955762 DOI: 10.3389/fbioe.2024.1327094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/16/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Tendinopathy is a degenerative condition resulting from tendons experiencing abnormal levels of multi-scale damage over time, impairing their ability to repair. However, the damage markers associated with the initiation of tendinopathy are poorly understood, as the disease is largely characterized by end-stage clinical phenotypes. Thus, this study aimed to evaluate the acute tendon responses to successive fatigue bouts of tendon overload using an in vivo passive ankle dorsiflexion system. Methods: Sprague Dawley female rats underwent fatigue overloading to their Achilles tendons for 1, 2, or 3 loading bouts, with two days of rest in between each bout. Mechanical, structural, and biological assays were performed on tendon samples to evaluate the innate acute healing response to overload injuries. Results: Here, we show that fatigue overloading significantly reduces in vivo functional and mechanical properties, with reductions in hysteresis, peak stress, and loading and unloading moduli. Multi-scale structural damage on cellular, fibril, and fiber levels demonstrated accumulated micro-damage that may have induced a reparative response to successive loading bouts. The acute healing response resulted in alterations in matrix turnover and early inflammatory upregulations associated with matrix remodeling and acute responses to injuries. Discussion: This work demonstrates accumulated damage and acute changes to the tendon healing response caused by successive bouts of in vivo fatigue overloads. These results provide the avenue for future investigations of long-term evaluations of tendon overload in the context of tendinopathy.
Collapse
Affiliation(s)
- Pooja H. Chainani
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Maria Buzo Mena
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Daniela Caro
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Kaveh Momenzadeh
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Joseph P. DeAngelis
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Arun J. Ramappa
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| |
Collapse
|
14
|
Peredo AP, Tsinman TK, Bonnevie ED, Jiang X, Smith HE, Gullbrand SE, Dyment NA, Mauck RL. Developmental morphogens direct human induced pluripotent stem cells toward an annulus fibrosus-like cell phenotype. JOR Spine 2024; 7:e1313. [PMID: 38283179 PMCID: PMC10810760 DOI: 10.1002/jsp2.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Therapeutic interventions for intervertebral disc herniation remain scarce due to the inability of endogenous annulus fibrosus (AF) cells to respond to injury and drive tissue regeneration. Unlike other orthopedic tissues, such as cartilage, delivery of exogenous cells to the site of annular injury remains underdeveloped, largely due to a lack of an ideal cell source and the invasive nature of cell isolation. Human induced pluripotent stem cells (iPSCs) can be differentiated to specific cell fates using biochemical factors and are, therefore, an invaluable tool for cell therapy approaches. While differentiation protocols have been developed for cartilage and fibrous connective tissues (e.g., tendon), the signals that regulate the induction and differentiation of human iPSCs toward the AF fate remain unknown. Methods iPSC-derived sclerotome cells were treated with various combinations of developmental signals including transforming growth factor beta 3 (TGF-β3), connective tissue growth factor (CTGF), platelet derived growth factor BB (PDGF-BB), insulin-like growth factor 1 (IGF-1), or the Hedgehog pathway activator, Purmorphamine, and gene expression changes in major AF-associated ECM genes were assessed. The top performing combination treatments were further validated by using three distinct iPSC lines and by assessing the production of upregulated ECM proteins of interest. To conduct a broader analysis of the transcriptomic shifts elicited by each factor combination, and to compare genetic profiles of treated cells to mature human AF cells, a 96.96 Fluidigm gene expression array was applied, and principal component analysis was employed to identify the transcriptional signatures of each cell population and treatment group in comparison to native AF cells. Results TGF-β3, in combination with PDGF-BB, CTGF, or IGF-1, induced an upregulation of key AF ECM genes in iPSC-derived sclerotome cells. In particular, treatment with a combination of TGF-β3 with PDGF-BB for 14 days significantly increased gene expression of collagen II and aggrecan and increased protein deposition of collagen I and elastin compared to other treatment groups. Assessment of genes uniquely highly expressed by AF cells or SCL cells, respectively, revealed a shift toward the genetic profile of AF cells with the addition of TGF-β3 and PDGF-BB for 14 days. Discussion These findings represent an initial approach to guide human induced pluripotent stem cells toward an AF-like fate for cellular delivery strategies.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Tonia K. Tsinman
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Edward D. Bonnevie
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Xi Jiang
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Harvey E. Smith
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Nathaniel A. Dyment
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
15
|
Liu Z, Han W, Meng J, Pi Y, Wu T, Fan Y, Guo Q, Hu X, Chen Y, Jiang W, Zhao F. Mohawk protects against tendon damage via suppressing Wnt/β-catenin pathway. Heliyon 2024; 10:e25658. [PMID: 38370202 PMCID: PMC10867664 DOI: 10.1016/j.heliyon.2024.e25658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Degenerative tendon injuries are common clinical problems associated with overuse or aging, and understanding the mechanisms of tendon injury and regeneration can contribute to the study of tendon healing and repair. As a transcription factor, Mohawk (Mkx) is responsible for tendons development, yet, the roles of which in tendon damage remain mostly elusive. In this study, using Mkx overexpressed mice on long treadmill as an in vivo model and MkxOE Achilles tenocytes stimulated by equiaxial stretch as an in vitro model, we anaylsed the effects of Mkx overexpression on the tendon. Mkx and tendon tension strength were decreased after the expose to excessive mechanical forces, and Mkx overexpression protected the tendon from damage. Moreover, we revealed that the Wnt/β-catenin activation, inflammation, and Runx2 expression were increased at the injured Achilles tendon, upregulated Mkx significantly reversed the increased Wnt/β-catenin pathway, Tnf-α, Il-1β, and Il-6 levels, and reduced tendon cell damage. However, Wnt3a, IWR and BIO had not significantly affected the Mkx expression in achilles tenocytes. In conclusion, Mkx is involved in tendon healing and protects the tendon from damage through suppressing Wnt/β-catenin pathway, suggesting Mkx/Wnt/β-catenin pathway may be potential therapeutic targets for tendon damage.
Collapse
Affiliation(s)
- Ziming Liu
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Wenfeng Han
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jiao Meng
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou, China
| | - Yanbing Pi
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Tong Wu
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yifei Fan
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Qinwei Guo
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yuhua Chen
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou, China
| | - Wenxiao Jiang
- Department of Sports Medicine, Qilu Hospital of Shandong University (Qingdao Campus), Qingdao, Shandong, China
| | - Feng Zhao
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Rueda AD, Salvador-Martínez I, Sospedra-Arrufat I, Alcaina-Caro A, Fernández-Miñán A, Burgos-Ruiz AM, Cases I, Mohedano A, Tena JJ, Heyn H, Lopez-Rios J, Nusspaumer G. The cellular landscape of the endochondral bone during the transition to extrauterine life. Immunol Cell Biol 2024; 102:131-148. [PMID: 38184783 DOI: 10.1111/imcb.12718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024]
Abstract
The cellular complexity of the endochondral bone underlies its essential and pleiotropic roles during organismal life. While the adult bone has received significant attention, we still lack a deep understanding of the perinatal bone cellulome. Here, we have profiled the full composition of the murine endochondral bone at the single-cell level during the transition from fetal to newborn life and in comparison with the adult tissue, with particular emphasis on the mesenchymal compartment. The perinatal bone contains different fibroblastic clusters with blastema-like characteristics in organizing and supporting skeletogenesis, angiogenesis and hematopoiesis. Our data also suggest dynamic inter- and intra-compartment interactions, as well as a bone marrow milieu that seems prone to anti-inflammation, which we hypothesize is necessary to ensure the proper program of lymphopoiesis and the establishment of central and peripheral tolerance in early life. Our study provides an integrative roadmap for the future design of genetic and cellular functional assays to validate cellular interactions and lineage relationships within the perinatal bone.
Collapse
Affiliation(s)
- Alejandro Díaz Rueda
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Irepan Salvador-Martínez
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ismael Sospedra-Arrufat
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana M Burgos-Ruiz
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Alberto Mohedano
- Intensive Care Unit, Severo Ochoa University Hospital Leganés, Madrid, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- Universidad Loyola Andalucía, School of Health Sciences, Dos Hermanas, Seville, Spain
| | - Gretel Nusspaumer
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
17
|
Draga M, Scaal M. Building a vertebra: Development of the amniote sclerotome. J Morphol 2024; 285:e21665. [PMID: 38100740 DOI: 10.1002/jmor.21665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.
Collapse
Affiliation(s)
- Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Li Z, Sun X, Shen C, Deng Z, Tang K, Xie Y, Chen L, Nie M. Dynamic Tensile Stress Promotes Regeneration of Achilles Tendon in a Panda Rope Bridge Technique Mice Model. Ann Biomed Eng 2023; 51:2735-2748. [PMID: 37482574 DOI: 10.1007/s10439-023-03320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Regeneration of ruptured Achilles tendon remains a clinical challenge owing to its limited regenerative capacity. Dynamic tensile stress plays a positive role in the regeneration of tendon, although the specific underlying mechanisms remain unclear. In this study, the Achilles tendon defect-regeneration model was created in male C57BL/6 mice aged 8 weeks. The animals were randomly assigned to four groups-repair, non-repair, repair with fixation, and non-repair with fixation. The repair group and repair with fixation group adopted the panda rope bridge technique (PRBT) repair method. Our results demonstrated the presence of more densely aligned and mature collagen fibers, as well as more tendon-related makers, in the repair group at both 2- and 4-week post-surgery. Furthermore, the biomechanical strength of the regenerated tendon in the repair group was highly improved. Most importantly, the expressions of integrin αv and its downstream and the phosphorylation levels of FAK and ERK were remarkably higher in the repair group than in the other groups. Furthermore, blocking FAK or ERK with selective inhibitors PF573228 and U0126 resulted in obvious adverse effects on the histological structure of the regenerated Achilles tendon. In summary, this study demonstrated that dynamic tensile stress based on the PRBT could effectively promote the regeneration of the Achilles tendon, suggesting that dynamic tensile stress enhances the cell proliferation and tenogenic differentiation via the activation of the integrin/FAK/ERK signaling pathway.
Collapse
Affiliation(s)
- Zhi Li
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road No.76, Yuzhong District, Chongqing, 400010, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Daping Hospital, Trauma Center, Research Institute of Surgery, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road No.76, Yuzhong District, Chongqing, 400010, China
| | - Chen Shen
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road No.76, Yuzhong District, Chongqing, 400010, China
| | - Zhibo Deng
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road No.76, Yuzhong District, Chongqing, 400010, China
| | - Kaiying Tang
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road No.76, Yuzhong District, Chongqing, 400010, China
| | - Yangli Xie
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Daping Hospital, Trauma Center, Research Institute of Surgery, Army Medical University, Chongqing, China.
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Repair and Rehabilitation, Daping Hospital, Trauma Center, Research Institute of Surgery, Army Medical University, Chongqing, China.
| | - Mao Nie
- Department of Orthopedic, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road No.76, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
19
|
Kusaba Y, Kumagai K, Ishikawa K, Choe H, Ike H, Kobayashi N, Inaba Y. Bevacizumab promotes tenogenic differentiation and maturation of rat tendon-derived cells in vitro. PLoS One 2023; 18:e0293463. [PMID: 37906574 PMCID: PMC10617717 DOI: 10.1371/journal.pone.0293463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Previous work suggested that tenogenic differentiation of tendon stem/progenitor cells (TSPCs) was suppressed by upregulated expression of the angiogenic marker vascular endothelial growth factor (VEGF). The purpose of this study was to test the hypothesis that anti-VEGF antibody, bevacizumab, promotes in vitro tenogenic differentiation and maturation of two distinct types of TSPCs, tendon proper-derived cells (TDCs), and paratenon-derived cells (PDCs) originating from rat Achilles tendon. TDCs and PDCs were isolated from the tendon proper and the paratenon of rat Achilles tendons. TDCs and PDCs were cultured for 3 days on plates with or without VEGF. TDCs and PDCs were also cultured in collagen gel matrix, and the blocking effect of VEGF was examined by the addition of 100 ng/mL of bevacizumab. Effects of bevacizumab on tenogenic differentiation were assessed using real-time PCR, immunofluorescent staining, and western blotting. VEGF significantly attenuated expression of the Tnmd gene in both PDCs and TDCs (P<0.05). Expressions of the Scx, Tnmd, and Col1a1 genes were significantly upregulated by the addition of bevacizumab (P<0.05). Immunofluorescent staining showed that the percentage of tenomodulin-positive PDCs and TDCs was significantly higher with bevacizumab treatment than in control cultures (P<0.05). Western blotting showed that bevacizumab suppressed pVEGFR-2 protein expression in both PDCs and TDCs. Bevacizumab promoted the in vitro tenogenic differentiation and maturation of two distinct TSPCs derived from rat Achilles tendon. Since the previous studies demonstrated that TSPCs have a potential to contribute to tendon repair, attenuating VEGF levels in TSPCs by administration of bevacizumab is a novel candidate therapeutic option for promoting tendon repair.
Collapse
Affiliation(s)
- Yohei Kusaba
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ken Kumagai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kimi Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hyonmin Choe
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Ike
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naomi Kobayashi
- Department of Orthopaedic Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
20
|
Fukuma Y, Tokunaga T, Tanimura S, Yoshimoto Y, Mashimo T, Kaneko T, Tian X, Ideo K, Yonemitsu R, Matsushita K, Sugimoto K, Yugami M, Hisanaga S, Nakamura T, Uehara Y, Masuda T, Shukunami C, Karasugi T, Miyamoto T. Potential function of Scx+/Sox9+ cells as progenitor cells in rotator cuff tear repair in rats. Biochem Biophys Res Commun 2023; 676:84-90. [PMID: 37499368 DOI: 10.1016/j.bbrc.2023.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Tendons and their attachment sites to bone, fibrocartilaginous tissues, have poor self-repair capacity when they rupture, and have risks of retear even after surgical repair. Thus, defining mechanisms underlying their repair is required in order to stimulate tendon repairing capacity. Here we used a rat surgical rotator cuff tear repair model and identified cells expressing the transcription factors Scleraxis (Scx) and SRY-box 9 (Sox9) as playing a crucial role in rotator cuff tendon-to-bone repair. Given the challenges of establishing stably reproducible models of surgical rotator cuff tear repair in mice, we newly established Scx-GFP transgenic rats in which Scx expression can be monitored by GFP. We observed tissue-specific GFP expression along tendons in developing ScxGFP transgenic rats and were able to successfully monitor tissue-specific Scx expression based on GFP signals. Among 3-, 6-, and 12-week-old ScxGFP rats, Scx+/Sox9+ cells were most abundant in 3-week-old rats near the site of humerus bone attachment to the rotator cuff tendon, while we observed significantly fewer cells in the same area in 6- or 12-week-old rats. We then applied a rotator cuff repair model using ScxGFP rats and observed the largest number of Scx+/Sox9+ cells at postoperative repair sites of 3-week-old relative to 6- or 12-week-old rats. Tendons attach to bone via fibrocartilaginous tissue, and cartilage-like tissue was seen at repair sites of 3-week-old but not 6- or 12-week-old rats during postoperative evaluation. Our findings suggest that Scx+/Sox9+ cells may function in rotator cuff repair, and that ScxGFP rats could serve as useful tools to develop therapies to promote rotator cuff repair by enabling analysis of these activities.
Collapse
Affiliation(s)
- Yuko Fukuma
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takuya Tokunaga
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Shuntaro Tanimura
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuki Yoshimoto
- Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan; Department of Molecular Biology and Biochemistry, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Takehito Kaneko
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan
| | - Xiao Tian
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Katsumasa Ideo
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryuji Yonemitsu
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kozo Matsushita
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kazuki Sugimoto
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masaki Yugami
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Satoshi Hisanaga
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takayuki Nakamura
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yusuke Uehara
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tetsuro Masuda
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tatsuki Karasugi
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
21
|
Data K, Kulus M, Ziemak H, Chwarzyński M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Decellularization of Dense Regular Connective Tissue-Cellular and Molecular Modification with Applications in Regenerative Medicine. Cells 2023; 12:2293. [PMID: 37759515 PMCID: PMC10528602 DOI: 10.3390/cells12182293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Healing of dense regular connective tissue, due to a high fiber-to-cell ratio and low metabolic activity and regeneration potential, frequently requires surgical implantation or reconstruction with high risk of reinjury. An alternative to synthetic implants is using bioscaffolds obtained through decellularization, a process where the aim is to extract cells from the tissue while preserving the tissue-specific native molecular structure of the ECM. Proteins, lipids, nucleic acids and other various extracellular molecules are largely involved in differentiation, proliferation, vascularization and collagen fibers deposit, making them the crucial processes in tissue regeneration. Because of the multiple possible forms of cell extraction, there is no standardized protocol in dense regular connective tissue (DRCT). Many modifications of the structure, shape and composition of the bioscaffold have also been described to improve the therapeutic result following the implantation of decellularized connective tissue. The available data provide a valuable source of crucial information. However, the wide spectrum of decellularization makes it important to understand the key aspects of bioscaffolds relative to their potential use in tissue regeneration.
Collapse
Affiliation(s)
- Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
22
|
Mao Y, John N, Protzman NM, Long D, Sivalenka R, Azimi S, Mirabile B, Pouliot R, Gosiewska A, Hariri RJ, Brigido SA. A tri-layer decellularized, dehydrated human amniotic membrane scaffold supports the cellular functions of human tenocytes in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:37. [PMID: 37486403 PMCID: PMC10366303 DOI: 10.1007/s10856-023-06740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
Differences in scaffold design have the potential to influence cell-scaffold interactions. This study sought to determine whether a tri-layer design influences the cellular function of human tenocytes in vitro. The single-layer decellularized, dehydrated human amniotic membrane (DDHAM) and the tri-layer DDHAM (DDHAM-3L) similarly supported tenocyte function as evidenced by improved cell growth and migration, reduced dedifferentiation, and an attenuated inflammatory response. The tri-layer design provides a mechanically more robust scaffold without altering biological activity.
Collapse
Affiliation(s)
- Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Nikita John
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Nicole M Protzman
- Healthcare Analytics, LLC, 78 Morningside Dr, Easton, PA, 18045, USA
| | - Desiree Long
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Raja Sivalenka
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Shamshad Azimi
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | | | - Robert Pouliot
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Anna Gosiewska
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA.
| | - Robert J Hariri
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | | |
Collapse
|
23
|
Papalamprou A, Yu V, Chen A, Stefanovic T, Kaneda G, Salehi K, Castaneda CM, Gertych A, Glaeser JD, Sheyn D. Directing iPSC differentiation into iTenocytes using combined scleraxis overexpression and cyclic loading. J Orthop Res 2023; 41:1148-1161. [PMID: 36203346 PMCID: PMC10076443 DOI: 10.1002/jor.25459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Regenerative therapies for tendon are falling behind other tissues due to the lack of an appropriate and potent cell therapeutic candidate. This study aimed to induce tenogenesis using stable Scleraxis (Scx) overexpression in combination with uniaxial mechanical stretch of iPSC-derived mesenchymal stromal-like cells (iMSCs). Scx is the single direct molecular regulator of tendon differentiation known to date. Bone marrow-derived (BM-)MSCs were used as reference. Scx overexpression alone resulted in significantly higher upregulation of tenogenic markers in iMSCs compared to BM-MSCs. Mechanoregulation is known to be a central element guiding tendon development and healing. Mechanical stimulation combined with Scx overexpression resulted in morphometric and cytoskeleton-related changes, upregulation of early and late tendon markers, and increased extracellular matrix deposition and alignment, and tenomodulin perinuclear localization in iMSCs. Our findings suggest that these cells can be differentiated into tenocytes and might be a better candidate for tendon cell therapy applications than BM-MSCs.
Collapse
Affiliation(s)
- Angela Papalamprou
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Victoria Yu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Angel Chen
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tina Stefanovic
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Chloe M. Castaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arkadiusz Gertych
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Juliane D. Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
24
|
Fuiten AM, Yoshimoto Y, Shukunami C, Stadler HS. Digits in a dish: An in vitro system to assess the molecular genetics of hand/foot development at single-cell resolution. Front Cell Dev Biol 2023; 11:1135025. [PMID: 36994104 PMCID: PMC10040768 DOI: 10.3389/fcell.2023.1135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
In vitro models allow for the study of developmental processes outside of the embryo. To gain access to the cells mediating digit and joint development, we identified a unique property of undifferentiated mesenchyme isolated from the distal early autopod to autonomously re-assemble forming multiple autopod structures including: digits, interdigital tissues, joints, muscles and tendons. Single-cell transcriptomic analysis of these developing structures revealed distinct cell clusters that express canonical markers of distal limb development including: Col2a1, Col10a1, and Sp7 (phalanx formation), Thbs2 and Col1a1 (perichondrium), Gdf5, Wnt5a, and Jun (joint interzone), Aldh1a2 and Msx1 (interdigital tissues), Myod1 (muscle progenitors), Prg4 (articular perichondrium/articular cartilage), and Scx and Tnmd (tenocytes/tendons). Analysis of the gene expression patterns for these signature genes indicates that developmental timing and tissue-specific localization were also recapitulated in a manner similar to the initiation and maturation of the developing murine autopod. Finally, the in vitro digit system also recapitulates congenital malformations associated with genetic mutations as in vitro cultures of Hoxa13 mutant mesenchyme produced defects present in Hoxa13 mutant autopods including digit fusions, reduced phalangeal segment numbers, and poor mesenchymal condensation. These findings demonstrate the robustness of the in vitro digit system to recapitulate digit and joint development. As an in vitro model of murine digit and joint development, this innovative system will provide access to the developing limb tissues facilitating studies to discern how digit and articular joint formation is initiated and how undifferentiated mesenchyme is patterned to establish individual digit morphologies. The in vitro digit system also provides a platform to rapidly evaluate treatments aimed at stimulating the repair or regeneration of mammalian digits impacted by congenital malformation, injury, or disease.
Collapse
Affiliation(s)
- Allison M. Fuiten
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H. Scott Stadler
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: H. Scott Stadler,
| |
Collapse
|
25
|
Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets. Pharmacol Ther 2023; 243:108357. [PMID: 36764462 DOI: 10.1016/j.pharmthera.2023.108357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Skeletal muscle contraction is essential for the movement of our musculoskeletal system. Tendons and ligaments that connect the skeletal muscles to bones in the correct position at the appropriate time during development are also required for movement to occur. Since the musculoskeletal system is essential for maintaining basic bodily functions as well as enabling interactions with the environment, dysfunctions of these tissues due to disease can significantly reduce quality of life. Unfortunately, as people live longer, skeletal muscle and tendon/ligament diseases are becoming more common. Sarcopenia, a disease in which skeletal muscle function declines, and tendinopathy, which involves chronic tendon dysfunction, are particularly troublesome because there have been no significant advances in their treatment. In this review, we will summarize previous reports on the development and regeneration/healing of skeletal muscle and tendon tissues, including a discussion of the molecular and cellular mechanisms involved that may be used as potential therapeutic targets.
Collapse
|
26
|
Ganji E, Leek C, Duncan W, Patra D, Ornitz DM, Killian ML. Targeted deletion of Fgf9 in tendon disrupts mineralization of the developing enthesis. FASEB J 2023; 37:e22777. [PMID: 36734881 PMCID: PMC10108073 DOI: 10.1096/fj.202201614r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
The enthesis is a transitional tissue between tendon and bone that matures postnatally. The development and maturation of the enthesis involve cellular processes likened to an arrested growth plate. In this study, we explored the role of fibroblast growth factor 9 (Fgf9), a known regulator of chondrogenesis and vascularization during bone development, on the structure and function of the postnatal enthesis. First, we confirmed spatial expression of Fgf9 in the tendon and enthesis using in situ hybridization. We then used Cre-lox recombinase to conditionally knockout Fgf9 in mouse tendon and enthesis (Scx-Cre) and characterized enthesis morphology as well as mechanical properties in Fgf9ScxCre and wild-type (WT) entheses. Fgf9ScxCre mice had smaller calcaneal and humeral apophyses, thinner cortical bone at the attachment, increased cellularity, and reduced failure load in mature entheses compared to WT littermates. During postnatal development, we found reduced chondrocyte hypertrophy and disrupted type X collagen (Col X) in Fgf9ScxCre entheses. These findings support that tendon-derived Fgf9 is important for functional development of the enthesis, including its postnatal mineralization. Our findings suggest the potential role of FGF signaling during enthesis development.
Collapse
Affiliation(s)
- Elahe Ganji
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Mechanical Engineering, University of Delaware, Delaware, Newark, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, IL, Urbana, United States.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Connor Leek
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - William Duncan
- Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| |
Collapse
|
27
|
Graça AL, Domingues RMA, Gomez-Florit M, Gomes ME. Platelet-Derived Extracellular Vesicles Promote Tenogenic Differentiation of Stem Cells on Bioengineered Living Fibers. Int J Mol Sci 2023; 24:ijms24043516. [PMID: 36834925 PMCID: PMC9959969 DOI: 10.3390/ijms24043516] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Tendon mimetic scaffolds that recreate the tendon hierarchical structure and niche have increasing potential to fully restore tendon functionality. However, most scaffolds lack biofunctionality to boost the tenogenic differentiation of stem cells. In this study, we assessed the role of platelet-derived extracellular vesicles (EVs) in stem cells' tenogenic commitment using a 3D bioengineered in vitro tendon model. First, we relied on fibrous scaffolds coated with collagen hydrogels encapsulating human adipose-derived stem cells (hASCs) to bioengineer our composite living fibers. We found that the hASCs in our fibers showed high elongation and cytoskeleton anisotropic organization, typical of tenocytes. Moreover, acting as biological cues, platelet-derived EVs boosted the hASCs' tenogenic commitment, prevented phenotypic drift, enhanced the deposition of the tendon-like extracellular matrix, and induced lower collagen matrix contraction. In conclusion, our living fibers provided an in vitro system for tendon tissue engineering, allowing us to study not only the tendon microenvironment but also the influence of biochemical cues on stem cell behavior. More importantly, we showed that platelet-derived EVs are a promising biochemical tool for tissue engineering and regenerative medicine applications that are worthy of further exploration, as paracrine signaling might potentiate tendon repair and regeneration.
Collapse
Affiliation(s)
- Ana L. Graça
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Rui M. A. Domingues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Manuel Gomez-Florit
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Correspondence: (M.G.-F.); (M.E.G.)
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: (M.G.-F.); (M.E.G.)
| |
Collapse
|
28
|
Mechanical stretch facilitates tenomodulin expression to induce tenocyte migration via MAPK signaling pathway. Arch Biochem Biophys 2023; 734:109486. [PMID: 36513131 DOI: 10.1016/j.abb.2022.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Tenomodulin (Tnmd) is a type II transmembrane glycoprotein that regulates tendon development and maturation. Our previous study indicated that mechanical stretch could induce Tnmd expression to promote tenocyte migration, associated with reinforcement of fibrous actin (F-actin) stress fibers and chromatin decondensation. However, the detailed molecular mechanisms of this processes are far from clear. Activation of mitogen-activated protein kinase (MAPK) signaling occurs in response to various extracellular stimuli and controls a large number of fundamental cellular processes. The present study we investigated the influence of MAPK signaling on mechanical stretch-induced Tnmd expression and its action way. Expression and activities of extracellular signal-related kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinases (JNK) and p38 MAPK (p38) were determined by Western blot. Cell migration was detected by Transwell assay. Immunofluorescence staining was used to detect F-actin stress fibers. Nuclear chromatin decondensation was detected by in situ DNaseI sensitivity assay. It was found that mechanical stretch promoted Tnmd expression by activating ERK1/2, JNK and p38 signaling. The inhibition of the ERK1/2, JNK or p38 repressed mechanical stretch-promoted tenocyte migration and mechanical stretch-induced reinforcement of F-actin stress fibers. However, only ERK1/2 and p38 inhibitor could repress mechanical stretch-induced chromatin decondensation, and the JNK inhibitor had no significant effect. Moreover, latrunculin (Lat A), the most widely used reagent to depolymerize actin filaments, could inhibit the stretch-induced chromatin decondensation. Taken together, our findings elucidated a molecular pathway by which a mechanical signal is transduced via activation of MAPK signaling to influence reinforcement of F-actin stress fibers and chromatin decondensation, which could further lead Tnmd expression to promote tenocyte migration.
Collapse
|
29
|
Xu X, Zhang Y, Ha P, Chen Y, Li C, Yen E, Bai Y, Chen R, Wu BM, Da Lio A, Ting K, Soo C, Zheng Z. A novel injectable fibromodulin-releasing granular hydrogel for tendon healing and functional recovery. Bioeng Transl Med 2023; 8:e10355. [PMID: 36684085 PMCID: PMC9842059 DOI: 10.1002/btm2.10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/25/2023] Open
Abstract
A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yulong Zhang
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Pin Ha
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yao Chen
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chenshuang Li
- Department of OrthodonticsSchool of Dental Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emily Yen
- Arcadia High SchoolArcadiaCaliforniaUSA
| | - Yuxing Bai
- Department of OrthodonticsBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Renji Chen
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Benjamin M. Wu
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Andrew Da Lio
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Kang Ting
- Forsyth Research InstituteHarvard UniversityCambridgeMassachusettsUSA
- Samueli School of EngineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic SurgeryThe Orthopaedic Hospital Research Center, University of CaliforniaLos AngelesCaliforniaUSA
| | - Zhong Zheng
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
30
|
Bai L, Han Q, Meng Z, Chen B, Qu X, Xu M, Su Y, Qiu Z, Xue Y, He J, Zhang J, Yin Z. Bioprinted living tissue constructs with layer-specific, growth factor-loaded microspheres for improved enthesis healing of a rotator cuff. Acta Biomater 2022; 154:275-289. [PMID: 36328126 DOI: 10.1016/j.actbio.2022.10.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Substantial challenges remain in constructing the native tendon-to-bone interface for rotator cuff healing owing to the enthesis tissues' highly organized structural and compositional gradients. Herein, we propose to bioprint living tissue constructs with layer-specific growth factors (GFs) to promote enthesis regeneration by guiding the zonal differentiation of the loaded stem cells in situ. The sustained release of tenogenic, chondrogenic, and osteogenic GFs was achieved via microsphere-based delivery carriers embedded in the bioprinted constructs. Compared to the basal construct without GFs, the layer-specific tissue analogs realized region-specific differentiation of stem cells in vitro. More importantly, bioprinted living tissue constructs with layer-specific GFs rapidly enhanced the enthesis regeneration in a rabbit rotator cuff tear model in terms of biomechanical restoration, collagen deposition, and alignment, showing gradient interface of fibrocartilage structures with aligned collagen fibrils and an ultimate load failure of 154.3 ± 9.5 N resembling those of native enthesis tissues in 12 weeks. This exploration provides a feasible strategy to engineer living tissue constructions with region-specific differentiation potentials for the functional repair of gradient enthesis tissues. STATEMENT OF SIGNIFICANCE: Previous studies that employed acellular layer-specific scaffolds or stem cells for the reconstruction of the rotator cuff faced challenges due to their insufficient capability to rebuild the anisotropic compositional and structural gradients of native enthesis tissues. This manuscript proposed a living tissue construct with layer-specific, GFs-loaded µS, which can direct in situ and region-specific differentiation of the embedded stem cells to tenogenic, chondrogenic, and osteogenic lineages for functional regeneration of the enthesis tissues. This bioprinted living tissue construct with the unique capability to reduce fibrovascular scar tissue formation and simultaneously facilitate enthesis tissue remodeling might provide a promising strategy to repair complex and gradient tissues in the future.
Collapse
Affiliation(s)
- Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zijie Meng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, 450003, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanwen Su
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuan Xue
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
31
|
Kumlin M, Lindberg K, Haldosen LA, Felländer-Tsai L, Li Y. Growth Differentiation Factor 7 promotes multiple-lineage differentiation in tenogenic cultures of mesenchymal stem cells. Injury 2022; 53:4165-4168. [PMID: 36261312 DOI: 10.1016/j.injury.2022.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 02/02/2023]
Abstract
The repair of the tendon-bone interface, which is composed of tendon, fibrocartilage, and bony attachment, remains a clinical challenge. The application of mesenchymal stem cells (MSCs), collagen-rich extracellular matrix (ECMs), as well as growth factors, has the potential to regenerate this special multiple-tissue structure through the so-called biological augmentation. We present here an in vitro tendon regeneration model with C3H10T1/2 cells cultured on Collagen I matrix and evaluated the lineage determination effects of Growth Differentiation Factor 7 (GDF-7). We found that besides tenogenic effect, GDF-7 also stimulates the expression of osteoblastic as well as adipocytic genes. Our results indicate that GDF-7 might be a promising growth factor for regeneration of the tendon-bone interface due to its multiple-lineage stimulating effects. However, the side effect on adipogenic differentiation should be of concern, as it is a known risk factor for repair failures.
Collapse
Affiliation(s)
- Maritha Kumlin
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden; The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
| | - Karolina Lindberg
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Lars-Arne Haldosen
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Li Felländer-Tsai
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden; The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden; The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Ishibashi K, Ikegami K, Shimbo T, Sasaki E, Kitayama T, Nakamura Y, Tsushima T, Ishibashi Y, Tamai K. Single-cell transcriptome analysis reveals cellular heterogeneity in mouse intra- and extra articular ligaments. Commun Biol 2022; 5:1233. [PMID: 36371589 PMCID: PMC9653455 DOI: 10.1038/s42003-022-04196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Ligaments are collagenous connective tissues that connect bones. Injury of knee ligaments, namely anterior cruciate ligament (ACL) and medial collateral ligament (MCL), is common in athletes. Both ligaments have important functions, but distinct regeneration capacities. The capacity for recovery after injury also diminishes with age. However, cellular heterogeneity in the ligaments remains unclear. Here, we profiled the transcriptional signatures of ACL and MCL cells in mice using single-cell RNA sequencing. These ligaments comprise three fibroblast types expressing Col22a1, Col12a1, or Col14a1, but have distinct localizations in the tissue. We found substantial heterogeneity in Col12a1- and Col14a1-positive cells between ACL and MCL. Gene Ontology analysis revealed that angiogenesis- and collagen regulation-related genes were specifically enriched in MCL cells. Furthermore, we identified age-related changes in cell composition and gene expression in the ligaments. This study delineates cellular heterogeneity in ligaments, serving as a foundation for identifying potential therapeutic targets for ligament injuries. Cell heterogeneity in the mouse anterior cruciate ligament (ACL) and medial collateral ligament (MCL) is demonstrated using single-cell analysis with three types of fibroblasts identified, expressing Col14a1, Col12a1, or Col22a1.
Collapse
|
33
|
Histoarchitecture of the fibrillary matrix of human fetal posterior tibial tendons. Sci Rep 2022; 12:17922. [PMID: 36289254 PMCID: PMC9606372 DOI: 10.1038/s41598-022-19695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/02/2022] [Indexed: 01/20/2023] Open
Abstract
Adult tendons are highly differentiated. In mature individuals, tendon healing after an injury occurs through fibrotic tissue formation. Understanding the intrinsic reparative properties of fetal tendons would help to understand the maturation tissue process and tendon tissue repair. The present study evaluated the evolution of histoarchitecture, cellularity and the distribution of collagens I, III and V in the posterior tibial tendon in human fetuses at different gestational ages. Morphological profiles were assessed in nine fresh spontaneously aborted fetuses (Group I: five fetuses aged between 22 and 28 weeks of gestation; Group II: four fetuses aged between 32 and 38 weeks of gestation), characterized by a combination of histology, fluorescence and immunohistochemistry. In Group I, the posterior tibial tendon showed statistically significant greater cellularity and presence of collagen III and V than in Group II tendon, which showed a predominance of collagenous I and a better organization of the extracellular matrix compared with Group I tendons. In addition, a statistically significant higher rate of CD90, a marker of mesenchymal cells, was found in Group I tendons. In fetuses with gestational age between 22 and 28 weeks, the posterior tibialis tendons showed a thin and disorganized fibrillar structure, with an increase in collagen III and V fibers and mesenchymal cells. In the posterior tibialis tendons of fetuses with gestational age between 32 and 38 weeks, the fibrillar structure was thicker with a statistically significant increase in type I collagen and decreased cellularity.
Collapse
|
34
|
Chen Z, Chen P, Zheng M, Gao J, Liu D, Wang A, Zheng Q, Leys T, Tai A, Zheng M. Challenges and perspectives of tendon-derived cell therapy for tendinopathy: from bench to bedside. Stem Cell Res Ther 2022; 13:444. [PMID: 36056395 PMCID: PMC9438319 DOI: 10.1186/s13287-022-03113-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Tendon is composed of dense fibrous connective tissues, connecting muscle at the myotendinous junction (MTJ) to bone at the enthesis and allowing mechanical force to transmit from muscle to bone. Tendon diseases occur at different zones of the tendon, including enthesis, MTJ and midsubstance of the tendon, due to a variety of environmental and genetic factors which consequently result in different frequencies and recovery rates. Self-healing properties of tendons are limited, and cell therapeutic approaches in which injured tendon tissues are renewed by cell replenishment are highly sought after. Homologous use of individual’s tendon-derived cells, predominantly differentiated tenocytes and tendon-derived stem cells, is emerging as a treatment for tendinopathy through achieving minimal cell manipulation for clinical use. This is the first review summarizing the progress of tendon-derived cell therapy in clinical use and its challenges due to the structural complexity of tendons, heterogeneous composition of extracellular cell matrix and cells and unsuitable cell sources. Further to that, novel future perspectives to improve therapeutic effect in tendon-derived cell therapy based on current basic knowledge are discussed.
Collapse
Affiliation(s)
- Ziming Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Peilin Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Monica Zheng
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Delin Liu
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Allan Wang
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Qiujian Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, Guangdong, China
| | - Toby Leys
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Andrew Tai
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| | - Minghao Zheng
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia. .,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| |
Collapse
|
35
|
Bowers K, Amelse L, Bow A, Newby S, MacDonald A, Sun X, Anderson D, Dhar M. Mesenchymal Stem Cell Use in Acute Tendon Injury: In Vitro Tenogenic Potential vs. In Vivo Dose Response. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080407. [PMID: 36004932 PMCID: PMC9404841 DOI: 10.3390/bioengineering9080407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Stem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist regarding the overall tenogenic potential and efficacy of this treatment alone. In this study, we aimed to isolate a rat mesenchymal stem cell lineage for in vitro and in vivo use, to assess the effects of growth factor exposure in vitro on cell morphology, behavior, and tendon-associated glycoprotein production, and to assess the therapeutic potential of intralesional stem cells, as a function of dose, in vivo. First, rat adipose-derived (rAdMSC) and bone marrow-derived (rBMSC) stem cell lineages were isolated, characterized with flow cytometric analysis, and compared in terms of proliferation (MTS assay) and cellular viability (calcein AM staining). Rat AdMSCs displayed superior proliferation and more homogenous CD 73, CD 44H, and CD 90 expression as compared to rBMSC. Next, the tenogenic differentiation potential of the rAdMSC lineage was tested in vitro through isolated and combined stimulation with reported tenogenic growth factors, transforming growth factor (TGF)-β3 and connective tissue growth factor (CTGF). We found that the most effective tenogenic factor in terms of cellular morphologic change, cell alignment/orientation, sustained cellular viability, and tendon-associated glycoprotein upregulation was TGFβ3, and we confirmed that rAdMSC could be induced toward a tenogenic lineage in vitro. Finally, the therapeutic potential of rAdMSCs as a function of dose was assessed using a rat acute Achilles tendon injury model. Amounts of 5 × 105 (low dose) and 4 × 106 (high dose) were used. Subjectively, on the gross morphology, the rAdMSC-treated tendons exhibited fewer adhesions and less scar tissue than the control tendons; however, regardless of the rAdMSC dose, no significant differences in histological grade or tissue collagen I deposition were noted between the rAdMSC-treated and control tendons. Collectively, rAdMSCs exhibited appropriate stem cell markers and tenogenic potential in vitro, but the clinical efficacy of intralesional implantation of undifferentiated cells in acute tendonitis cases could not be proven. Further investigation into complementary therapeutics or specialized culture conditions prior to implantation are warranted.
Collapse
Affiliation(s)
- Kristin Bowers
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
- Correspondence:
| | - Lisa Amelse
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Austin Bow
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Steven Newby
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Amber MacDonald
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Xiaocun Sun
- Office of Information and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - David Anderson
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Madhu Dhar
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| |
Collapse
|
36
|
Jin J, Yang QQ, Zhou YL. Non-Viral Delivery of Gene Therapy to the Tendon. Polymers (Basel) 2022; 14:3338. [PMID: 36015594 PMCID: PMC9415435 DOI: 10.3390/polym14163338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 01/19/2023] Open
Abstract
The tendon, as a compact connective tissue, is difficult to treat after an acute laceration or chronic degeneration. Gene-based therapy is a highly efficient strategy for diverse diseases which has been increasingly applied in tendons in recent years. As technology improves by leaps and bounds, a wide variety of non-viral vectors have been manufactured that attempt to have high biosecurity and transfection efficiency, considered to be a promising treatment modality. In this review, we examine the unwanted biological barriers, the categories of applicable genes, and the introduction and comparison of non-viral vectors. We focus on lipid-based nanoparticles and polymer-based nanoparticles, differentiating between them based on their combination with diverse chemical modifications and scaffolds.
Collapse
Affiliation(s)
| | | | - You Lang Zhou
- Hand Surgery Research Center, Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
37
|
Mao Y, John N, Protzman NM, Kuehn A, Long D, Sivalenka R, Junka RA, Gosiewska A, Hariri RJ, Brigido SA. A decellularized flowable placental connective tissue matrix supports cellular functions of human tenocytes in vitro. J Exp Orthop 2022; 9:69. [PMID: 35849201 PMCID: PMC9294091 DOI: 10.1186/s40634-022-00509-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose Injectable connective tissue matrices (CTMs) may promote tendon healing, given their minimally invasive properties, structural and biochemical extracellular matrix components, and capacity to fill irregular spaces. The purpose of this study is to evaluate the effects of placental CTMs on the cellular activities of human tenocytes. Decellularization, the removal of cells, cell fragments, and DNA from CTMs, has been shown to reduce the host’s inflammatory response. Therefore, the authors hypothesize that a decellularized CTM will provide a more cell-friendly matrix to support tenocyte functions. Methods Three human placental CTMs were selected for comparison: AmnioFill® (A-CTM), a minimally manipulated, non-viable cellular particulate, BioRenew™ (B-CTM), a liquid matrix, and Interfyl® (I-CTM), a decellularized flowable particulate. Adhesion and proliferation were evaluated using cell viability assays and tenocyte migration using a transwell migration assay. Gene expression of tenocyte markers, cytokines, growth factors, and matrix metalloprotease (MMP) in tenocytes were assessed using quantitative polymerase chain reaction. Results Although A-CTM supported more tenocyte adhesion, I-CTM promoted significantly more tenocyte proliferation compared with A-CTM and B-CTM. Unlike A-CTM, tenocyte migration was higher in I-CTM than the control. The presence of I-CTM also prevented the loss of tenocyte phenotype, attenuated the expression of pro-inflammatory cytokines, growth factors, and MMP, and promoted the expression of antifibrotic growth factor, TGFβ3. Conclusion Compared with A-CTM and B-CTM, I-CTM interacted more favorably with human tenocytes in vitro. I-CTM supported tenocyte proliferation with reduced de-differentiation and attenuation of the inflammatory response, suggesting that I-CTM may support tendon healing and regeneration in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00509-4.
Collapse
Affiliation(s)
- Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Nikita John
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Nicole M Protzman
- Healthcare Analytics, LLC, 78 Morningside Dr., Easton, PA, 18045, USA
| | - Adam Kuehn
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Desiree Long
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Raja Sivalenka
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Radoslaw A Junka
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Anna Gosiewska
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA.
| | - Robert J Hariri
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Stephen A Brigido
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| |
Collapse
|
38
|
Supokawej A, Korchunjit W, Wongtawan T. The combination of BMP12 and KY02111 enhances tendon differentiation in bone marrow-derived equine mesenchymal stromal cells (BM-eMSCs). J Equine Sci 2022; 33:19-26. [PMID: 35847484 PMCID: PMC9260033 DOI: 10.1294/jes.33.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
The Wingless and Int-1 (WNT) and bone morphogenic protein/growth differentiation factor
(BMP/GDF) signalling pathways contribute significantly to the development of the
musculoskeletal system. The mechanism by which they contribute is as follows: BMP/GDF
signalling usually promotes tendon differentiation, whereas WNT signalling inhibits it. We
hypothesised that inhibiting WNT and subsequently stimulating BMP signalling may enhance
the tenogenic differentiation of stem cells. The objective of this study was to determine
whether a combination of WNT inhibitor (KY02111) and BMP12/GDF7 protein could enhance the
differentiation of bone marrow-derived equine mesenchymal stromal cells (BM-eMSCs) into
tenocytes. Cells were cultured in five treatments: control, BMP12, and three different
combinations of BMP12 and KY02111. The results indicated that a 1-day treatment with
KY02111 followed by a 13-day treatment with BMP12 resulted in the highest tenogenic
differentiation score in this experiment. The effect of KY02111 is dependent on the
incubation time, with 1 day being better than 3 or 5 days. This combination increased
tenogenic gene marker expression, including SCX, TNMD, DCN, and TNC, as well as COL1
protein expression. In conclusion, we propose that a combination of BMP12 and KY02111 can
enhance the in vitro tenogenic differentiation of BM-eMSCs more than BMP12 alone. The
findings of this study might be useful for improving tendon differentiation protocols for
stem cell transplantation and application to tendon regeneration.
Collapse
Affiliation(s)
- Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wasamon Korchunjit
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand.,Laboratory of Cellular Biomedicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Tuempong Wongtawan
- Akkhararatchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand.,Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand.,Laboratory of Cellular Biomedicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
39
|
Ground M, Waqanivavalagi S, Park YE, Callon K, Walker R, Milsom P, Cornish J. Fibroblast growth factor 2 inhibits myofibroblastic activation of valvular interstitial cells. PLoS One 2022; 17:e0270227. [PMID: 35714127 PMCID: PMC9205485 DOI: 10.1371/journal.pone.0270227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Heart valve disease is a growing problem worldwide. Though very common in older adults, the mechanisms behind the development of the disease aren't well understood, and at present the only therapeutic option is valve replacement. Valvular interstitial cells (VICs) may hold the answer. These cells can undergo pathological differentiation into contractile myofibroblasts or osteoblasts, leading to thickening and calcification of the valve tissue. Our study aimed to characterise the effect of fibroblast growth factor 2 (FGF-2) on the differentiation potential of VICs. We isolated VICs from diseased human valves and treated these cells with FGF-2 and TGF-β to elucidate effect of these growth factors on several myofibroblastic outcomes, in particular immunocytochemistry and gene expression. We used TGF-β as a positive control for myofibroblastic differentiation. We found that FGF-2 promotes a 'quiescent-type' morphology and inhibits the formation of α-smooth muscle actin positive myofibroblasts. FGF-2 reduced the calcification potential of VICs, with a marked reduction in the number of calcific nodules. FGF-2 interrupted the 'canonical' TGF-β signalling pathway, reducing the nuclear translocation of the SMAD2/3 complex. The panel of genes assayed revealed that FGF-2 promoted a quiescent-type pattern of gene expression, with significant downregulations in typical myofibroblast markers α smooth muscle actin, extracellular matrix proteins, and scleraxis. We did not see evidence of osteoblast differentiation: neither matrix-type calcification nor changes in osteoblast associated gene expression were observed. Our findings show that FGF-2 can reverse the myofibroblastic phenotype of VICs isolated from diseased valves and inhibit the calcification potential of these cells.
Collapse
Affiliation(s)
- Marcus Ground
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Steve Waqanivavalagi
- Green Lane Cardiothoracic Surgery Unit, Auckland City Hospital, Auckland District Health Board, Grafton, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Young-Eun Park
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Karen Callon
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Robert Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Paget Milsom
- Green Lane Cardiothoracic Surgery Unit, Auckland City Hospital, Auckland District Health Board, Grafton, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| |
Collapse
|
40
|
Russo V, Mauro A, Peserico A, Di Giacinto O, Khatib ME, Citeroni MR, Rossi E, Canciello A, Mazzotti E, Barboni B. Tendon Healing Response Is Dependent on Epithelial-Mesenchymal-Tendon Transition State of Amniotic Epithelial Stem Cells. Biomedicines 2022; 10:biomedicines10051177. [PMID: 35625913 PMCID: PMC9138831 DOI: 10.3390/biomedicines10051177] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Tendinopathies are at the frontier of advanced responses to health challenges and sectoral policy targets. Cell-based therapy holds great promise for tendon disorder resolution. To verify the role of stepwise trans-differentiation of amniotic epithelial stem cells (AECs) in tendon regeneration, in the present research three different AEC subsets displaying an epithelial (eAECs), mesenchymal (mAECs), and tendon-like (tdAECs) phenotype were allotransplanted in a validated experimental sheep Achilles tendon injury model. Tissue healing was analyzed adopting a comparative approach at two early healing endpoints (14 and 28 days). All three subsets of transplanted cells were able to accelerate regeneration: mAECs with a lesser extent than eAECs and tdAECs as indicated in the summary of the total histological scores (TSH), where at day 28 eAECs and tdAECs had better significant scores with respect to mAEC-treated tendons (p < 0.0001). In addition, the immunomodulatory response at day 14 showed in eAEC-transplanted tendons an upregulation of pro-regenerative M2 macrophages with respect to mAECs and tdAECs (p < 0.0001). In addition, in all allotransplanted tendons there was a favorable IL10/IL12 compared to CTR (p < 0.001). The eAECs and tdAECs displayed two different underlying regenerative mechanisms in the tendon. The eAECs positively influenced regeneration mainly through their greater ability to convey in the host tissue the shift from pro-inflammatory to pro-regenerative responses, leading to an ordered extracellular matrix (ECM) deposition and blood vessel remodeling. On the other hand, the transplantation of tdAECs acted mainly on the proliferative phase by impacting the density of ECM and by supporting a prompt recovery, inducing a low cellularity and angle alignment of the host cell compartment. These results support the idea that AECs lay the groundwork for production of different cell phenotypes that can orient tendon regeneration through a crosstalk with the host tissue. In particular, the obtained evidence suggests that eAECs are a practicable and efficient strategy for the treatment of acute tendinopathies, thus reinforcing the grounds to move their use towards clinical practice.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
- Correspondence:
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Alessia Peserico
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, 64100 Teramo, Italy;
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Eleonora Mazzotti
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (A.M.); (A.P.); (O.D.G.); (M.E.K.); (M.R.C.); (A.C.); (E.M.); (B.B.)
| |
Collapse
|
41
|
Dede Eren A, Vermeulen S, Schmitz TC, Foolen J, de Boer J. The loop of phenotype: Dynamic reciprocity links tenocyte morphology to tendon tissue homeostasis. Acta Biomater 2022; 163:275-286. [PMID: 35584748 DOI: 10.1016/j.actbio.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Cells and their surrounding extracellular matrix (ECM) are engaged in dynamic reciprocity to maintain tissue homeostasis: cells deposit ECM, which in turn presents the signals that define cell identity. This loop of phenotype is obvious for biochemical signals, such as collagens, which are produced by and presented to cells, but the role of biomechanical signals is also increasingly recognised. In addition, cell shape goes hand in hand with cell function and tissue homeostasis. Aberrant cell shape and ECM is seen in pathological conditions, and control of cell shape in micro-fabricated platforms disclose the causal relationship between cell shape and cell function, often mediated by mechanotransduction. In this manuscript, we discuss the loop of phenotype for tendon tissue homeostasis. We describe cell shape and ECM organization in normal and diseased tissue, how ECM composition influences tenocyte shape, and how that leads to the activation of signal transduction pathways and ECM deposition. We further describe the use of technologies to control cell shape to elucidate the link between cell shape and its phenotypical markers and focus on the causal role of cell shape in the loop of phenotype. STATEMENT OF SIGNIFICANCE: The dynamic reciprocity between cells and their surrounding extracellular matrix (ECM) influences biomechanical and biochemical properties of ECM as well as cell function through activation of signal transduction pathways that regulate gene and protein expression. We refer to this reciprocity as Loop of Phenotype and it has been studied and demonstrated extensively by using micro-fabricated platforms to manipulate cell shape and cell fate. In this manuscript, we discuss this concept in tendon tissue homeostasis by giving examples in healthy and pathological tenson tissue. Furthermore, we elaborate this by showing how biomaterials are used to feed this reciprocity to manipulate cell shape and function. Finally, we elucidate the link between cell shape and its phenotypical markers and focus on the activation of signal transduction pathways and ECM deposition.
Collapse
Affiliation(s)
- Aysegul Dede Eren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Steven Vermeulen
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine, Instructive Biomaterial Engineering, Maastricht, the Netherlands
| | - Tara C Schmitz
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jasper Foolen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
42
|
HIF-1α inhibition attenuates severity of Achilles tendinopathy by blocking NF-κB and MAPK pathways. Int Immunopharmacol 2022; 106:108543. [DOI: 10.1016/j.intimp.2022.108543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/15/2023]
|
43
|
Wright AL, Righelli L, Broomhall TJ, Lamont HC, El Haj AJ. Magnetic Nanoparticle-Mediated Orientation of Collagen Hydrogels for Engineering of Tendon-Mimetic Constructs. Front Bioeng Biotechnol 2022; 10:797437. [PMID: 35372293 PMCID: PMC8968910 DOI: 10.3389/fbioe.2022.797437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
Despite the high incidence of tendon injuries worldwide, an optimal treatment strategy has yet to be defined. A key challenge for tendon repair is the alignment of the repaired matrix into orientations which provide maximal mechanical strength. Using oriented implants for tissue growth combined with either exogenous or endogenous stem cells may provide a solution. Previous research has shown how oriented fiber-like structures within 3D scaffolds can provide a framework for organized extracellular matrix deposition. In this article, we present our data on the remote magnetic alignment of collagen hydrogels which facilitates long-term collagen orientation. Magnetic nanoparticles (MNPs) at varying concentrations can be contained within collagen hydrogels. Our data show how, in response to the magnetic field lines, MNPs align and form string-like structures orientating at 90 degrees from the applied magnetic field from our device. This can be visualized by light and fluorescence microscopy, and it persists for 21 days post-application of the magnetic field. Confocal microscopy demonstrates the anisotropic macroscale structure of MNP-laden collagen gels subjected to a magnetic field, compared to gels without MNP dosing. Matrix fibrillation was compared between non- and biofunctionalized MNP hydrogels, and different gels dosed with varying MNP concentrations. Human adipose stem cells (hASCs) seeded within the magnetically aligned gels were observed to align in parallel to MNP and collagen orientation 7 days post-application of the magnetic field. hASCs seeded in isotropic gels were randomly organized. Tenocyte-likeness of the cells 7 days post-seeding in collagen I scaffolds was confirmed by the positive expression of tenomodulin and scleraxis proteins. To summarize, we have developed a convenient, non-invasive protocol to control the collagen I hydrogel architecture. Through the presence or absence of MNP dosing and a magnetic field, collagen can be remotely aligned or randomly organized, respectively, in situ. Tendon-like cells were observed to organize in parallel to unidirectionally aligned collagen fibers and polydirectionally in non-aligned collagen constructs. In this way, we were able to engineer the constructs emulating a physiologically and pathologically relevant tendon niche. This can be considered as an innovative approach particularly useful in tissue engineering or organ-on-a-chip applications for remotely controlling collagen matrix organization to recapitulate the native tendon.
Collapse
Affiliation(s)
| | | | | | | | - Alicia J. El Haj
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
44
|
Yoshimoto Y, Uezumi A, Ikemoto-Uezumi M, Tanaka K, Yu X, Kurosawa T, Yambe S, Maehara K, Ohkawa Y, Sotomaru Y, Shukunami C. Tenogenic Induction From Induced Pluripotent Stem Cells Unveils the Trajectory Towards Tenocyte Differentiation. Front Cell Dev Biol 2022; 10:780038. [PMID: 35372337 PMCID: PMC8965463 DOI: 10.3389/fcell.2022.780038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
The musculoskeletal system is integrated by tendons that are characterized by the expression of scleraxis (Scx), a functionally important transcription factor. Here, we newly developed a tenocyte induction method using induced pluripotent stem cells established from ScxGFP transgenic mice by monitoring fluorescence, which reflects a dynamic differentiation process. Among several developmentally relevant factors, transforming growth factor-beta 2 (TGF-β2) was the most potent inducer for differentiation of tenomodulin-expressing mature tenocytes. Single-cell RNA sequencing (scRNA-seq) revealed 11 distinct clusters, including mature tenocyte population and tenogenic differentiation trajectory, which recapitulated the in vivo developmental process. Analysis of the scRNA-seq dataset highlighted the importance of retinoic acid (RA) as a regulatory pathway of tenogenic differentiation. RA signaling was shown to have inhibitory effects on entheseal chondrogenic differentiation as well as TGF-β2-dependent tenogenic/fibrochondrogenic differentiation. The collective findings provide a new opportunity for tendon research and further insight into the mechanistic understanding of the differentiation pathway to a tenogenic fate.
Collapse
Affiliation(s)
- Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Biomedical Sciences Major, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- *Correspondence: Chisa Shukunami, ; Akiyoshi Uezumi,
| | - Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Xinyi Yu
- Department of Molecular Biology and Biochemistry, Biomedical Sciences Major, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, Tokyo, Japan
| | - Shinsei Yambe
- Department of Molecular Biology and Biochemistry, Biomedical Sciences Major, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Biomedical Sciences Major, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- *Correspondence: Chisa Shukunami, ; Akiyoshi Uezumi,
| |
Collapse
|
45
|
Graça AL, Domingues RMA, Calejo I, Gómez-Florit M, Gomes ME. Therapeutic Effects of Platelet-Derived Extracellular Vesicles in a Bioengineered Tendon Disease Model. Int J Mol Sci 2022; 23:2948. [PMID: 35328370 PMCID: PMC8954460 DOI: 10.3390/ijms23062948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Tendon injuries represent over 30-50% of musculoskeletal disorders worldwide, yet the available therapies do not provide complete tendon repair/regeneration and full functionality restoring. Extracellular vesicles (EVs), membrane-enclosed nanoparticles, have emerged as the next breakthrough in tissue engineering and regenerative medicine to promote endogenous tissue regeneration. Here, we developed a 3D human in vitro model mimicking the signature of pathological tendon and used it to evaluate the influence that different platelet-derived EVs might have in tendon tissue repair mechanisms. For this, different EV populations isolated from platelets, small EVs (sEVs) and medium EVs (mEVs), were added to the culture media of human tendon-derived cells (hTDCs) cultured on isotropic nanofibrous scaffolds. The platelet-derived EVs increased the expression of tenogenic markers, promoted a healthy extracellular matrix (ECM) remodeling, and the synthesis of anti-inflammatory mediators. These findings suggest that platelet EVs provided relevant biochemical cues that potentiated a recovery of hTDCs phenotype from a diseased to a healthy state. Thus, this study opens new perspectives for the translation of platelet-derived EVs as therapeutics.
Collapse
Affiliation(s)
- Ana L. Graça
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (A.L.G.); (R.M.A.D.); (I.C.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Rui M. A. Domingues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (A.L.G.); (R.M.A.D.); (I.C.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Isabel Calejo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (A.L.G.); (R.M.A.D.); (I.C.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Manuel Gómez-Florit
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (A.L.G.); (R.M.A.D.); (I.C.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (A.L.G.); (R.M.A.D.); (I.C.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| |
Collapse
|
46
|
Pentzold S, Wildemann B. Mechanical overload decreases tenogenic differentiation compared to physiological load in bioartificial tendons. J Biol Eng 2022; 16:5. [PMID: 35241113 PMCID: PMC8896085 DOI: 10.1186/s13036-022-00283-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
Background Tenocytes as specialised fibroblasts and inherent cells of tendons require mechanical load for their homeostasis. However, how mechanical overload compared to physiological load impacts on the tenogenic differentiation potential of fibroblasts is largely unknown. Methods Three-dimensional bioartificial tendons (BATs) seeded with murine fibroblasts (cell line C3H10T1/2) were subjected to uniaxial sinusoidal elongation at either overload conditions (0–16%, Ø 8%) or physiological load (0–8%, Ø 4%). This regime was applied for 2 h a day at 0.1 Hz for 7 days. Controls were unloaded, but under static tension. Results Cell survival did not differ among overload, physiological load and control BATs. However, gene expression of tenogenic and extra-cellular matrix markers (Scx, Mkx, Tnmd, Col1a1 and Col3a1) was significantly decreased in overload versus physiological load and controls, respectively. In contrast, Mmp3 was significantly increased at overload compared to physiological load, and significantly decreased under physiological load compared to controls. Mkx and Tnmd were significantly increased in BATs subjected to physiological load compared to controls. Proinflammatory interleukin-6 showed increased protein levels comparing load (both over and physiological) versus unloaded controls. Alignment of the cytoskeleton in strain direction was decreased in overload compared to physiological load, while other parameters such as nuclear area, roundness or cell density were less affected. Conclusions Mechanical overload decreases tenogenic differentiation and increases ECM remodelling/inflammation in 3D-stimulated fibroblasts, whereas physiological load may induce opposite effects. Supplementary Information The online version contains supplementary material available at 10.1186/s13036-022-00283-y.
Collapse
Affiliation(s)
- Stefan Pentzold
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
47
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
48
|
Lee JH, Kim YH, Rhee SM, Han J, Jeong HJ, Park JH, Oh JH, Jeon S. Rotator Cuff Tendon Healing Using Human Dermal Fibroblasts: Histological and Biomechanical Analyses in a Rabbit Model of Chronic Rotator Cuff Tears. Am J Sports Med 2021; 49:3669-3679. [PMID: 34554882 DOI: 10.1177/03635465211041102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tenocytes derived from tendons have been reported to be effective in the treatment of rotator cuff tears through the expression of extracellular matrix proteins. Human dermal fibroblasts, known to express collagen types I and III as tenocytes do, may likely be substitutes for tenocytes to enhance healing rotator cuff tears. PURPOSE To demonstrate the capability of human dermal fibroblasts to enhance healing of rotator cuff tears. STUDY DESIGN Controlled laboratory study. METHODS The cellular properties and expression profiles of growth factors were compared between human dermal fibroblasts and tenocytes. In both cell types, a series of extracellular matrix proteins were analyzed along with matrix metalloproteinases and tissue inhibitors of metalloproteinases involved in the collagenolytic system. A total of 35 rabbits were divided into 5 groups: normal (n = 2), saline control (n = 9), fibrin control (n = 9), low dose of human fibroblasts (HF-LD; n = 9), and high dose of human fibroblasts (HF-HD; n = 6). Cells were injected into the sutured lesions at 6 weeks after creation of bilateral rotator cuff tears, followed by histological and biomechanical analyses at 12 weeks. RESULTS Human dermal fibroblasts exhibited a protein expression pattern similar to that of tenocytes. More specifically, the expression levels of collagen types I and III were comparable between fibroblasts and tenocytes. The histological analysis of 30 surviving rabbits showed that collagen fibers were more continuous and better oriented with a more mature interface between the tendon and bone in the sutured lesions in the HF-LD and HF-HD groups. Most importantly, biomechanical strength, measured using the load to failure at the injection site, was 58.8 ± 8.9 N/kg in the HF-HD group, increasing by approximately 2-fold (P = .0003) over the saline control group. CONCLUSION Human dermal fibroblasts, showing cellular properties comparable with tenocytes, effectively enhanced healing of chronic rotator cuff tears in rabbits. CLINICAL RELEVANCE Human dermal fibroblasts can be used in place of tenocytes to enhance healing of rotator cuff tears.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Yun Hee Kim
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Sung-Min Rhee
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jikhyon Han
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Hyeon Jang Jeong
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Joo Hyun Park
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Joo Han Oh
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Saewha Jeon
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| |
Collapse
|
49
|
Ryan C, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs M, Griffin M, Zeugolis D. A combined physicochemical approach towards human tenocyte phenotype maintenance. Mater Today Bio 2021; 12:100130. [PMID: 34632361 PMCID: PMC8488312 DOI: 10.1016/j.mtbio.2021.100130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
During in vitro culture, bereft of their optimal tissue context, tenocytes lose their phenotype and function. Considering that tenocytes in their native tissue milieu are exposed simultaneously to manifold signals, combination approaches (e.g. growth factor supplementation and mechanical stimulation) are continuously gaining pace to control cell fate during in vitro expansion, albeit with limited success due to the literally infinite number of possible permutations. In this work, we assessed the potential of scalable and potent physicochemical approaches that control cell fate (substrate stiffness, anisotropic surface topography, collagen type I coating) and enhance extracellular matrix deposition (macromolecular crowding) in maintaining human tenocyte phenotype in culture. Cell morphology was primarily responsive to surface topography. The tissue culture plastic induced the largest nuclei area, the lowest aspect ratio, and the highest focal adhesion kinase. Collagen type I coating increased cell number and metabolic activity. Cell viability was not affected by any of the variables assessed. Macromolecular crowding intensely enhanced and accelerated native extracellular matrix deposition, albeit not in an aligned fashion, even on the grooved substrates. Gene analysis at day 14 revealed that the 130 kPa grooved substrate without collagen type I coating and under macromolecular crowding conditions positively regulated human tenocyte phenotype. Collectively, this work illustrates the beneficial effects of combined physicochemical approaches in controlling cell fate during in vitro expansion.
Collapse
Affiliation(s)
- C.N.M. Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - E. Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - N. Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D. Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - P. Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md N. Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - A. O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - M.J. Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - M.D. Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D.I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
50
|
Kawatsu M, Takeshita N, Takimoto A, Yoshimoto Y, Seiryu M, Ito A, Kimura S, Kawamoto T, Hiraki Y, Shukunami C, Takano-Yamamoto T. Scleraxis upregulated by transforming growth factor-β1 signaling inhibits tension-induced osteoblast differentiation of priodontal ligament cells via ephrin A2. Bone 2021; 149:115969. [PMID: 33892176 DOI: 10.1016/j.bone.2021.115969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 11/25/2022]
Abstract
During tooth movement in orthodontic treatment, bone formation and resorption occur on the tension and compression sides of the alveolar bone, respectively. Although the bone formation activity increases in the periodontal ligament (PDL) on the tension side, the PDL itself is not ossified and maintains its homeostasis, indicating that there are negative regulators of bone formation in the PDL. Our previous report suggested that scleraxis (Scx) has an inhibitory effect on ossification of the PDL on the tension side through the suppression of calcified extracellular matrix formation. However, the molecular biological mechanisms of Scx-modulated inhibition of ossification in the tensioned PDL are not fully understood. The aim of the present study is to clarify the inhibitory role of Scx in osteoblast differentiation of PDL cells and its underlying mechanism. Our in vivo experiment using a mouse experimental tooth movement model showed that Scx expression was increased during early response of the PDL to tensile force. Scx knockdown upregulated expression of alkaline phosphatase, an early osteoblast differentiation marker, in the tensile force-loaded PDL cells in vitro. Transforming growth factor (TGF)-β1-Smad3 signaling in the PDL was activated by tensile force and inhibitors of TGF-β receptor and Smad3 suppressed the tensile force-induced Scx expression in PDL cells. Tensile force induced ephrin A2 (Efna2) expression in the PDL and Efna2 knockdown upregulated alkaline phosphatase expression in PDL cells under tensile force loading. Scx knockdown eliminated the tensile force-induced Efna2 expression in PDL cells. These findings suggest that the TGF-β1-Scx-Efna2 axis is a novel molecular mechanism that negatively regulates the tensile force-induced osteoblast differentiation of PDL cells.
Collapse
Affiliation(s)
- Masayoshi Kawatsu
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-0875, Japan; Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-0875, Japan
| | - Aki Takimoto
- Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yuki Yoshimoto
- Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Department of Molecular Biology and Biochemistry, Biomedical Sciences Major, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masahiro Seiryu
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-0875, Japan
| | - Arata Ito
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-0875, Japan
| | - Seiji Kimura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-0875, Japan
| | - Tadafumi Kawamoto
- Radioisotope Research Institute, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama, 230-8501, Japan
| | - Yuji Hiraki
- Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Chisa Shukunami
- Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Department of Molecular Biology and Biochemistry, Biomedical Sciences Major, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-0875, Japan; Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586, Japan.
| |
Collapse
|