1
|
Zeng J, Iizaka Y, Hamada M, Iwai A, Takeuchi R, Fukumoto A, Tamura T, Anzai Y. Actinoplanes kirromycinicus sp. nov., isolated from soil. J Antibiot (Tokyo) 2024; 77:657-664. [PMID: 38926493 DOI: 10.1038/s41429-024-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
A novel actinomycete, designated as TPMA0078T, was isolated from a soil sample collected in Shinjuku, Tokyo, Japan. 16S rRNA gene sequence analysis indicated that strain TPMA0078T belongs to the genus Actinoplanes and is closely related to Actinoplanes regularis IFO 12514T (99.86% 16S rRNA gene sequence similarity). The spores of strain TPMA0078T were motile, and the sporangia were cylindrical. The diamino acids in the cell wall peptidoglycan of strain TPMA0078T were meso-diaminopimelic acid and 3OH-meso-diaminopimelic acid. Whole-cell sugars were glucose and mannose, with galactose as a minor component. The major cellular fatty acids identified were iso-C15:0, iso-C16:0, and anteiso-C17:0. The predominant menaquinone was MK-9(H4), and the principal polar lipid was phosphatidylethanolamine. These chemotaxonomic properties of strain TPMA0078T were consistent with those of Actinoplanes. Meanwhile, digital DNA-DNA hybridization and average nucleotide identity values showed low relatedness between strain TPMA0078T and A. regularis NBRC 12514T. Furthermore, several phenotypic properties of strain TPMA0078T distinguished it from those of closely related species. Based on its genotypic and phenotypic characteristics, strain TPMA0078T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes kirromycinicus sp. nov. is proposed. The type strain is TPMA0078T (=NBRC 116422T = TBRC 18262T).
Collapse
Affiliation(s)
- Jiahao Zeng
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yohei Iizaka
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| | - Moriyuki Hamada
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Aya Iwai
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Riku Takeuchi
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Atsushi Fukumoto
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Tomohiko Tamura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yojiro Anzai
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| |
Collapse
|
2
|
Alwali AY, Santos D, Aguilar C, Birch A, Rodriguez-Orduña L, Roberts CB, Modi R, Licona-Cassani C, Parkinson EI. Discovery of Streptomyces species CS-62, a novel producer of the Acinetobacter baumannii selective antibiotic factumycin. J Ind Microbiol Biotechnol 2024; 51:kuae014. [PMID: 38632045 PMCID: PMC11066910 DOI: 10.1093/jimb/kuae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Narrow-spectrum antibiotics are of great interest given their ability to spare the microbiome and decrease widespread antibiotic resistance compared to broad-spectrum antibiotics. Herein, we screened an in-house library of Actinobacteria strains for selective activity against Acinetobacter baumannii and successfully identified Streptomyces sp. CS-62 as a producer of a natural product with this valuable activity. Analysis of the cultures via high-resolution mass spectrometry and tandem mass spectrometry, followed by comparison with molecules in the Natural Product Atlas and the Global Natural Products Social Molecular Networking platform, suggested a novel natural product. Genome mining analysis initially supported the production of a novel kirromycin derivative. Isolation and structure elucidation via mass spectrometry and Nuclear Magnetic Resonance (NMR) analyses revealed that the active natural product was the known natural product factumycin, exposing omissions and errors in the consulted databases. While public databases are generally very useful for avoiding rediscovery of known molecules, rediscovery remains a problem due to public databases either being incomplete or having errors that result in failed dereplication. Overall, the work describes the ongoing problem of dereplication and the continued need for public database curation.
Collapse
Affiliation(s)
- Amir Y Alwali
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Diane Santos
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - César Aguilar
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Audrey Birch
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Lorena Rodriguez-Orduña
- Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, 64849 Monterrey, México
| | - Carson B Roberts
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ramya Modi
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Cuauhtemoc Licona-Cassani
- Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, 64849 Monterrey, México
| | - Elizabeth I Parkinson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Fang C, Zhang Q, Zhang W, Zhang C, Zhu Y. Discovery of Efrotomycin Congeners and Heterologous Expression-Based Insights into the Self-Resistance Mechanism. JOURNAL OF NATURAL PRODUCTS 2022; 85:2865-2872. [PMID: 36445346 DOI: 10.1021/acs.jnatprod.2c00986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Four new efrotomycins, A1-A4 (1-4), were isolated from the salt mine-derived Amycolatopsis cihanbeyliensis DSM 45679 and structurally determined. Efrotomycins A3 (3) and A4 (4) feature a tetrahydrofuran ring configured distinctly from known elfamycins. Heterologous expression of the efrotomycin gene cluster (efr BGC) in Streptomyces lividans SBT18 led to efrotomycin B1 (5), the yield of which was improved several fold upon introduction of the transporter gene efrT, a putative self-resistance determinant outside of the efr BGC.
Collapse
Affiliation(s)
- Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
4
|
McHugh RE, Munnoch JT, Braes RE, McKean IJW, Giard J, Taladriz-Sender A, Peschke F, Burley GA, Roe AJ, Hoskisson PA. Biosynthesis of Aurodox, a Type III Secretion System Inhibitor from Streptomyces goldiniensis. Appl Environ Microbiol 2022; 88:e0069222. [PMID: 35867559 PMCID: PMC9361827 DOI: 10.1128/aem.00692-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/26/2022] [Indexed: 11/20/2022] Open
Abstract
The global increase in antimicrobial-resistant infections means that there is a need to develop new antimicrobial molecules and strategies to combat the issue. Aurodox is a linear polyketide natural product that is produced by Streptomyces goldiniensis, yet little is known about aurodox biosynthesis or the nature of the biosynthetic gene cluster (BGC) that encodes its production. To gain a deeper understanding of aurodox biosynthesis by S. goldiniensis, the whole genome of the organism was sequenced, revealing the presence of an 87 kb hybrid polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS) BGC. The aurodox BGC shares significant homology with the kirromycin BGC from S. collinus Tϋ 365. However, the genetic organization of the BGC differs significantly. The candidate aurodox gene cluster was cloned and expressed in a heterologous host to demonstrate that it was responsible for aurodox biosynthesis and disruption of the primary PKS gene (aurAI) abolished aurodox production. These data supported a model whereby the initial core biosynthetic reactions involved in aurodox biosynthesis followed that of kirromycin. Cloning aurM* from S. goldiniensis and expressing this in the kirromycin producer S. collinus Tϋ 365 enabled methylation of the pyridone group, suggesting this is the last step in biosynthesis. This methylation step is also sufficient to confer the unique type III secretion system inhibitory properties to aurodox. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) is a significant global pathogen for which traditional antibiotic treatment is not recommended. Aurodox inhibits the ability of EHEC to establish infection in the host gut through the specific targeting of the type III secretion system while circumventing the induction of toxin production associated with traditional antibiotics. These properties suggest aurodox could be a promising anti-virulence compound for EHEC, which merits further investigation. Here, we characterized the aurodox biosynthetic gene cluster from Streptomyces goldiniensis and established the key enzymatic steps of aurodox biosynthesis that give rise to the unique anti-virulence activity. These data provide the basis for future chemical and genetic approaches to produce aurodox derivatives with increased efficacy and the potential to engineer novel elfamycins.
Collapse
Affiliation(s)
- Rebecca E. McHugh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - John T. Munnoch
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Robyn E. Braes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Iain J. W. McKean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Josephine Giard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Frederik Peschke
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Andrew J. Roe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
5
|
Beck C, Blin K, Gren T, Jiang X, Mohite OS, Palazzotto E, Tong Y, Charusanti P, Weber T. Metabolic Engineering of Filamentous Actinomycetes. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Engineering of Streptoalloteichus tenebrarius 2444 for Sustainable Production of Tobramycin. Molecules 2021; 26:molecules26144343. [PMID: 34299618 PMCID: PMC8304502 DOI: 10.3390/molecules26144343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Tobramycin is a broad-spectrum aminoglycoside antibiotic agent. The compound is obtained from the base-catalyzed hydrolysis of carbamoyltobramycin (CTB), which is naturally produced by the actinomycete Streptoalloteichus tenebrarius. However, the strain uses the same precursors to synthesize several structurally related aminoglycosides. Consequently, the production yields of tobramycin are low, and the compound’s purification is very challenging, costly, and time-consuming. In this study, the production of the main undesired product, apramycin, in the industrial isolate Streptoalloteichus tenebrarius 2444 was decreased by applying the fermentation media M10 and M11, which contained high concentrations of starch and dextrin. Furthermore, the strain was genetically engineered by the inactivation of the aprK gene (∆aprK), resulting in the abolishment of apramycin biosynthesis. In the next step of strain development, an additional copy of the tobramycin biosynthetic gene cluster (BGC) was introduced into the ∆aprK mutant. Fermentation by the engineered strain (∆aprK_1-17L) in M11 medium resulted in a 3- to 4-fold higher production than fermentation by the precursor strain (∆aprK). The phenotypic stability of the mutant without selection pressure was validated. The use of the engineered S. tenebrarius 2444 facilitates a step-saving, efficient, and, thus, more sustainable production of the valuable compound tobramycin on an industrial scale.
Collapse
|
7
|
Yarlagadda V, Medina R, Johnson TA, Koteva KP, Cox G, Thaker MN, Wright GD. Resistance-Guided Discovery of Elfamycin Antibiotic Producers with Antigonococcal Activity. ACS Infect Dis 2020; 6:3163-3173. [PMID: 33164482 DOI: 10.1021/acsinfecdis.0c00467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rise of bacterial antibiotic resistance coupled with a diminished antibiotic drug pipeline underlines the importance of developing rational strategies to discover new antimicrobials. Microbially derived natural products are the basis for most of the antibiotic arsenal available to modern medicine. Here, we demonstrate a resistance-based approach to identify producers of elfamycins, an under-explored class of natural product antibiotics that target the essential translation factor EF-Tu. Antibiotic producers carry self-resistance genes to avoid suicide. These genes are often found within the same biosynthetic gene cluster (BGC) responsible for making the antibiotic, and we exploited this trait to identify members of the kirromycin class of elfamycin producers. Genome mining of Streptomyces spp. led to the identification of three isolates that harbor kirromycin-resistant EF-Tu (EF-TuKirR) within predicted natural product BGCs. Activity-guided purification on extracts of one of the Streptomyces isolates, which was not known to produce an elfamycin, identified it as a producer of phenelfamycin B, a linear polyketide. Phenelfamycin B demonstrates impressive antibacterial activity (MIC ∼ 1 μg/mL) against multidrug-resistant Neisseria gonorrhoeae, a clinically important Gram negative pathogen. The antigonococcal activity of phenelfamycin was shown to be the result of inhibition of protein biosynthesis by binding to EF-Tu. These results indicate that a resistance-based approach of identifying elfamycin producers is translatable to other antibiotic classes that can identify new and overlooked antibiotics necessary to address the antibiotic crisis.
Collapse
Affiliation(s)
- Venkateswarlu Yarlagadda
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Ricardo Medina
- Department of Microbiology, Chemical Bioactive Center, Central University Marta Abreu de las Villas, Santa Clara 54830, Villa Clara, Cuba
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University College of Agriculture, West Lafayette, Indiana 47907, United States
| | - Kalinka P. Koteva
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Maulik N. Thaker
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gerard D. Wright
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
8
|
Cogan DP, Ly J, Nair SK. Structural Basis for Enzymatic Off-Loading of Hybrid Polyketides by Dieckmann Condensation. ACS Chem Biol 2020; 15:2783-2791. [PMID: 33017142 DOI: 10.1021/acschembio.0c00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While several bioactive natural products that contain tetramate or pyridone heterocycles have been described, information on the enzymology underpinning these functionalities has been limited. Here we biochemically characterize an off-loading Dieckmann cyclase, NcmC, that installs the tetramate headgroup in nocamycin, a hybrid polyketide/nonribosomal peptide natural product. Crystal structures of the enzyme (1.6 Å) and its covalent complex with the epoxide cerulenin (1.6 Å) guide additional structure-based mutagenesis and product-profile analyses. Our results offer mechanistic insights into how the conserved thioesterase-like scaffold has been adapted to perform a new chemical reaction, namely, heterocyclization. Additional bioinformatics combined with docking and modeling identifies likely candidates for heterocycle formation in underexplored gene clusters and uncovers a modular basis of substrate recognition by the two subdomains of these Dieckmann cyclases.
Collapse
|
9
|
Mitousis L, Thoma Y, Musiol-Kroll EM. An Update on Molecular Tools for Genetic Engineering of Actinomycetes-The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics (Basel) 2020; 9:E494. [PMID: 32784409 PMCID: PMC7460540 DOI: 10.3390/antibiotics9080494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The first antibiotic-producing actinomycete (Streptomyces antibioticus) was described by Waksman and Woodruff in 1940. This discovery initiated the "actinomycetes era", in which several species were identified and demonstrated to be a great source of bioactive compounds. However, the remarkable group of microorganisms and their potential for the production of bioactive agents were only partially exploited. This is caused by the fact that the growth of many actinomycetes cannot be reproduced on artificial media at laboratory conditions. In addition, sequencing, genome mining and bioactivity screening disclosed that numerous biosynthetic gene clusters (BGCs), encoded in actinomycetes genomes are not expressed and thus, the respective potential products remain uncharacterized. Therefore, a lot of effort was put into the development of technologies that facilitate the access to actinomycetes genomes and activation of their biosynthetic pathways. In this review, we mainly focus on molecular tools and methods for genetic engineering of actinomycetes that have emerged in the field in the past five years (2015-2020). In addition, we highlight examples of successful application of the recently developed technologies in genetic engineering of actinomycetes for activation and/or improvement of the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
| | | | - Ewa M. Musiol-Kroll
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (L.M.); (Y.T.)
| |
Collapse
|
10
|
Comparative Transcriptomic Analysis Uncovers Genes Responsible for the DHA Enhancement in the Mutant Aurantiochytrium sp. Microorganisms 2020; 8:microorganisms8040529. [PMID: 32272666 PMCID: PMC7232246 DOI: 10.3390/microorganisms8040529] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/17/2022] Open
Abstract
Docosahexaenoic acid (DHA), a n-3 long-chain polyunsaturated fatty acid, is critical for physiological activities of the human body. Marine eukaryote Aurantiochytrium sp. is considered a promising source for DHA production. Mutational studies have shown that ultraviolet (UV) irradiation (50 W, 30 s) could be utilized as a breeding strategy for obtaining high-yield DHA-producing Aurantiochytrium sp. After UV irradiation (50 W, 30 s), the mutant strain X2 which shows enhanced lipid (1.79-fold, 1417.37 mg/L) and DHA (1.90-fold, 624.93 mg/L) production, was selected from the wild Aurantiochytrium sp. Instead of eicosapentaenoic acid (EPA), 9.07% of docosapentaenoic acid (DPA) was observed in the mutant strain X2. The comparative transcriptomic analysis showed that in both wild type and mutant strain, the fatty acid synthesis (FAS) pathway was incomplete with key desaturases, but genes related to the polyketide synthase (PKS) pathway were observed. Results presented that mRNA expression levels of CoAT, AT, ER, DH, and MT down-regulated in wild type but up-regulated in mutant strain X2, corresponding to the increased intercellular DHA accumulation. These findings indicated that CoAT, AT, ER, DH, and MT can be exploited for high DHA yields in Aurantiochytrium.
Collapse
|
11
|
Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-Olvera A, Ramos-Aboites HE, Hoskisson PA, Barona-Gómez F. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep 2019; 37:566-599. [PMID: 31822877 DOI: 10.1039/c9np00048h] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2008 up to 2019The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc Natl Acad Sci U S A 2019; 116:20366-20375. [PMID: 31548381 PMCID: PMC6789908 DOI: 10.1073/pnas.1913493116] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although CRISPR-Cas9 tools dramatically simplified the genetic manipulation of actinomycetes, significant concerns of genome instability caused by the DNA double-strand breaks (DSBs) and common off-target effects remain. To address these concerns, we developed CRISPR-BEST, a DSB-free and high-fidelity single-nucleotide–resolution base editing system for streptomycetes and validated its use by determining editing properties and genome-wide off-target effects. Furthermore, our CRISPR-BEST toolkit supports Csy4-based multiplexing to target multiple genes of interest in parallel. We believe that our CRISPR-BEST approach is a significant improvement over existing genetic manipulation methods to engineer streptomycetes, especially for those strains that cannot be genome-edited using normal DSB-based genome editing systems, such as CRISPR-Cas9. Streptomycetes serve as major producers of various pharmacologically and industrially important natural products. Although CRISPR-Cas9 systems have been developed for more robust genetic manipulations, concerns of genome instability caused by the DNA double-strand breaks (DSBs) and the toxicity of Cas9 remain. To overcome these limitations, here we report development of the DSB-free, single-nucleotide–resolution genome editing system CRISPR-BEST (CRISPR-Base Editing SysTem), which comprises a cytidine (CRISPR-cBEST) and an adenosine (CRISPR-aBEST) deaminase-based base editor. Specifically targeted by an sgRNA, CRISPR-cBEST can efficiently convert a C:G base pair to a T:A base pair and CRISPR-aBEST can convert an A:T base pair to a G:C base pair within a window of approximately 7 and 6 nucleotides, respectively. CRISPR-BEST was validated and successfully used in different Streptomyces species. Particularly in nonmodel actinomycete Streptomyces collinus Tü365, CRISPR-cBEST efficiently inactivated the 2 copies of kirN gene that are in the duplicated kirromycin biosynthetic pathways simultaneously by STOP codon introduction. Generating such a knockout mutant repeatedly failed using the conventional DSB-based CRISPR-Cas9. An unbiased, genome-wide off-target evaluation indicates the high fidelity and applicability of CRISPR-BEST. Furthermore, the system supports multiplexed editing with a single plasmid by providing a Csy4-based sgRNA processing machinery. To simplify the protospacer identification process, we also updated the CRISPy-web (https://crispy.secondarymetabolites.org), and now it allows designing sgRNAs specifically for CRISPR-BEST applications.
Collapse
|
13
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
14
|
Xu Z, Fang SM, Bakowski MA, Rateb ME, Yang D, Zhu X, Huang Y, Zhao LX, Jiang Y, Duan Y, Hull MV, McNamara CW, Shen B. Discovery of Kirromycins with Anti- Wolbachia Activity from Streptomyces sp. CB00686. ACS Chem Biol 2019; 14:1174-1182. [PMID: 31074963 DOI: 10.1021/acschembio.9b00086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lymphatic filariasis and onchocerciasis diseases caused by filarial parasite infections can lead to profound disability and affect millions of people worldwide. Standard mass drug administration campaigns require repetitive delivery of anthelmintics for years to temporarily block parasite transmission but do not cure infection because long-lived adult worms survive the treatment. Depletion of the endosymbiont Wolbachia, present in most filarial nematode species, results in death of adult worms and therefore represents a promising target for the treatment of filariasis. Here, we used a high-content imaging assay to screen the pure compounds collection of the natural products library at The Scripps Research Institute for anti- Wolbachia activity, leading to the identification of kirromycin B (1) as a lead candidate. Two additional congeners, kirromycin (2) and kirromycin C (3), were isolated and characterized from the same producing strain Streptomyces sp. CB00686. All three kirromycin congeners depleted Wolbachia in LDW1 Drosophila cells in vitro with half-maximal inhibitory concentrations (IC50) in nanomolar range, while doxycycline, a registered drug with anti- Wolbachia activity, showed lower activity with an IC50 of 152 ± 55 nM. Furthermore, 1-3 eliminated the Wolbachia endosymbiont in Brugia pahangi ovaries ex vivo with higher efficiency (65%-90%) at 1 μM than that of doxycycline (50%). No cytotoxicity against HEK293T and HepG2 mammalian cells was observed with 1-3 at the highest concentration (40 μM) used in the assay. These results suggest kirromycin is an effective lead scaffold, further exploration of which could potentially lead to the development of novel treatments for filarial nematode infections.
Collapse
Affiliation(s)
- Zhengren Xu
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Shi-Ming Fang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | | | - Mostafa E. Rateb
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410013, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410013, China
| | - Mitchell V. Hull
- Calibr at Scripps Research, La Jolla, California 92037, United States
| | - Case W. McNamara
- Calibr at Scripps Research, La Jolla, California 92037, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
15
|
Palazzotto E, Tong Y, Lee SY, Weber T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv 2019; 37:107366. [PMID: 30853630 DOI: 10.1016/j.biotechadv.2019.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.
Collapse
Affiliation(s)
- Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Yaojun Tong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea.
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
16
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|