1
|
Li L, Bao H, Xu Y, Yang W, Zhang Z, Ma K, Zhang K, Zhou J, Gong Y, Ci W, Gong K. Preliminary Study of Whole-Genome Bisulfite Sequencing and Transcriptome Sequencing in VHL Disease-Associated ccRCC. Mol Diagn Ther 2023; 27:741-752. [PMID: 37587253 DOI: 10.1007/s40291-023-00663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary tumor syndrome with an incidence of approximately 1/36,000. VHL disease-associated clear cell renal cell carcinoma (ccRCC) is the most common congenital RCC. Although recent advances in treating RCC have improved the long-term prognosis of patients with VHL disease, kidney cancer is still the leading cause of death in these patients. Therefore, finding new targets for diagnosing and treating VHL disease-associated ccRCC is still essential. METHODS In this study, we collected matched tumor tissues and normal samples from 25 patients with VHL disease-associated ccRCC, diagnosed and surgically treated in the Department of Urology, Peking University First Hospital. After screening, we performed whole genome bisulfite sequencing (WGBS) on 23 pairs of tissues and RNA-seq on 6 pairs of tissues. And we also compared the VHL disease-associated ccRCC transcriptome data with the sporadic ccRCC transcriptome data from the The Cancer Genome Atlas (TCGA) public database RESULTS: We found that the methylation level of VHL disease-associated ccRCC tumor tissues was significantly lower than that of normal tissues. The tumor tissues showed a difference in the copy number of 3p loss and 5q and 7q gain compared with normal tissues. We integrated RNA-seq and WGBS data to reveal methylation candidate genes associated with VHL disease-associated ccRCC; our results showed 124 hypermethylated and downregulated genes, and 245 hypomethylated and upregulated genes. By comparing the VHL disease-associated ccRCC transcriptome data with the sporadic ccRCC transcriptome data from the TCGA public database, we found that the major pathways of differential gene enrichment differed between them. CONCLUSIONS Our study mapped the multiomics of copy number variation, methylation and mRNA level changes in tumor and normal tissues of clear cell renal cell carcinoma with VHL syndrome, which provides a solid foundation for the mechanistic study, biomarker screening, and therapeutic target discovery of clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Lei Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Hainan Bao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawei Xu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Kaifang Ma
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomingxiang Street, Dongcheng District, Beijing, 100730, China
| | - Kenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Weimin Ci
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.
- Institution of Urology, Peking University, Beijing, 100034, China.
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China.
- National Urological Cancer Center, Beijing, 100034, China.
| |
Collapse
|
2
|
Javaid H, Barberis A, Chervova O, Nassiri I, Voloshin V, Sato Y, Ogawa S, Fairfax B, Buffa F, Humphrey TC. A role for SETD2 loss in tumorigenesis through DNA methylation dysregulation. BMC Cancer 2023; 23:721. [PMID: 37528416 PMCID: PMC10394884 DOI: 10.1186/s12885-023-11162-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
SETD2-dependent H3 Lysine-36 trimethylation (H3K36me3) has been recently linked to the deposition of de-novo DNA methylation. SETD2 is frequently mutated in cancer, however, the functional impact of SETD2 loss and depletion on DNA methylation across cancer types and tumorigenesis is currently unknown. Here, we perform a pan-cancer analysis and show that both SETD2 mutation and reduced expression are associated with DNA methylation dysregulation across 21 out of the 24 cancer types tested. In renal cancer, these DNA methylation changes are associated with altered gene expression of oncogenes, tumour suppressors, and genes involved in neoplasm invasiveness, including TP53, FOXO1, and CDK4. This suggests a new role for SETD2 loss in tumorigenesis and cancer aggressiveness through DNA methylation dysregulation. Moreover, using a robust machine learning methodology, we develop and validate a 3-CpG methylation signature which is sufficient to predict SETD2 mutation status with high accuracy and correlates with patient prognosis.
Collapse
Affiliation(s)
- Hira Javaid
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Alessandro Barberis
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Olga Chervova
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Isar Nassiri
- Oxford Genomics Centre, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Vitaly Voloshin
- Royal Botanic Gardens Kew, Kew Green, Richmond, TW9 3AE, Surrey, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Benjamin Fairfax
- The MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital/Headley Way, OX3 9DS, Oxford, UK
| | - Francesca Buffa
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Timothy C Humphrey
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, BN1 9RQ, Brighton, UK.
| |
Collapse
|
3
|
Sasagawa T, Nagamatsu T, Yanagisawa M, Fujii T, Shibuya M. Hypoxia-inducible factor-1β is essential for upregulation of the hypoxia-induced FLT1 gene in placental trophoblasts. Mol Hum Reprod 2021; 27:6402014. [PMID: 34665260 PMCID: PMC8633902 DOI: 10.1093/molehr/gaab065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Placental hypoxia and increased levels of maternal blood anti-angiogenic protein, soluble fms-like tyrosine kinase-1 (sFLT1), are associated with the pathogenesis of pre-eclampsia. We have demonstrated that hypoxia-inducible factor (HIF)-2α mediates the upregulation of the hypoxia-induced FLT1 gene in trophoblasts and their cell lines. Here, we investigated the involvement of HIF-1β, which acts as a dimerization partner for HIF-α, in the upregulation of the FLT1 gene via hypoxia. We confirmed the interactions between HIF-1β and HIF-2α in the nuclei of BeWo, JAR and JEG-3 cells under hypoxia via co-immunoprecipitation. We found that hypoxia-induced upregulation of the FLT1 gene in BeWo cells and secretion of sFLT1 in human primary trophoblasts were significantly reduced by siRNAs targeting HIF-1β. Moreover, the upregulation of the FLT1 gene in BeWo cells induced by dimethyloxaloylglycine (DMOG) was also inhibited by silencing either HIF-2α or HIF-1β mRNA. It was recently shown that DNA demethylation increases both basal and hypoxia-induced expression levels of the FLT1 gene in three trophoblast-derived cell lines. In the demethylated BeWo cells, siRNAs targeting HIF-2α and HIF-1β suppressed the further increase in the expression levels of the FLT1 gene due to hypoxia or treatment with DMOG. However, luciferase reporter assays and bisulfite sequencing revealed that a hypoxia response element (-966 to -962) of the FLT1 gene is not involved in hypoxia or DMOG-induced upregulation of the FLT1 gene. These findings suggest that HIF-1β is essential for the elevated production of sFLT1 in the hypoxic trophoblasts and that the HIF-2α/HIF-1β complex may be a crucial therapeutic target for pre-eclampsia.
Collapse
Affiliation(s)
- Tadashi Sasagawa
- Institute of Physiology and Medicine, Jobu University, Gunma 370-1393, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Manami Yanagisawa
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Gunma 370-1393, Japan
| |
Collapse
|
4
|
Samec M, Liskova A, Koklesova L, Mersakova S, Strnadel J, Kajo K, Pec M, Zhai K, Smejkal K, Mirzaei S, Hushmandi K, Ashrafizadeh M, Saso L, Brockmueller A, Shakibaei M, Büsselberg D, Kubatka P. Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers (Basel) 2021; 13:E130. [PMID: 33401572 PMCID: PMC7794792 DOI: 10.3390/cancers13010130] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor hypoxia is described as an oxygen deprivation in malignant tissue. The hypoxic condition is a consequence of an imbalance between rapidly proliferating cells and a vascularization that leads to lower oxygen levels in tumors. Hypoxia-inducible factor 1 (HIF-1) is an essential transcription factor contributing to the regulation of hypoxia-associated genes. Some of these genes modulate molecular cascades associated with the Warburg effect and its accompanying pathways and, therefore, represent promising targets for cancer treatment. Current progress in the development of therapeutic approaches brings several promising inhibitors of HIF-1. Flavonoids, widely occurring in various plants, exert a broad spectrum of beneficial effects on human health, and are potentially powerful therapeutic tools against cancer. Recent evidences identified numerous natural flavonoids and their derivatives as inhibitors of HIF-1, associated with the regulation of critical glycolytic components in cancer cells, including pyruvate kinase M2(PKM2), lactate dehydrogenase (LDHA), glucose transporters (GLUTs), hexokinase II (HKII), phosphofructokinase-1 (PFK-1), and pyruvate dehydrogenase kinase (PDK). Here, we discuss the results of most recent studies evaluating the impact of flavonoids on HIF-1 accompanied by the regulation of critical enzymes contributing to the Warburg phenotype. Besides, flavonoid effects on glucose metabolism via regulation of HIF-1 activity represent a promising avenue in cancer-related research. At the same time, only more-in depth investigations can further elucidate the mechanistic and clinical connections between HIF-1 and cancer metabolism.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic;
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, 1477893855 Tehran, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, 1419963114 Tehran, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
5
|
Cristancho AG, Marsh ED. Epigenetics modifiers: potential hub for understanding and treating neurodevelopmental disorders from hypoxic injury. J Neurodev Disord 2020; 12:37. [PMID: 33327934 PMCID: PMC7745506 DOI: 10.1186/s11689-020-09344-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The fetal brain is adapted to the hypoxic conditions present during normal in utero development. Relatively more hypoxic states, either chronic or acute, are pathologic and can lead to significant long-term neurodevelopmental sequelae. In utero hypoxic injury is associated with neonatal mortality and millions of lives lived with varying degrees of disability. MAIN BODY Genetic studies of children with neurodevelopmental disease indicate that epigenetic modifiers regulating DNA methylation and histone remodeling are critical for normal brain development. Epigenetic modifiers are also regulated by environmental stimuli, such as hypoxia. Indeed, epigenetic modifiers that are mutated in children with genetic neurodevelopmental diseases are regulated by hypoxia in a number of preclinical models and may be part of the mechanism for the long-term neurodevelopmental sequelae seem in children with hypoxic brain injury. Thus, a comprehensive understanding the role of DNA methylation and histone modifications in hypoxic injury is critical for developing novel strategies to treat children with hypoxic injury. CONCLUSIONS This review focuses on our current understanding of the intersection between epigenetics, brain development, and hypoxia. Opportunities for the use of epigenetics as biomarkers of neurodevelopmental disease after hypoxic injury and potential clinical epigenetics targets to improve outcomes after injury are also discussed. While there have been many published studies on the epigenetics of hypoxia, more are needed in the developing brain in order to determine which epigenetic pathways may be most important for mitigating the long-term consequences of hypoxic brain injury.
Collapse
Affiliation(s)
- Ana G Cristancho
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Eric D Marsh
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
6
|
Fan S, Wang J, Yu G, Rong F, Zhang D, Xu C, Du J, Li Z, Ouyang G, Xiao W. TET is targeted for proteasomal degradation by the PHD-pVHL pathway to reduce DNA hydroxymethylation. J Biol Chem 2020; 295:16299-16313. [PMID: 32963106 DOI: 10.1074/jbc.ra120.014538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/19/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factors are heterodimeric transcription factors that play a crucial role in a cell's ability to adapt to low oxygen. The von Hippel-Lindau tumor suppressor (pVHL) acts as a master regulator of HIF activity, and its targeting of prolyl hydroxylated HIF-α for proteasomal degradation under normoxia is thought to be a major mechanism for pVHL tumor suppression and cellular response to oxygen. Whether pVHL regulates other targets through a similar mechanism is largely unknown. Here, we identify TET2/3 as novel targets of pVHL. pVHL induces proteasomal degradation of TET2/3, resulting in reduced global 5-hydroxymethylcytosine levels. Conserved proline residues within the LAP/LAP-like motifs of these two proteins are hydroxylated by the prolyl hydroxylase enzymes (PHD2/EGLN1 and PHD3/EGLN3), which is prerequisite for pVHL-mediated degradation. Using zebrafish as a model, we determined that global 5-hydroxymethylcytosine levels are enhanced in vhl-null, egln1a/b-double-null, and egln3-null embryos. Therefore, we reveal a novel function for the PHD-pVHL pathway in regulating TET protein stability and activity. These data extend our understanding of how TET proteins are regulated and provide new insight into the mechanisms of pVHL in tumor suppression.
Collapse
Affiliation(s)
- Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China; Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Juan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China; Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China; Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
7
|
Sun J, Tang Q, Gao Y, Zhang W, Zhao Z, Yang F, Hu X, Zhang D, Wang Y, Zhang H, Song B, Zhang B, Wang H. VHL mutation-mediated SALL4 overexpression promotes tumorigenesis and vascularization of clear cell renal cell carcinoma via Akt/GSK-3β signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:104. [PMID: 32513235 PMCID: PMC7278163 DOI: 10.1186/s13046-020-01609-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Background Although ongoing development of therapeutic strategies contributes to the improvements in clinical management, clear cell renal cell carcinoma (ccRCC) deaths originate mainly from radiochemoresistant and metastatic disease. Transcription factor SALL4 has been implicated in tumorigenesis and metastasis of multiple cancers. However, it is not known whether SALL4 is involved in the pathogenesis of ccRCC. Methods Analyses of clinical specimen and publicly available datasets were performed to determine the expression level and clinical significance of SALL4 in ccRCC. The influence of SALL4 expression on ccRCC tumor growth, metastasis and vascularity was evaluated through a series of in vitro and in vivo experiments. Western blotting, immunofluorescence staining and integrative database analysis were carried out to investigate the underlying mechanism for SALL4-mediated oncogenic activities in ccRCC. Results SALL4 expression was increased in ccRCC and positively correlated with tumor progression and poor prognosis. SALL4 could promote ccRCC cell proliferation, colony formation, cell cycle progression, migration, invasion and tumorigenicity and inhibit cell senescence. Further investigation revealed a widespread association of SALL4 with individual gene transcription and the involvement of SALL4 in endothelium development and vasculogenesis. In the context of ccRCC, SALL4 promoted tumor vascularization by recruiting endothelial cells. In addition, we found that SALL4 could exert its tumor-promoting effect via modulating Akt/GSK-3β axis and VEGFA expression. VHL mutation and DNA hypomethylation may be involved in the upregulation of SALL4 in ccRCC. Conclusions Overall, our results provide evidence that upregulated SALL4 can function as a crucial regulator of tumor pathogenesis and progression in ccRCC, thus offering potential therapeutic strategies for future treatment.
Collapse
Affiliation(s)
- Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yongheng Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhining Zhao
- Clinical Laboratory, The 986th Military Hospital, Fourth Military Medical University, Xi'an, 710054, Shaanxi, China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Xiangnan Hu
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Dan Zhang
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, China
| | - Yong Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Huizhong Zhang
- Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bin Song
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| | - Bo Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
8
|
Rao H, Li X, Liu M, Liu J, Li X, Xu J, Li L, Gao WQ. Di-Ras2 promotes renal cell carcinoma formation by activating the mitogen-activated protein kinase pathway in the absence of von Hippel-Lindau protein. Oncogene 2020; 39:3853-3866. [PMID: 32161311 DOI: 10.1038/s41388-020-1247-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common and lethal human urological malignancies in the world. One of the pathological drivers for ccRCC is the Ras family of small GTPases that function as "molecular switches" in many diseases including ccRCC. Among the GTPases in the Di-Ras family, DIRAS2 gene encodes a GTPase that shares 60% homology to Ras and Rap. Yet little is known about the biological function(s) of Di-Ras2 or how its activities are regulated. In this study, we focused on Di-Ras2, and determined its functions and underlying mechanism during formation of ccRCC. We found that Di-Ras2 was upregulated in ccRCC, and promoted the proliferation, migration and invasion of human ccRCC cells in the absence of von Hippel-Lindau protein (pVHL). Mechanistically, Di-Ras2 induces and regulates ccRCC formation by modulating phosphorylation of the downstream effectors and activating the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, Di-Ras2 interacts with E3 ubiquitin ligase, pVHL, which facilitates the ubiquitination and degradation of Di-Ras2. Together, these results indicate a potential function of Di-Ras2 as an oncogene in ccRCC, and these data provide a new perspective of the relationship between pVHL and the MAPK pathway in ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Hanyu Rao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xuefeng Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, PR China
| | - Min Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jing Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaoxue Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
9
|
Sasagawa T, Jinno-Oue A, Nagamatsu T, Morita K, Tsuruga T, Mori-Uchino M, Fujii T, Shibuya M. Production of an anti-angiogenic factor sFLT1 is suppressed via promoter hypermethylation of FLT1 gene in choriocarcinoma cells. BMC Cancer 2020; 20:112. [PMID: 32041578 PMCID: PMC7011436 DOI: 10.1186/s12885-020-6598-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Soluble Fms-like tyrosine kinase-1 (sFLT1) as an anti-angiogenic factor is abundantly expressed in placental trophoblasts. Choriocarcinoma, a malignant tumor derived from trophoblasts, is known to be highly angiogenic and metastatic. However, the molecular mechanism underlying angiogenesis in choriocarcinoma pathogenesis remains unclear. We aimed to investigate the mRNA expression and DNA methylation status of the FLT1 gene in human choriocarcinoma cells and trophoblast cells. METHODS qRT-PCR, Western blotting and ELISA were conducted to evaluate the mRNA and protein expression levels of sFLT1. 5-aza-2'-deoxycytidine (5azadC) treatment and bisulfite sequencing were used to study the FLT1 gene promoter methylation. The effect of sFLT1 on choriocarcinoma growth and angiogenesis was evaluated in a xenograft mouse model. RESULTS Expression of the FLT1 gene was strongly suppressed in choriocarcinoma cell lines compared with that in the primary trophoblasts. Treatment of choriocarcinoma cell lines with 5azadC, a DNA methyltransferase inhibitor, markedly increased in mRNA expression of three FLT1 splice variants and secretion of sFLT1 proteins. Bisulfite sequencing revealed that the CpG hypermethylation was observed at the FLT1 promoter region in choriocarcinoma cell lines and a human primary choriocarcinoma tissue but not in human trophoblast cells. Interestingly, in 5azadC-treated choriocarcinoma cell lines, sFLT1 mRNA expression and sFLT1 production were further elevated by hypoxic stimulation. Finally, as expected, sFLT1-expressing choriocarcinoma cells implanted into nude mice showed significantly slower tumor growth and reduced microvessel formation compared with GFP-expressing control choriocarcinoma cells. CONCLUSIONS Inhibition of sFLT1 production by FLT1 silencing occurs via the hypermethylation of its promoter in choriocarcinoma cells. The stable expression of sFLT1 in choriocarcinoma cells resulted in the suppression of tumor growth and tumor vascularization in vivo. We suggest that the FLT1 gene may be a cell-type-specific tumor suppressor in choriocarcinoma cells.
Collapse
Affiliation(s)
- Tadashi Sasagawa
- Institute of Physiology and Medicine, Jobu University, 270-1 Shin-machi, Takasaki, Gunma, 370-1393, Japan
| | - Atsushi Jinno-Oue
- Bioresource Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuki Morita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, 270-1 Shin-machi, Takasaki, Gunma, 370-1393, Japan.
| |
Collapse
|
10
|
Braun TP, Okhovat M, Coblentz C, Carratt SA, Foley A, Schonrock Z, Curtiss BM, Nevonen K, Davis B, Garcia B, LaTocha D, Weeder BR, Grzadkowski MR, Estabrook JC, Manning HG, Watanabe-Smith K, Jeng S, Smith JL, Leonti AR, Ries RE, McWeeney S, Di Genua C, Drissen R, Nerlov C, Meshinchi S, Carbone L, Druker BJ, Maxson JE. Myeloid lineage enhancers drive oncogene synergy in CEBPA/CSF3R mutant acute myeloid leukemia. Nat Commun 2019; 10:5455. [PMID: 31784538 PMCID: PMC6884457 DOI: 10.1038/s41467-019-13364-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Acute Myeloid Leukemia (AML) develops due to the acquisition of mutations from multiple functional classes. Here, we demonstrate that activating mutations in the granulocyte colony stimulating factor receptor (CSF3R), cooperate with loss of function mutations in the transcription factor CEBPA to promote acute leukemia development. The interaction between these distinct classes of mutations occurs at the level of myeloid lineage enhancers where mutant CEBPA prevents activation of a subset of differentiation associated enhancers. To confirm this enhancer-dependent mechanism, we demonstrate that CEBPA mutations must occur as the initial event in AML initiation. This improved mechanistic understanding will facilitate therapeutic development targeting the intersection of oncogene cooperativity.
Collapse
Affiliation(s)
- Theodore P. Braun
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Mariam Okhovat
- 0000 0000 9758 5690grid.5288.7Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239 USA
| | - Cody Coblentz
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Sarah A. Carratt
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Amy Foley
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Zachary Schonrock
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Brittany M. Curtiss
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Kimberly Nevonen
- 0000 0000 9758 5690grid.5288.7Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239 USA
| | - Brett Davis
- 0000 0000 9758 5690grid.5288.7Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239 USA
| | - Brianna Garcia
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Dorian LaTocha
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Benjamin R. Weeder
- 0000 0000 9758 5690grid.5288.7Program in Molecular and Cellular Biology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Michal R. Grzadkowski
- 0000 0000 9758 5690grid.5288.7Computational Biology Program, Oregon Health & Science University, Portland, OR 97239 USA
| | - Joey C. Estabrook
- 0000 0000 9758 5690grid.5288.7Computational Biology Program, Oregon Health & Science University, Portland, OR 97239 USA
| | - Hannah G. Manning
- 0000 0000 9758 5690grid.5288.7Computational Biology Program, Oregon Health & Science University, Portland, OR 97239 USA
| | - Kevin Watanabe-Smith
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Computational Biology Program, Oregon Health & Science University, Portland, OR 97239 USA
| | - Sophia Jeng
- 0000 0000 9758 5690grid.5288.7Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Jenny L. Smith
- 0000 0001 2180 1622grid.270240.3Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 USA
| | - Amanda R. Leonti
- 0000 0001 2180 1622grid.270240.3Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 USA
| | - Rhonda E. Ries
- 0000 0001 2180 1622grid.270240.3Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 USA
| | - Shannon McWeeney
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Cristina Di Genua
- 0000 0001 2306 7492grid.8348.7MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DS UK
| | - Roy Drissen
- 0000 0001 2306 7492grid.8348.7MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DS UK
| | - Claus Nerlov
- 0000 0001 2306 7492grid.8348.7MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DS UK
| | - Soheil Meshinchi
- 0000 0001 2180 1622grid.270240.3Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 USA ,0000000122986657grid.34477.33Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA 98195 USA
| | - Lucia Carbone
- 0000 0000 9758 5690grid.5288.7Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 USA
| | - Brian J. Druker
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0001 2167 1581grid.413575.1Howard Hughes Medical Institute, Portland, OR USA
| | - Julia E. Maxson
- 0000 0000 9758 5690grid.5288.7Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239 USA
| |
Collapse
|
11
|
Kim J, Thompson B, Han S, Lotan Y, McDonald JG, Ye J. Uptake of HDL-cholesterol contributes to lipid accumulation in clear cell renal cell carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158525. [PMID: 31513923 DOI: 10.1016/j.bbalip.2019.158525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC), which accounts for the majority of kidney cancer, is known to accumulate excess cholesterol. However, the mechanism and functional significance of the lipid accumulation for development of the cancer remains obscure. In this study, we analyzed 42 primary ccRCC samples, and determined that cholesterol levels of ~ 70% of the tumors were at least two-fold higher than that of benign kidney tissues. Compared to tumors without cholesterol accumulation, those containing excess cholesterol expressed higher levels of scavenger receptor BI (SR-B1), a receptor for uptake of HDL-associated cholesterol, but not genes involved in cholesterol synthesis and uptake of LDL-associated cholesterol. To further determine the roles of sterol accumulation for cancer development, we implanted ccRCC from patients into mouse kidneys using a mouse ccRCC xenograft model. Feeding mice with probucol, a compound lowing HDL-cholesterol, markedly reduced levels of cholesterol in tumors containing excess cholesterol. This treatment, however, did not affect growth of these tumors. Our study suggests that cholesterol overaccumulation in ccRCC is the consequence of increased uptake of HDL-cholesterol as a result of SR-B1 overexpression, but the lipid accumulation by itself may not play a significant role in progression of the cancer.
Collapse
Affiliation(s)
- JungYeon Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Bonne Thompson
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Sungwon Han
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Graybiel CE, Flavell RR, Wang ZJ, Behr SC. Molecular Imaging of Renal Malignancy: A Review. CURRENT RADIOLOGY REPORTS 2019. [DOI: 10.1007/s40134-019-0320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|