1
|
Dunn TW, Fan X, Lee J, Smith P, Gandhi R, Sossin WS. The role of specific isoforms of Ca V2 and the common C-terminal of Ca V2 in calcium channel function in sensory neurons of Aplysia. Sci Rep 2023; 13:20216. [PMID: 37980443 PMCID: PMC10657410 DOI: 10.1038/s41598-023-47573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
The presynaptic release apparatus can be specialized to enable specific synaptic functions. Habituation is the diminishing of a physiological response to a frequently repeated stimulus and in Aplysia, habituation to touch is mediated by a decrease in transmitter release from the sensory neurons that respond to touch even after modest rates of action potential firing. This synaptic depression is not common among Aplysia synaptic connections suggesting the presence of a release apparatus specialized for this depression. We found that specific splice forms of ApCaV2, the calcium channel required for transmitter release, are preferentially used in sensory neurons, consistent with a specialized release apparatus. However, we were not able to find a specific ApCaV2 splice uniquely required for synaptic depression. The C-terminus of ApCaV2 alpha1 subunit retains conserved binding to Aplysia rab-3 interacting molecule (ApRIM) and ApRIM-binding protein (ApRBP) and the C-terminus is required for full synaptic expression of ApCaV2. We also identified a splice form of ApRIM that did not interact with the ApCav2 alpha 1 subunit, but it was not preferentially used in sensory neurons.
Collapse
Affiliation(s)
- Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Xiaotang Fan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jiwon Lee
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Petranea Smith
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Rushali Gandhi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
2
|
Zha C, Sossin WS. The molecular diversity of plasticity mechanisms underlying memory: An evolutionary perspective. J Neurochem 2022; 163:444-460. [PMID: 36326567 DOI: 10.1111/jnc.15717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Experience triggers molecular cascades in organisms (learning) that lead to alterations (memory) to allow the organism to change its behavior based on experience. Understanding the molecular mechanisms underlying memory, particularly in the nervous system of animals, has been an exciting scientific challenge for neuroscience. We review what is known about forms of neuronal plasticity that underlie memory highlighting important issues in the field: (1) the importance of being able to measure how neurons are activated during learning to identify the form of plasticity that underlies memory, (2) the many distinct forms of plasticity important for memories that naturally decay both within and between organisms, and (3) unifying principles underlying the formation and maintenance of long-term memories. Overall, the diversity of molecular mechanisms underlying memories that naturally decay contrasts with more unified molecular mechanisms implicated in long-lasting changes. Despite many advances, important questions remain as to which mechanisms of neuronal plasticity underlie memory.
Collapse
Affiliation(s)
- Congyao Zha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Fux JE, Mehta A, Moffat J, Spafford JD. Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations. Front Physiol 2018; 9:1406. [PMID: 30519187 PMCID: PMC6259924 DOI: 10.3389/fphys.2018.01406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
The appearance of voltage-gated, sodium-selective channels with rapid gating kinetics was a limiting factor in the evolution of nervous systems. Two rounds of domain duplications generated a common 24 transmembrane segment (4 × 6 TM) template that is shared amongst voltage-gated sodium (Nav1 and Nav2) and calcium channels (Cav1, Cav2, and Cav3) and leak channel (NALCN) plus homologs from yeast, different single-cell protists (heterokont and unikont) and algae (green and brown). A shared architecture in 4 × 6 TM channels include an asymmetrical arrangement of extended extracellular L5/L6 turrets containing a 4-0-2-2 pattern of cysteines, glycosylated residues, a universally short III-IV cytoplasmic linker and often a recognizable, C-terminal PDZ binding motif. Six intron splice junctions are conserved in the first domain, including a rare U12-type of the minor spliceosome provides support for a shared heritage for sodium and calcium channels, and a separate lineage for NALCN. The asymmetrically arranged pores of 4x6 TM channels allows for a changeable ion selectivity by means of a single lysine residue change in the high field strength site of the ion selectivity filter in Domains II or III. Multicellularity and the appearance of systems was an impetus for Nav1 channels to adapt to sodium ion selectivity and fast ion gating. A non-selective, and slowly gating Nav2 channel homolog in single cell eukaryotes, predate the diversification of Nav1 channels from a basal homolog in a common ancestor to extant cnidarians to the nine vertebrate Nav1.x channel genes plus Nax. A close kinship between Nav2 and Nav1 homologs is evident in the sharing of most (twenty) intron splice junctions. Different metazoan groups have lost their Nav1 channel genes altogether, while vertebrates rapidly expanded their gene numbers. The expansion in vertebrate Nav1 channel genes fills unique functional niches and generates overlapping properties contributing to redundancies. Specific nervous system adaptations include cytoplasmic linkers with phosphorylation sites and tethered elements to protein assemblies in First Initial Segments and nodes of Ranvier. Analogous accessory beta subunit appeared alongside Nav1 channels within different animal sub-phyla. Nav1 channels contribute to pace-making as persistent or resurgent currents, the former which is widespread across animals, while the latter is a likely vertebrate adaptation.
Collapse
Affiliation(s)
- Julia E Fux
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Amrit Mehta
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jack Moffat
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
4
|
Patton MH, Padgett KE, McKeon PN, Lu SG, Abrams TW, Mathur BN. An Aplysia-like synaptic switch for rapid protection against ethanol-induced synaptic inhibition in a mammalian habit circuit. Neuropharmacology 2018; 144:1-8. [PMID: 30321611 DOI: 10.1016/j.neuropharm.2018.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 10/11/2018] [Indexed: 02/02/2023]
Abstract
Decades of work in Aplysia californica established the general rule that principles of synaptic plasticity and their molecular mechanisms are evolutionarily conserved from mollusks to mammals. However, an exquisitely sensitive, activity-dependent homosynaptic mechanism that protects against the depression of neurotransmitter release in Aplysia sensory neuron terminals has, to date, not been uncovered in other animals, including mammals. Here, we discover that depression at a mammalian synapse that is implicated in habit formation and habit learning acceleration by ethanol, the fast-spiking interneuron (FSI) to medium spiny principal projection neuron (MSN) synapse of the dorsolateral striatum, is subject to this type of synaptic protection. We show that this protection against synaptic depression is calcium- and PDZ domain interaction-dependent. These findings support activity dependent protection against synaptic depression as an Aplysia-like synaptic switch in mammals that may represent a leveraging point for treating alcohol use disorders.
Collapse
Affiliation(s)
- Mary H Patton
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Katherine E Padgett
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Paige N McKeon
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shao-Gang Lu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Thomas W Abrams
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
5
|
He R, Zhang J, Yu Y, Jizi L, Wang W, Li M. New Insights Into Interactions of Presynaptic Calcium Channel Subtypes and SNARE Proteins in Neurotransmitter Release. Front Mol Neurosci 2018; 11:213. [PMID: 30061813 PMCID: PMC6054978 DOI: 10.3389/fnmol.2018.00213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Action potential (AP) induces presynaptic membrane depolarization and subsequent opening of Ca2+ channels, and then triggers neurotransmitter release at the active zone of presynaptic terminal. Presynaptic Ca2+ channels and SNARE proteins (SNAREs) interactions form a large signal transfer complex, which are core components for exocytosis. Ca2+ channels serve to regulate the activity of Ca2+ channels through direct binding and indirect activation of active zone proteins and SNAREs. The activation of Ca2+ channels promotes synaptic vesicle recruitment, docking, priming, fusion and neurotransmission release. Intracellular calcium increase is a key step for the initiation of vesicle fusion. Various voltage-gated calcium channel (VGCC) subtypes exert different physiological functions. Until now, it has not been clear how different subtypes of calcium channels integrally regulate the release of neurotransmitters within 200 μs of the AP arriving at the active zone of synaptic terminal. In this mini review, we provide a brief overview of the structure and physiological function of Ca2+ channel subtypes, interactions of Ca2+ channels and SNAREs in neurotransmitter release, and dynamic fine-tune Ca2+ channel activities by G proteins (Gβγ), multiple protein kinases and Ca2+ sensor (CaS) proteins.
Collapse
Affiliation(s)
- Rongfang He
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Infectious Disease Department, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Juan Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yiyan Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Laluo Jizi
- Department of Neurology, Liangshan Hospital of Integrated Traditional and Western Medicine, Xichang, China
| | - Weizhong Wang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|