1
|
Zhang Q, Yang X, Deng X, Niu H, Zhao Y, Wen J, Wang S, Liu H, Guo X, Wu C. Transcriptome-wide RNA m6A methylation profiles in an endemic osteoarthropathy, Kashin-Beck disease. J Cell Mol Med 2024; 28:e70047. [PMID: 39428571 PMCID: PMC11491295 DOI: 10.1111/jcmm.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/12/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024] Open
Abstract
Kashin-Beck disease (KBD) is a chronic degenerative, disabling disease of the bones and joints and its exact aetiology and pathogenesis remain uncertain. This study is to investigate the role of m6A modification in the pathogenesis of KBD. Combined analysis of m6A MeRIP-Seq and RNA-Seq were used to analyse human peripheral blood samples from three KBD patients and three normal controls (NC). Bioinformatic methods were used to analyse m6A-modified differential genes and RT-qPCR was performed to validate the mRNA expression of several KBD-related genes. The results indicated that the total of 16,811 genes were modified by m6A in KBD group, of which 4882 genes were differential genes. A large number of differential genes were associated with regulation of transcription, signal transduction and protein binding. KEGG analysis showed that m6A-enriched genes participated the pathways of Vitamin B6 metabolism, endocytosis and Rap 1 signalling pathway. There was a positive association between m6A abundance and levels of gene expression, that there were 6 hypermethylated and upregulated genes (hyper-up), 23 hypomethylated and downregulated genes (hypo-down) in KBD group compared with NC. In addition, the mRNA expression of levels of MMP8, IL32 and GPX1 were verified and the protein-protein interaction networks of these key factors were constructed. Our study showed that m6A modifications may play a vital role in modulating gene expression, which represents a new clue to reveal the pathogenesis of KBD.
Collapse
Affiliation(s)
- Qian Zhang
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xiaodong Yang
- Shaanxi Provincial Institute for Endemic Disease Prevention and ControlXi'anPeople's Republic of China
| | - Xingxing Deng
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Hui Niu
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Yijun Zhao
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Jinfeng Wen
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Sen Wang
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Huan Liu
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xiong Guo
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Cuiyan Wu
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
2
|
Ezan J, Moreau MM, Mamo TM, Shimbo M, Decroo M, Sans N, Montcouquiol M. Neuron-Specific Deletion of Scrib in Mice Leads to Neuroanatomical and Locomotor Deficits. Front Genet 2022; 13:872700. [PMID: 35692812 PMCID: PMC9174639 DOI: 10.3389/fgene.2022.872700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Scribble (Scrib) is a conserved polarity protein acting as a scaffold involved in multiple cellular and developmental processes. Recent evidence from our group indicates that Scrib is also essential for brain development as early global deletion of Scrib in the dorsal telencephalon induced cortical thickness reduction and alteration of interhemispheric connectivity. In addition, Scrib conditional knockout (cKO) mice have behavioral deficits such as locomotor activity impairment and memory alterations. Given Scrib broad expression in multiple cell types in the brain, we decided to determine the neuronal contribution of Scrib for these phenotypes. In the present study, we further investigate the function of Scrib specifically in excitatory neurons on the forebrain formation and the control of locomotor behavior. To do so, we generated a novel neuronal glutamatergic specific Scrib cKO mouse line called Nex-Scrib−/− cKO. Remarkably, cortical layering and commissures were impaired in these mice and reproduced to some extent the previously described phenotype in global Scrib cKO. In addition and in contrast to our previous results using Emx1-Scrib−/− cKO, the Nex-Scrib−/− cKO mutant mice exhibited significantly reduced locomotion. Altogether, the novel cKO model described in this study further highlights an essential role for Scrib in forebrain development and locomotor behavior.
Collapse
Affiliation(s)
- Jerome Ezan
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
- *Correspondence: Jerome Ezan,
| | - Maité M. Moreau
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Tamrat M. Mamo
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Miki Shimbo
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Maureen Decroo
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Nathalie Sans
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| | - Mireille Montcouquiol
- INSERM U1215, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, F-33000, Bordeaux, France
| |
Collapse
|
3
|
Mapping Regional Cortical Bone Responses to Local Changes in Loading and Systemic Stimuli. Methods Mol Biol 2021. [PMID: 32979209 DOI: 10.1007/978-1-0716-0989-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Quantification of cortical bone mass and architecture using μCT is commonplace in osteoporosis and osteoarthritis research. Different groups often report substantially divergent mouse cortical bone responses to nominally comparable interventions. In the case of studies assessing bones' responses to externally applied loading, these differences are commonly associated with methodological differences in the loading regime. This chapter describes a widely published, standardized method of in vivo mouse tibia axial loading to produce lamellar bone formation. Despite uniform application of axial loading, changes in bone mass are highly site-specific within individual bones. For example, the mouse proximal tibia rapidly accrues new bone following axial loading, but this osteogenic response tapers to produce undetectable differences distally. Consequently, the bone sites selected for comparisons substantially influence the magnitude of differences observed. Application of the freely available Site Specificity software allows site-specific responses to be identified by rapidly quantifying cortical bone mass at each 1% site along the bone's length. This high-content screening tool has been informatively applied to study the local effects of changes in loading as well as systemic interventions including hormonal treatment and aging. Automated multisite analyses of cortical mass is increasingly identifying site-specific effects of "systemic" interventions such as global gene deletions. Biological mechanisms underlying this apparent regionalization of cortical responses are largely unknown but may start to be elucidated by increasingly widespread application of Site Specificity methods.
Collapse
|
4
|
Zhang K, Li Z, Lu Y, Xiang L, Sun J, Zhang H. Silencing of Vangl2 attenuates the inflammation promoted by Wnt5a via MAPK and NF-κB pathway in chondrocytes. J Orthop Surg Res 2021; 16:136. [PMID: 33588909 PMCID: PMC7883434 DOI: 10.1186/s13018-021-02268-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The Wnt planar cell polarity (PCP) pathway is implicated in osteoarthritis (OA) both in animals and in humans. Van Gogh-like 2 (Vangl2) is a key PCP protein that is required for the orientation and alignment of chondrocytes in the growth plate. However, its functional roles in OA still remain undefined. Here, we explored the effects of Vangl2 on OA chondrocyte in vitro and further elucidated the molecular mechanism of silencing Vangl2 in Wnt5a-overexpressing OA chondrocytes. METHODS Chondrocytes were treated with IL-1β (10 ng/mL) to simulate the inflammatory microenvironment of OA. The expression levels of Vangl2, Wnt5a, MMPs, and related proinflammatory cytokines were measured by RT-qPCR. Small interfering RNA (siRNA) of Vangl2 and the plasmid targeting Wnt5a were constructed and transfected into ATDC5 cells. Then, the functional roles of silencing Vangl2 in the OA chondrocytes were investigated by Western blotting, RT-qPCR, and immunocytochemistry (ICC). Transfected OA chondrocytes were subjected to Western blotting to analyze the relationship between Vangl2 and related signaling pathways. RESULTS IL-1β induced the production of Vangl2, Wnt5a, and MMPs in a time-dependent manner and the significantly increased expression of Vangl2. Vangl2 silencing effectively suppressed the expression of MMP3, MMP9, MMP13, and IL-6 at both gene and protein levels and upregulated the expression of type II collagen and aggrecan. Moreover, knockdown of Vangl2 inhibited the phosphorylation of MAPK signaling molecules (P38, ERK, and JNK) and P65 in Wnt5a-overexpressing OA chondrocytes. CONCLUSIONS For the first time, we demonstrate that Vangl2 is involved in the OA process. Vangl2 silencing can notably alleviate OA progression in vitro by inhibiting the expression of MMPs and increasing the formation of the cartilage matrix and can inhibit the proinflammatory effects of Wnt5a via MAPK and NF-κB pathway. This study provides new insight into the mechanism of cartilage inflammation.
Collapse
Affiliation(s)
- Ke Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No.56 Lingyuan West Road, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Zhuoying Li
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No.56 Lingyuan West Road, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Yunyang Lu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No.56 Lingyuan West Road, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Linyi Xiang
- Department of Stomatology, Binhaiwan Central Hospital of Dongguan (also called The Fifth People's Hospital of Dongguan), The Dongguan Affiliated Hospital of Medical College of Jinan University, No.111 Humen Road, Humen Town, Dongguan City, 523905, Guangdong Province, People's Republic of China
| | - Jiadong Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No.56 Lingyuan West Road, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Hong Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No.56 Lingyuan West Road, Guangzhou, 510055, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Galea GL, Delisser PJ, Meakin L, Price JS, Windahl SH. Bone gain following loading is site-specifically enhanced by prior and concurrent disuse in aged male mice. Bone 2020; 133:115255. [PMID: 31991251 PMCID: PMC7057260 DOI: 10.1016/j.bone.2020.115255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/28/2022]
Abstract
The primary aim of osteoanabolic therapies is to strategically increase bone mass in skeletal regions likely to experience high strains. In the young healthy skeleton, this is primarily achieved by bone's adaptation to loading. This adaptation appears to fail with age, resulting in osteoporosis and fractures. We previously demonstrated that prior and concurrent disuse enhances bone gain following loading in old female mice. Here, we applied site specificity micro-computed tomography analysis to map regional differences in bone anabolic responses to axial loading of the tibia between young (19-week-old) and aged (19-month-old), male and female mice. Loading increased bone mass specifically in the proximal tibia in both sexes and ages. Young female mice gained more cortical bone than young males in specific regions of the tibia. However, these site-specific sex differences were lost with age such that bone gain following loading was not significantly different between old males and females. To test whether disuse enhances functional adaption in old male mice as it does in females, old males were subjected to sciatic neurectomy or sham surgery, and loading was initiated four days after surgery. Disuse augmented tibial cortical bone gain in response to loading in old males, but only in regions which were load-responsive in the young. Prior and concurrent disuse also increased loading-induced trabecular thickening in the proximal tibia of old males. Understanding how diminished background loading rejuvenates the osteogenic loading response in the old may improve osteogenic exercise regimes and lead to novel osteoanabolic therapies.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK; Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| | - Peter J Delisser
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Veterinary Specialist Services, Brisbane, Australia.
| | - Lee Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom.
| | - Joanna S Price
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Royal Agricultural University Cirencester, Cirencester, United Kingdom.
| | - Sara H Windahl
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
6
|
Henderson DJ, Long DA, Dean CH. Planar cell polarity in organ formation. Curr Opin Cell Biol 2018; 55:96-103. [PMID: 30015152 DOI: 10.1016/j.ceb.2018.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/11/2023]
Abstract
The planar cell polarity (PCP) pathway controls a variety of morphological events across many species. During embryonic development, the PCP pathway regulates coordinated behaviour of groups of cells to direct morphogenetic processes such as convergent extension and collective cell migration. In this review we discuss the increasingly prominent role of the PCP pathway in organogenesis, focusing on the lungs, kidneys and heart. We also highlight emerging evidence that PCP gene mutations are associated with adult diseases.
Collapse
Affiliation(s)
- Deborah J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charlotte H Dean
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|