1
|
Zia B, Chanda B, Bai J, Gilliard A, Ling KS. Comparative Evaluation of Volatile Organic Compounds in Two Bottle Gourd Accessions with Distinct Fruit Shapes. Foods 2023; 12:3921. [PMID: 37959039 PMCID: PMC10649024 DOI: 10.3390/foods12213921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Bottle gourd (Lagenaria siceraria L.) belongs to the cucurbit family and has a long history of cultivation in tropical and subtropical regions worldwide, both for food and medicine. Popularized by its unique fruit shapes, gourds are used to make ornaments and musical instruments. However, there is limited information on volatile organic compounds (VOCs) in the bottle gourd fruit. In the present study, we conducted a comparative analysis of VOCs profiled in two accessions (USVL5 and USVL10) with distinct fruit shapes: bottle and cylinder. While USVL5 only produced long cylinder fruits, USVL10 produced two fruit types, cylinder (USVL10CYN) and bottle (USVL10A and USVL10B). VOCs in each line were analyzed using headspace solid-phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS). Aliphatic aldehydes and alcohols were the most abundant compounds found in these bottle gourd accessions. Based on the functional profile of the identified VOCs, our results reveal the suitability of our tested line (USVL10), enriched in functionally important VOCs such as hexanal (abundance = 381.07), nonanal (abundance = 9.85), 2-methoxy-2-methylpropane (abundance = 21.26) and D-limonene (abundance = 31.48). The VOCs profiling and functional analyses support the notion that the bottle gourd accession USVL10 can be a good candidate for its use in agriculture, the health care industry and domestic uses.
Collapse
Affiliation(s)
- Bazgha Zia
- U.S. Vegetable Laboratory, United States Department of Agriculture-Agricultural Research Service, Charleston, SC 29414, USA; (B.Z.); (B.C.); (A.G.)
| | - Bidisha Chanda
- U.S. Vegetable Laboratory, United States Department of Agriculture-Agricultural Research Service, Charleston, SC 29414, USA; (B.Z.); (B.C.); (A.G.)
| | - Jinhe Bai
- Horticultural Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945, USA;
| | - Andrea Gilliard
- U.S. Vegetable Laboratory, United States Department of Agriculture-Agricultural Research Service, Charleston, SC 29414, USA; (B.Z.); (B.C.); (A.G.)
| | - Kai-Shu Ling
- U.S. Vegetable Laboratory, United States Department of Agriculture-Agricultural Research Service, Charleston, SC 29414, USA; (B.Z.); (B.C.); (A.G.)
| |
Collapse
|
2
|
Song Y, Yang Y, Xu L, Bian C, Xing Y, Xue H, Hou W, Men W, Dou D, Kang T. The burdock database: a multi-omic database for Arctium lappa, a food and medicinal plant. BMC PLANT BIOLOGY 2023; 23:86. [PMID: 36759759 PMCID: PMC9909940 DOI: 10.1186/s12870-023-04092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Burdock is a biennial herb of Asteraceae found in Northern Europe, Eurasia, Siberia, and China. Its mature dry fruits, called Niu Bang Zi, are recorded in various traditional Chinese medicine books. With the development of sequencing technology, the mitochondrial, chloroplast, and nuclear genomes, transcriptome, and sequence-related amplified polymorphism (SRAP) fingerprints of burdock have all been reported. To make better use of this data for further research and analysis, a burdock database was constructed. RESULTS This burdock multi-omics database contains two burdock genome datasets, two transcriptome datasets, eight burdock chloroplast genomes, one burdock mitochondrial genome, one A. tomentosum chloroplast genome, one A. tomentosum mitochondrial genome, 26 phenotypes of burdock varieties, burdock rhizosphere-associated microorganisms, and chemical constituents of burdock fruit, pericarp, and kernel at different growth stages (using UPLC-Q-TOF-MS). The wild and cultivation distribution of burdock in China was summarized, and the main active components and pharmacological effects of burdock currently reported were concluded. The database contains ten central functional modules: Home, Genome, Transcriptome, Jbrowse, Search, Tools, SRAP fingerprints, Associated microorganisms, Chemical, and Publications. Among these, the "Tools" module can be used to perform sequence homology alignment (Blast), multiple sequence alignment analysis (Muscle), homologous protein prediction (Genewise), primer design (Primer), large-scale genome analysis (Lastz), and GO and KEGG enrichment analyses (GO Enrichment and KEGG Enrichment). CONCLUSIONS The database URL is http://210.22.121.250:41352/ . This burdock database integrates molecular and chemical data to provide a comprehensive information and analysis platform for interested researchers and can be of immense help to the cultivation, breeding, and molecular pharmacognosy research of burdock.
Collapse
Affiliation(s)
- Yueyue Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Yanyun Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Liang Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Che Bian
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Yanping Xing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hefei Xue
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Wenjuan Hou
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Wenxiao Men
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Deqiang Dou
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Tingguo Kang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
3
|
Genome-wide SSR markers in bottle gourd: development, characterization, utilization in assessment of genetic diversity of National Genebank of India and synteny with other related cucurbits. J Appl Genet 2022; 63:237-263. [PMID: 35106708 DOI: 10.1007/s13353-022-00684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
Lagenaria siceraria (Molina) Standley is an important cultivated crop with its immense importance in pharmaceutical industry and as vegetable. Its seed, root, stem, leaves, flower, and fruit are used as an ointment for ailment of various diseases throughout Asia. Despite its worldwide importance, informative co-dominant microsatellite markers in the bottle gourd crop are very restricted, impeding genetic improvement, cultivar identification, and phylogenetic studies. Next-generation sequencing has revolutionized the approaches for discovery, assessment, and validation of molecular markers. We conducted a genome-wide analysis, for developing SSR markers by utilizing restriction site-associated DNA sequencing (RAD-Seq) data obtained from NCBI. By performing in silico mining of microsatellite repeat motifs, we developed 45,066 perfect SSR markers. Of which 207 markers were successfully validated and 120 (57.97%) polymorphic primer pairs were utilized for an in-depth genetic diversity and population structure analysis of 96 accessions from the National Genebank of India. Tetranucleotide repeats (∼34.3%) were the most prevalent followed by trinucleotide repeats (∼30.73%), further 21.03%, 9.6%, and 4.3% of di-, penta-, and hexa-nucleotide repeats in the bottle gourd genome, respectively. Synteny of SSR markers on 11 bottle gourd linkage groups was correlated with the 7 chromosomes of cucumber (93.2%), 12 chromosomes of melon (87.4%), and 11 of watermelon (90.8%). The generated SSR markers provide a valuable tool for germplasm characterization, genetic linkage map construction, studying synteny, gene discovery, and for breeding in bottle gourd and other cucurbits species. KEY MESSAGE: Development of 45,066 perfect microsatellite markers as a valuable tool for marker assisted selection (MAS) in plant breeding.
Collapse
|
4
|
Ren H, He Y, Qi X, Zheng X, Zhang S, Yu Z, Hu F. The bayberry database: a multiomic database for Myrica rubra, an important fruit tree with medicinal value. BMC PLANT BIOLOGY 2021; 21:452. [PMID: 34615485 PMCID: PMC8493685 DOI: 10.1186/s12870-021-03232-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/28/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Chinese bayberry (Myrica rubra Sieb. & Zucc.) is an important fruit tree in China, and has high medicinal value. At present, the genome, transcriptome and germplasm resources of bayberry have been reported. In order to make more convenient use of these data, the Bayberry Database was established. RESULTS The Bayberry Database is a comprehensive and intuitive data platform for examining the diverse annotated genome and germplasm resources of this species. This database contains nine central functional domains to interact with multiomic data: home, genome, germplasm, markers, tools, map, expression, reference, and contact. All domains provide pathways to a variety of data types composed of a reference genome sequence, transcriptomic data, gene patterns, phenotypic data, fruit images of Myrica rubra varieties, gSSR data, gene maps with annotation and evolutionary analyses. The tools module includes BLAST search, keyword search, sequence fetch and enrichment analysis functions. CONCLUSIONS The web address of the database is as follows http://www.bayberrybase.cn/ . The Myrica rubra database is an intelligent, interactive, and user-friendly system that enables researchers, breeders and horticultural personnel to browse, search and retrieve relevant and useful information and thus facilitate genomic research and breeding efforts concerning Myrica rubra. This database will be of great help to bayberry research and breeding in the future.
Collapse
Affiliation(s)
- Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Yuanhao He
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037 China
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xiliang Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Fengrong Hu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| |
Collapse
|
5
|
Key Factors Affecting the Flesh Flavor Quality and the Nutritional Value of Grass Carp in Four Culture Modes. Foods 2021; 10:foods10092075. [PMID: 34574189 PMCID: PMC8471861 DOI: 10.3390/foods10092075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Flavor and nutritional value are important qualities of freshwater fish products, but the key factors affecting these quality parameters remain unclear. In this study, four typical aquaculture modes, including the commercial feed treatment (control), faba bean treatment (FBT), grass powder treatment (GPT), and waving water treatment with commercial feed (WWT), were used to explore the regulatory effect of water quality and feed (eaten and uneaten) on the flesh flavor and nutrition in grass carp (Ctenopharyngodon idella), a freshwater fish of the largest global production. During the culture period (90 days), water quality parameters of the four modes were measured every 15 days, and the flavor quality was evaluated by volatile flavor compounds detection and electronic nose analyzer. Flesh crude protein, crude fat, free fatty acid and free amino acid profiles were also determined. The results showed that, in the late period, the FBT mode had the poorest water quality with highest concentrations of nitrite and nitrate, while the GPT mode has the best water quality among the four modes. Most flesh flavor compounds found in the flesh of the control, GPT and WWT modes were pleasant. In the FBT mode with the poorest water quality, on the other hand, we found lower flavor quality (higher contribution of fishy compounds), higher water content, and lower contents of crude protein, crude fat, free fatty acids and free amino acids, compared to the other three modes. Correlation analyses showed that nitrite and nitrate are probably key water quality factors affecting the flavor quality and nutritional values besides eaten feed and uneaten feed factors. This study can serve as an important reference for ecological regulation and feeding administration of flesh quality in freshwater aquaculture fish.
Collapse
|
6
|
Xu P, Wang Y, Sun F, Wu R, Du H, Wang Y, Jiang L, Wu X, Wu X, Yang L, Xing N, Hu Y, Wang B, Huang Y, Tao Y, Gao Q, Liang C, Li Y, Lu Z, Li G. Long-read genome assembly and genetic architecture of fruit shape in the bottle gourd. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:956-968. [PMID: 34043857 DOI: 10.1111/tpj.15358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
The bottle gourd (Lagenaria siceraria, Cucurbitaceae) is an important horticultural crop exhibiting tremendous diversity in fruit shape. The genetic architecture of fruit shape variation in this species remains unknown. We assembled a long-read-based, high-quality reference genome (ZAAS_Lsic_2.0) with a contig N50 value over 390-fold greater than the existing reference genomes. We then focused on dissection of fruit shape using a one-step geometric morphometrics-based functional mapping approach. We identified 11 quantitative trait loci (QTLs) responsible for fruit shape (fsQTLs), reconstructed their visible effects and revealed syntenic relationships of bottle gourd fsQTLs with 12 fsQTLs previously reported in cucumber, melon or watermelon. Homologs of several well-known and newly identified fruit shape genes, including SUN, OFP, AP2 and auxin transporters, were comapped with bottle gourd QTLs.
Collapse
Affiliation(s)
- Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Fengshuo Sun
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, USA
| | - Huilong Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Wang
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Nailin Xing
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Yaowen Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yunping Huang
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ye Tao
- Biozeron Biotechnology Co., Ltd, Shanghai, China
| | - Qiang Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanwei Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Mkhize P, Mashilo J, Shimelis H. Progress on Genetic Improvement and Analysis of Bottle Gourd [Lagenaria siceraria (Molina) Standl.] for Agronomic Traits, Nutrient Compositions, and Stress Tolerance: A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.683635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bottle gourd [Lagenaria siceraria (Molina) Standl.] is an important multi-purpose cucurbit crop grown for its leaf, fruit, and seed. It is widely cultivated and used for human consumption in sub-Saharan Africa (SSA) providing vital human nutrition and serving as food security crop. There is wide genetic variation among bottle gourd genetic resources in Africa for diverse qualitative and quantitative attributes for effective variety design, product development, and marketing. However, the crop is under- researched and -utilized, and improved varieties are yet to be developed and commercialized in the region. Therefore, the objective of this review is to provide the progress on bottle gourd genetic improvement and genetic analysis targeting agronomic and horticultural attributes, nutritional composition, biotic, and abiotic stress tolerance to guide current and future cultivar development, germplasm access, and conservation in SSA. The first section of the paper presents progress on breeding of bottle gourd for horticultural traits, agronomic performance, nutritional and anti-nutritional composition, and biotic and abiotic stress tolerance. This is followed by important highlights on key genetic resources of cultivated and wild bottle gourd for demand driven breeding. Lastly, the review summaries advances in bottle gourd genomics, genetic engineering and genome editing. Information presented in this paper should aid bottle gourd breeders and agronomists to develop and deploy new generation and promising varieties with farmer- and market -preferred attributes.
Collapse
|
8
|
Li Y, Wang Y, Wu X, Wang J, Wu X, Wang B, Lu Z, Li G. Novel Genomic Regions of Fusarium Wilt Resistance in Bottle Gourd [ Lagenaria siceraria (Mol.) Standl.] Discovered in Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2021; 12:650157. [PMID: 34025697 PMCID: PMC8137845 DOI: 10.3389/fpls.2021.650157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Fusarium wilt (FW) is a typical soil-borne disease that seriously affects the yield and fruit quality of bottle gourd. Thus, to improve resistance to FW in bottle gourd, the genetic mechanism underlying FW resistance needs to be explored. In this study, we performed a genome-wide association study (GWAS) based on 5,330 single-nucleotide polymorphisms (SNPs) and 89 bottle gourd accessions. The GWAS results revealed a total of 10 SNPs (P ≤ 0.01, -log10 P ≥ 2.0) significantly associated with FW resistance that were detected in at least two environments (2019DI, 2020DI, and the average across the 2 years); these SNPs were located on chromosomes 1, 2, 3, 4, 8, and 9. Linkage disequilibrium (LD) block structure analysis predicted three potential candidate genes for FW resistance. Genes HG_GLEAN_10001030 and HG_GLEAN_10001042 were within the range of the mean LD block of the marker BGReSe_14202; gene HG_GLEAN_10011803 was 280 kb upstream of the marker BGReSe_00818. Real-time quantitative PCR (qRT-PCR) analysis showed that HG_GLEAN_10011803 was significantly up-regulated in FW-infected plants of YD-4, Yin-10, and Hanbi; HG_GLEAN_10001030 and HG_GLEAN_10001042 were specifically up-regulated in FW-infected plants of YD-4. Therefore, gene HG_GLEAN_10011803 is likely the major effect candidate gene for resistance against FW in bottle gourd. This work provides scientific evidence for the exploration of candidate gene and development of functional markers in FW-resistant bottle gourd breeding programs.
Collapse
|
9
|
Chomicki G, Schaefer H, Renner SS. Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. THE NEW PHYTOLOGIST 2020; 226:1240-1255. [PMID: 31230355 DOI: 10.1111/nph.16015] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/17/2019] [Indexed: 05/10/2023]
Abstract
Some of the World's most valuable crops, including watermelon, honey melon, cucumber, squash, zucchini and pumpkin, belong to the family Cucurbitaceae. We review insights on their domestication from new phylogenies, archaeology and genomic studies. Ancestral state estimation on the most complete Cucurbitaceae phylogeny to date suggests that an annual life cycle may have contributed to domestication. Domestication started c. 11 000 years ago in the New World and Asia, and apparently more recently in Africa. Some cucurbit crops were domesticated only once, others multiple times (e.g. melon from different Asian and African populations). Most wild cucurbit fruits are bitter and nonpalatable to humans, and nonbitterness of the pulp apparently was a trait favoured early during domestication, with genomic data showing how bitterness loss was achieved convergently. The genetic pathways underlying lycopene accumulation, red or orange pulp colour, and fruit size and shape are only just beginning to be understood. The study of cucurbit domestication in recent years has benefitted from the increasing integration of archaeological and genomic data with insights from herbarium collections, the most efficient way to understand species' natural geographic ranges and climate adaptations.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
- The Queen's College, University of Oxford, High St, Oxford, OX1 4AW, UK
| | - Hanno Schaefer
- Plant Biodiversity Research, Technical University of Munich, Emil-Ramann Str. 2, Freising, 85354, Germany
| | - Susanne S Renner
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, Munich, 80638, Germany
| |
Collapse
|
10
|
Zhang H, Tan J, Zhang M, Huang S, Chen X. Comparative Transcriptomic Analysis of Two Bottle Gourd Accessions Differing in Fruit Size. Genes (Basel) 2020; 11:genes11040359. [PMID: 32230807 PMCID: PMC7230174 DOI: 10.3390/genes11040359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The bottle gourd (Lagenaria siceraria) is an important horticultural and medicinal crop with high nutritional value. This study aimed at examining the molecular regulation of fruit size in bottle gourd. We performed transcriptome sequencing of two bottle gourd cultivars differing in their fruit size. The average fruit length and weight of the cultivar Hang (39.48 cm/624.4 g) were higher than those of the cultivar USA (10.34 cm/152.8 g) at maturity. Transcriptome sequencing and assembly resulted in 89,347 unigenes. A total of 1250 differentially expressed genes (DEG) were found between the two cultivars, including 422 upregulated genes and 828 downregulated genes in Hang as compared to USA. Genes related to cell wall metabolism, phytohormones, cell cycle, and cell division showed significant differential expression between the two cultivars. DEGs encoding transcription factors (TF) from nine TF families were also identified. The ethylene response factor family was the most enriched among these families. Our study provides a basis for further investigations of the molecular regulation of fruit size in bottle gourd.
Collapse
|
11
|
Wang Y, Wang L, Xing N, Wu X, Wu X, Wang B, Lu Z, Xu P, Tao Y, Li G, Wang Y. A universal pipeline for mobile mRNA detection and insights into heterografting advantages under chilling stress. HORTICULTURE RESEARCH 2020; 7:13. [PMID: 32025316 PMCID: PMC6994652 DOI: 10.1038/s41438-019-0236-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 05/04/2023]
Abstract
Heterografting has long been used to enhance the chilling tolerance of temperature-sensitive crops, including watermelon, whose mechanism is known to involve bidirectional long-distance mRNA movements. Despite several studies reporting on mobile mRNA (mb-mRNA) profiles in plants, accurate identification of mb-mRNAs is challenging owing to an array of technical problems. Here, we developed a bioinformatical pipeline that took most of the known technical concerns into consideration and is considered to be a universal tool for mb-mRNA detection in heterografts. By applying this pipeline to a commercial watermelon-bottle gourd heterografting system, we detected 130 and 1144 mb-mRNAs upwardly and 167 and 1051 mb-mRNAs downwardly transmitted under normal and chilling-stress conditions, respectively. Quantitative real-time PCR indicated a high accuracy rate (88.2%) of mb-mRNA prediction with our pipeline. We further revealed that the mobility of mRNAs was not associated with their abundance. Functional annotation and classification implied that scions may convey the stress signal to the rootstock, subsequently triggering energy metabolism reprogramming and abscisic acid-mediated stress responses by upward movement of effective mRNAs, ultimately leading to enhanced chilling tolerance. This study provides a universal tool for mb-mRNA detection in plant heterografting systems and novel insights into heterografting advantages under chilling stress.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Lingping Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Nailin Xing
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, 315040 China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- State Key Laboratory for Quality and Safety of Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- Present Address: College of Life Sciences, China Jiliang University, Hangzhou, 310018 China
| | - Ye Tao
- Biozeron Biotechnology Co., Ltd., Shanghai, 201800 China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- State Key Laboratory for Quality and Safety of Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Yuhong Wang
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, 315040 China
| |
Collapse
|
12
|
Wu X, Wu X, Wang Y, Wang B, Lu Z, Xu P, Li G. Molecular Genetic Mapping of Two Complementary Genes Underpinning Fruit Bitterness in the Bottle Gourd ( Lagenaria siceraria [Mol.] Standl.). FRONTIERS IN PLANT SCIENCE 2019; 10:1493. [PMID: 31921223 PMCID: PMC6930244 DOI: 10.3389/fpls.2019.01493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Fruit bitterness is a serious problem threatening the bottle gourd (Lagenaria siceraria [Mol.] Standl.) industry worldwide. Previous genetic studies indicated that fruit bitterness in the bottle gourd was controlled by a pair of complementary genes. In this study, based on two non-bitter landraces "Hangzhou Gourd" and "Puxian Gourd," each of which carries a single bitterness gene, and their derived segregation populations, we mapped the complementary genes causing fruit bitterness. Quantitative trait locus (QTL) scanning based on an F2 population detected two QTLs, which was QBt.1 locating in a 17.62-cM interval on linkage group (LG)2 corresponding to a 1.6-Mb region on chromosome 6, and QBt.2 mapped to a 8.44-cM interval on LG9 corresponding to a 1.9-Mb region on chromosome 7. An advanced bulked segregant analysis (A-BSA) well validated the QTL mapping results. Sequence-based comparative analysis showed no syntenic relationship between QBt.1/QBt.2 and the known bitterness genes in cucumber, melon, and watermelon, suggesting that causal genes underlying QBt.1 and QBt.2 were not direct orthologs of the reported cucurbit bitterness genes. Our results shed light on the molecular genetic mechanisms underlying fruit bitterness in the bottle gourd and is useful to guide breeders to properly select parental lines to avoid the occurrence of bitter fruits in breeding programs.
Collapse
|
13
|
Lu N, Zhu T, Ouyang F, Xia Y, Li Q, Jia Z, Hu J, Ling J, Ma W, Yang G, Zhang H, Kong L, Wang J. PICEAdatabase: a web database for Picea omics and phenotypic information. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5549729. [PMID: 31414118 PMCID: PMC6694207 DOI: 10.1093/database/baz089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/14/2022]
Abstract
Picea belongs to the Pinaceae family and is a famous commercial tree species because of its straight trunk and excellent timber traits. Recently, omics have been widely used for fundamental and mechanism studies on Picea plants. To improve the accessibility to omics and phenotypic data and facilitate further studies, we compiled the sequences of 2 chloroplast genomes (Picea crassifolia and Picea asperata) and 32 complete omics data sets, including 20 transcriptomes, 4 proteomes, 2 degradomes and 6 microRNAs from P. crassifolia, P. asperata, Picea balfouriana and Picea abies tissues under different treatments, in PICEAdatabase. In addition, phenotypic data on plant growth and wood property traits were collected from two field trials of P. crassifolia. PICEAdatabase also includes useful analysis tools, such as BLAST, DESeq2 and JBrowse, to assist with analyses.
Collapse
Affiliation(s)
- Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Beijing 100091, China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Beijing 100091, China
| | - Fangqun Ouyang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Beijing 100091, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Chongqing 400715, China
| | - Qingfen Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Beijing 100091, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Beijing 100091, China
| | - Jiwen Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Beijing 100091, China
| | - Juanjuan Ling
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Beijing 100091, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Beijing 100091, China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Beijing 100091, China
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No.26 Hexing Road, Harbin 150040, China
| | - Lisheng Kong
- Department of Biology, Centre for Forest Biology, University of Victoria, 3800 Finnerty Road, Victoria BC, V8P 5C2, Canada
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No.1 Dongxiaofu, Xiangshan Road, Beijing 100091, China
| |
Collapse
|
14
|
Zhang C, Zheng H, Wu X, Xu H, Han K, Peng J, Lu Y, Lin L, Xu P, Wu X, Li G, Chen J, Yan F. Genome-wide identification of new reference genes for RT-qPCR normalization in CGMMV-infected Lagenaria siceraria. PeerJ 2018; 6:e5642. [PMID: 30345167 PMCID: PMC6188008 DOI: 10.7717/peerj.5642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/27/2018] [Indexed: 01/07/2023] Open
Abstract
Lagenaria siceraria is an economically important cucurbitaceous crop, but suitable reference genes (RGs) to use when the plants are infected by cucumber green mottle mosaic virus (CGMMV) have not been determined. Sixteen candidate RGs of both leaf and fruit and 18 candidate RGs mostly from separate RNA-Seq datasets of bottle gourd leaf or fruit were screened and assessed by RT-qPCR. The expression stability of these genes was determined and ranked using geNorm, NormFinder, BestKeeper and RefFinder. Comprehensive analysis resulted in the selection of LsCYP, LsH3, and LsTBP as the optimal RGs for bottle gourd leaves, and LsP4H, LsADP, and LsTBP for fruits. LsWD, LsGAPDH, and LsH3 were optimal for use in both leaves and fruits under the infection of CGMMV. Isopentenyl transferase (IPT) and DNA-directed RNA polymerase (DdRP) were used to validate the applicability of the most stable identified RGs from bottle gourd in response to CGMMV. All the candidate RGs performed in RT-qPCR consistently with the data from the transcriptome database. The results demonstrated that LsWD, LsGAPDH and LsH3 were the most suitable internal RGs for the leaf, and LsH3, LsGAPDH, LsP4H and LsCYP for the fruit.
Collapse
Affiliation(s)
- Chenhua Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyang Wu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Heng Xu
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kelei Han
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pei Xu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohua Wu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guojing Li
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|