1
|
Komine T, Fukano H, Yoshida M, Miyamoto Y, Nakaya M, Fujinaga A, Doke K, Hoshino Y. A rapid and simple MALDI-TOF MS lipid profiling method for differentiating Mycobacterium ulcerans from Mycobacterium marinum. J Clin Microbiol 2025:e0140024. [PMID: 39868779 DOI: 10.1128/jcm.01400-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Mycobacterium ulcerans, a slow-growing nontuberculous mycobacterium, causes Buruli ulcer, a neglected tropical disease. Distinguishing M. ulcerans from related species, including Mycobacterium marinum, poses challenges with respect to making accurate identifications. In this study, we developed a rapid and simple identification method based on mycobacterial lipid profiles and used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the lipid profiles of M. ulcerans (n = 35) and M. marinum (n = 19) isolates. Bacterial colonies pre-cultured on 2% Ogawa egg slants for 2 months were collected, and total lipids were extracted using an MBT Lipid Xtract kit. Spectra were obtained in negative ion mode using a MALDI Biotyper Sirius system, with ClinProTools v3.0 being used to analyze the spectra based on the application of three algorithms (genetic algorithm [GA], supervised neural network [SNN], and quick classifier [QC)]). Cross-validation was performed using a 20% leave-out set randomly selected from the samples. Models generated using GA, SNN, and QC showed cross-validation values of 100%, 100%, and 97.9%, respectively, and all algorithms achieved 100% recognition capability values. Our findings indicate that MALDI-TOF analysis of lipid profiles can accurately differentiate two mycobacterial species (M. ulcerans and M. marinum) that are difficult to distinguish using conventional protein-targeting methods.IMPORTANCEBuruli ulcer, caused by Mycobacterium ulcerans, is a neglected tropical disease. However, distinguishing M. ulcerans from related species, including Mycobacterium marinum, presents certain challenges. In this study, we demonstrate the utility of a rapid yet simple method for differentiating isolates of these mycobacteria based on their lipid profiles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This new approach can accurately identify species that are otherwise difficult to distinguish using conventional techniques. This represents a significant diagnostic advance for clinical laboratories, in that it enables a more rapid and precise identification, thereby leading to earlier treatment initiation and more appropriate treatment regimens for infections caused by these bacteria.
Collapse
Affiliation(s)
- Takeshi Komine
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Makoto Nakaya
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Azumi Fujinaga
- Application Department, Microbiology & Diagnostics MID Division, Bruker Japan K.K., Yokohama, Kanagawa, Japan
| | - Kohei Doke
- Application Department, Microbiology & Diagnostics MID Division, Bruker Japan K.K., Yokohama, Kanagawa, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
2
|
De Waele G, Menschaert G, Waegeman W. An antimicrobial drug recommender system using MALDI-TOF MS and dual-branch neural networks. eLife 2024; 13:RP93242. [PMID: 39540875 PMCID: PMC11563574 DOI: 10.7554/elife.93242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.
Collapse
Affiliation(s)
- Gaetan De Waele
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Gerben Menschaert
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Willem Waegeman
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Zhang M, Zhang H, Yan B, Ren M, Wang W, Zhang T. Diagnostic performance of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in bronchoalveolar lavage fluid for pulmonary tuberculosis in HIV-infected patients. J Clin Tuberc Other Mycobact Dis 2024; 36:100459. [PMID: 38983443 PMCID: PMC11231557 DOI: 10.1016/j.jctube.2024.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Introduction Pulmonary tuberculosis (PTB) remains a significant health concern, particularly in individuals infected with human immunodeficiency virus (HIV) who are more susceptible to developing active TB disease. Early and accurate diagnosis of TB is crucial for effective treatment and prevention of transmission. This study aims to evaluate the potential of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of bronchoalveolar lavage fluid (BALF) for diagnosis of suspected PTB in HIV-infected patients. Methods This retrospective study recruited 60 HIV-infected patients with suspected PTB presenting with respiratory symptoms and abnormal chest radiographs between January 2022 and June 2023. BALF samples were collected and subjected to analysis using MALDI-TOF MS, GeneXpert, acid-fast bacilli (AFB) smear and culture. And their diagnostic performance was compared. Results The sensitivity of MALDI⁃TOFMS for diagnosing PTB was 83.3 %, which was better than that of smear 11.9 %, culture 40.5 % or Xpert38.1 % (all p < 0.01). The area under the curve (AUC) value of MALDI⁃TOFMS was 0.889, which was better than that of smear 0.532, culture 0.675 or Xpert 0.690 (all p < 0.01). The katG315 and rpoB-RRDR 511 mutations were detected by the MALDI⁃TOFMS in two patients. Conclusion Nucleotide MALDI-TOFMS has a good clinical performance for rapid diagnosis of PTB from BALF samples in HIV infected patients, and detects mutations of TB simultaneously.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hongwei Zhang
- Clinic of Center for Infection, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Benyong Yan
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Meixin Ren
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Wen Wang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Fukushima K, Matsumoto Y, Matsuki T, Saito H, Motooka D, Komukai S, Fukui E, Yamuchi J, Nitta T, Niitsu T, Abe Y, Nabeshima H, Nagahama Y, Nii T, Tsujino K, Miki K, Kitada S, Kumanogoh A, Akira S, Nakamura S, Kida H. MGIT-seq for the Identification of Nontuberculous Mycobacteria and Drug Resistance: a Prospective Study. J Clin Microbiol 2023; 61:e0162622. [PMID: 36946719 PMCID: PMC10117113 DOI: 10.1128/jcm.01626-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Because nontuberculous mycobacterial pulmonary disease is a considerable health burden, a simple and clinically applicable analytical protocol enabling the identification of subspecies and drug-resistant disease is required to determine the treatment strategy. We aimed to develop a simplified workflow consisting only of direct sequencing of mycobacterial growth indicator tube cultures (MGIT-seq). In total, 138 patients were prospectively enrolled between April 2021 and May 2022, and culture-positive MGIT broths were subjected to sequencing using MinION, a portable next-generation sequencer. Sequence analysis was conducted to identify species using core genome multilocus sequence typing and to predict macrolide and amikacin (AMK) resistance based on previously reported mutations in rrl, rrs, and erm(41). The results were compared to clinical tests for species identification and drug susceptibility. A total of 116 patients with positive MGIT cultures were included in the analysis. MGIT-seq yielded 99.1% accuracy in species-level identification and identified 98 isolates (84.5%) at the subspecies level. Macrolide and AMK resistance were detected in 19.4% and 1.9% of Mycobacterium avium complex (MAC) and Mycobacterium abscessus isolates. The predicted macrolide and AMK resistance was consistent with the results of conventional drug susceptibility tests, with specificities of 97.6% and 100.0%, respectively. Direct MGIT-seq has achieved comprehensive identification and drug resistance detection of nontuberculous mycobacteria, which could be applicable to determine the treatment strategy by a single test in clinical practice.
Collapse
Affiliation(s)
- Kiyoharu Fukushima
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Suita, Osaka, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
| | - Takanori Matsuki
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Haruko Saito
- Department of Clinical Laboratory, National Hospital Organization, Osaka Toneyama Medical Centre, Toyonaka, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Sho Komukai
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Department of Biomedical Statistics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Eriko Fukui
- Department of General Thoracic surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - June Yamuchi
- Department of Clinical Laboratory, National Hospital Organization, Osaka Toneyama Medical Centre, Toyonaka, Osaka, Japan
| | - Tadayoshi Nitta
- Department of Clinical Laboratory, National Hospital Organization, Osaka Toneyama Medical Centre, Toyonaka, Osaka, Japan
| | - Takayuki Niitsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuko Abe
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Nabeshima
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| | - Yasuharu Nagahama
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| | - Takuro Nii
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Kazuyuki Tsujino
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Keisuke Miki
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | | | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Japan for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Japan for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| |
Collapse
|
5
|
Gonzalo X, Yrah S, Broda A, Laurenson I, Claxton P, Kostrzewa M, Drobniewski F, Larrouy-Maumus G. Performance of lipid fingerprint by routine matrix-assisted laser desorption/ionization time of flight for the diagnosis of Mycobacterium tuberculosis complex species. Clin Microbiol Infect 2023; 29:387.e1-387.e6. [PMID: 36270589 DOI: 10.1016/j.cmi.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Rapid detection of bacterial pathogens at species and sub-species levels is crucial for appropriate treatment, infection control, and public health management. Currently, one of the challenges in clinical microbiology is the discrimination of mycobacterial sub-species within the M. tuberculosis complex (MTBC). Our objective was to evaluate the ability of a biosafe mycobacterial lipid-based approach to identify MTBC cultures and sub-species. METHODS A blinded study was conducted using 90 mycobacterial clinical isolate strains comprising MTBC strains sub-cultured in Middlebrook 7H11 medium supplemented with 10% oleic-acid, dextrose, catalase growth supplement and incubated for up to 6 weeks at 37°C and using the following seven reference strains (M. tuberculosis H37Rv, M canettii, M. africanum, M. pinnipedii, M. caprae, M. bovis, and M. bovis BCG) grown under the same conditions, to set the reference lipid database and test it against the 90 MTBC clinical isolates. Cultured mycobacteria were heat-inactivated and loaded onto the matrix-assisted laser desorption/ionization target followed by the addition of the matrix. Acquisition of the data was performed using the positive ion mode. RESULTS Based on the identification of clear and defined lipid signatures from the seven reference strains, the method that we developed was fast (<10 minutes) and produced interpretable profiles for all but four isolates, caused by poor ionization giving an n = 86 with interpretable spectra. The sensitivity and specificity of the matrix-assisted laser desorption/ionization time of flight were 94.4 (95% CI, 86.4-98.5) and 94.4 (95% CI, 72.7-99.9), respectively. CONCLUSIONS Mycobacterial lipid profiling provides a means of rapid, safe, and accurate discrimination of species within the MTBC.
Collapse
Affiliation(s)
- Ximena Gonzalo
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shih Yrah
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Agnieszka Broda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ian Laurenson
- Scottish Mycobacteria Reference Laboratory, Edinburgh, United Kingdom
| | - Pauline Claxton
- Scottish Mycobacteria Reference Laboratory, Edinburgh, United Kingdom
| | | | - Francis Drobniewski
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
6
|
Kim E, Yang SM, Cho EJ, Kim HY. Evaluation of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the discrimination of Lacticaseibacillus species. Food Microbiol 2022; 107:104094. [DOI: 10.1016/j.fm.2022.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
|
7
|
Rindi L, Puglisi V, Franconi I, Fais R, Lupetti A. Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS. Microorganisms 2022; 10:microorganisms10071447. [PMID: 35889166 PMCID: PMC9317365 DOI: 10.3390/microorganisms10071447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Over the last years, nontuberculous mycobacteria (NTM) have emerged as important human pathogens. Accurate and rapid mycobacterial species identification is needed to successfully diagnose, treat, and manage infections caused by NTM. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS, was demonstrated to effectively identify mycobacteria isolates subcultured from solid or liquid media rather than new positive cultures. The present study aims to develop a new extraction protocol to yield rapid and accurate identification of NTM from primary MGIT cultures by MALDI-TOF MS. A total of 60 positive MGIT broths were examined by the Bruker Biotyper system with Mycobacteria Library v. 2.0 (Bruker Daltonics GmbH & Co. KG., Bremen, Germany). The results were compared with those obtained by the molecular method, line probe assay GenoType Mycobacterium CM/AS/NTM-DR. All samples were concordantly identified by MALDI-TOF MS and the molecular test for all the tested mycobacteria. Fifty-seven (95%) MGIT positive cultures for NTM from clinical samples had a MALDI-TOF MS analysis score S ≥ 1.8. Although a small number of strains and a limited diversity of mycobacterial species were analysed, our results suggest that MALDI-TOF MS could represent a promising routine diagnostic tool for identifying mycobacterial species directly from primary liquid culture.
Collapse
Affiliation(s)
- Laura Rindi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy; (I.F.); (A.L.)
- Correspondence: author:
| | - Vincenzo Puglisi
- SD Microbiologia Micologica, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.P.); (R.F.)
| | - Iacopo Franconi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy; (I.F.); (A.L.)
| | - Roberta Fais
- SD Microbiologia Micologica, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.P.); (R.F.)
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy; (I.F.); (A.L.)
| |
Collapse
|
8
|
Besedin D, Turner BJ, Deo P, Lopes MDB, Williams CR. Effect of captivity and water salinity on culture-dependent frog skin microbiota and Batrachochytrium dendrobatidis ( Bd) infection. T ROY SOC SOUTH AUST 2022. [DOI: 10.1080/03721426.2022.2086358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Darislav Besedin
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brandon J. Turner
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Permal Deo
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Health and Biomedical Innovation, UniSA Clinical and Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Miguel De Barros Lopes
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Health and Biomedical Innovation, UniSA Clinical and Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Craig R. Williams
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Sharma A, Goel A. Mucormycosis: risk factors, diagnosis, treatments, and challenges during COVID-19 pandemic. Folia Microbiol (Praha) 2022; 67:363-387. [PMID: 35220559 PMCID: PMC8881997 DOI: 10.1007/s12223-021-00934-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022]
Abstract
Mucormycosis is a deadly opportunistic disease caused by a group of fungus named mucormycetes. Fungal spores are normally present in the environment and the immune system of the body prevents them from causing disease in a healthy immunocompetent individual. But when the defense mechanism of the body is compromised such as in the patients of diabetes mellites, neustropenia, organ transplantation recipients, and other immune-compromised states, these fungal spores invade our defense mechanism easily causing a severe systemic infection with approximately 45-80% of case fatality. In the present scenario, during the COVID-19 pandemic, patients are on immunosuppressive drugs, glucocorticoids, thus are at high risk of mucormycosis. Patients with diabetes mellitus are further getting a high chance of infection. Usually, the spores gain entry through our respiratory tract affecting the lungs and paranasal sinuses. Besides, they can also enter through damage into the skin or through the gastrointestinal route. This review article presents the current statistics, the causes of this infection in the human body, and its diagnosis with available recent therapies through recent databases collected from several clinics and agencies. The diagnosis and identification of the infection were made possible through various latest medical techniques such as computed tomography scans, direct microscopic observations, MALDI-TOF mass spectrometry, serology, molecular assay, and histopathology. Mucormycosis is so uncommon, no randomized controlled treatment studies have been conducted. The newer triazoles, posaconazole (POSA) and isavuconazole (ISAV) (the active component of the prodrug isavuconazonium sulfate) may be beneficial in patients who are refractory to or intolerant of Liposomal Amphotericin B. but due to lack of early diagnosis and aggressive surgical debridement or excision, the mortality rate remains high. In the course of COVID-19 treatments, there must be more vigilance and alertness are required from clinicians to evaluate these invasive fungal infections.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, 281 406, Mathura, UP India
| | - Anjana Goel
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, 281 406, Mathura, UP India
| |
Collapse
|
10
|
Ricci J, Jones P, Le A, Steed LL, Armstrong MB, Herrera FA. Increasing Recognition of Community-Acquired, Non-Tuberculous Mycobacterial Infections of the Hand and Wrist. Cureus 2022; 14:e22105. [PMID: 35291521 PMCID: PMC8917965 DOI: 10.7759/cureus.22105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 11/07/2022] Open
Abstract
Background In this study, we present our experience with community-acquired, culture-positive, non-tuberculous mycobacterial (NTM) infections of the hand and wrist and compare the clinical features, risk factors, diagnostic delays, and treatment outcomes among patients referred for surgical consultation at our institution over a five-year period. Methodology We retrospectively identified patients on chart review who were diagnosed with culture-positive, extrapulmonary, cutaneous NTM infections between January 1, 2014, and December 31, 2018. Only patients with community-acquired NTM infections of the hand and wrist were included. Patient demographics, risk factors, location, diagnostic delays, NTM species isolated, treatment modalities, and treatment outcomes were collected and analyzed. These variables were further compared between patients who participated in fishing-related activities and those who did not. Results A total of 10 patients were identified with community-acquired NTM infections of the hand or wrist. Of these patients, eight (80%) were male, and six (60%) had participated in fishing-related activities prior to the initial presentation. The majority of patients had Mycobacterium marinum isolates (n = 6, 60%) and involved the hand (n = 8, 80%). M. marinum isolates were associated with a significantly shorter time to diagnosis (p = 0.02). All patients underwent surgical management with a prolonged course of postoperative antibiotics and were cured of their infection at the end of their treatment course. Conclusions Proper risk factor documentation and heightened clinical awareness are essential to reduce delays in the diagnosis of NTM skin and soft tissue infections and provide the best chance for curative therapy.
Collapse
|
11
|
Chew KL, Soh P, Octavia S, Teo J. Identification of Mycobacterium abscessus to subspecies level with Bruker MALDI Biotyper. Pathology 2022; 54:795-797. [DOI: 10.1016/j.pathol.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/28/2022]
|
12
|
Li L, Li M. Diagnosis of Mycobacterium marinum infection based on photochromogenicity: a case report. Rev Inst Med Trop Sao Paulo 2022; 64:e76. [DOI: 10.1590/s1678-9946202264076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Meng Li
- Guangxi Medical University, China
| |
Collapse
|
13
|
The key factors contributing to the risk, diagnosis and treatment of non-tuberculous mycobacterial opportunistic infections. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The incidence and prevalence of diseases caused by non-tuberculous mycobacteria (NTM) have been steadily increasing worldwide. NTM are environmental saprophytic organisms; however, a few strains are known to produce diseases in humans affecting pulmonary and extra-pulmonary sites. Although the environment is a major source of NTM infection, recent studies have shown that person-to-person dissemination could be an important transmission route for these microorganisms. Structural and functional lung defects and immunodeficiency are major risk factors for acquiring NTM infections. Diagnosis of NTM diseases is very complex owing to the necessity of distinguishing between a true pathogen and an environmental contaminant. Identification at the species level is critical due to differences in the antibiotic susceptibility patterns of various NTM strains. Such identification is mainly achieved by molecular methods; additionally, mass spectrometry (e.g., MALDI-TOF) is useful for NTM species determination. Natural resistance of NTM species to a wide spectrum of antibiotics makes prescribing treatment for NTM diseases very difficult. NTM therapy usually takes more than one year and requires multi-drug regimens, yet the outcome often remains poor. Therefore, alternatives to antibiotic therapy treatment methods is an area under active exploration. NTM infections are an active global health problem imposing the necessity for better diagnostic tools and more effective treatment methods.
Collapse
|
14
|
Campelo TA, Cardoso de Sousa PR, Nogueira LDL, Frota CC, Zuquim Antas PR. Revisiting the methods for detecting Mycobacterium tuberculosis: what has the new millennium brought thus far? Access Microbiol 2021; 3:000245. [PMID: 34595396 PMCID: PMC8479963 DOI: 10.1099/acmi.0.000245] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Tuberculosis (TB) affects around 10 million people worldwide in 2019. Approximately 3.4 % of new TB cases are multidrug-resistant. The gold standard method for detecting Mycobacterium tuberculosis, which is the aetiological agent of TB, is still based on microbiological culture procedures, followed by species identification and drug sensitivity testing. Sputum is the most commonly obtained clinical specimen from patients with pulmonary TB. Although smear microscopy is a low-cost and widely used method, its sensitivity is 50-60 %. Thus, owing to the need to improve the performance of current microbiological tests to provide prompt treatment, different methods with varied sensitivity and specificity for TB diagnosis have been developed. Here we discuss the existing methods developed over the past 20 years, including their strengths and weaknesses. In-house and commercial methods have been shown to be promising to achieve rapid diagnosis. Combining methods for mycobacterial detection systems demonstrates a correlation of 100 %. Other assays are useful for the simultaneous detection of M. tuberculosis species and drug-related mutations. Novel approaches have also been employed to rapidly identify and quantify total mycobacteria RNA, including assessments of global gene expression measured in whole blood to identify the risk of TB. Spoligotyping, mass spectrometry and next-generation sequencing are also promising technologies; however, their cost needs to be reduced so that low- and middle-income countries can access them. Because of the large impact of M. tuberculosis infection on public health, the development of new methods in the context of well-designed and -controlled clinical trials might contribute to the improvement of TB infection control.
Collapse
Affiliation(s)
- Thales Alves Campelo
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | | | - Lucas de Lima Nogueira
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane Cunha Frota
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Chen J, Zheng F, Sun X, Gao H, Lin S, Zeng Y. The qualitative accuracy of clinical dermatophytes via matrix-assisted laser desorption ionization-time of flight mass spectrometry: a meta-analysis. Med Mycol 2021; 59:1174-1180. [PMID: 34415045 DOI: 10.1093/mmy/myab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/24/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Dermatophytes are an important part of superficial fungal infections, and accurate diagnosis is paramount for successful treatment. Recently, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool to identify clinical pathogens; its advantages are cost-effectiveness, rapid detection, and high accuracy. However, as the accurate identification of clinical dermatophytes via MALDI-TOF MS has still not been fully evaluated, we performed a meta-analysis for systematic evaluation it. Fifteen eligible studies were involved and showed high accuracy with an identification ratio of 0.96 (95%CI = 0.92─1.01) and 0.91 (95%CI = 0.86─0.96) at the genus and species levels, respectively. The results showed higher accuracy ratio of Vitek MS (91%) than MALDI Biotyper (85%). Dermatophytes such as Trichophyton interdigitale (0.99, 95%CI = 0.97─1.02), T. mentagrophytes var interdigitale (1.00, 95%CI = 0.98─1.02), and Microsporum canis (0.97, 95%CI = 0.89─1.04) showed high accuracy in detected clinical dermatophytes. Moreover, a library with self-built database set up by laboratories showed higher accuracy than commercial database, and 15-day cultivation for dermatophytes showed highest accuracy considering culture time. High heterogeneity was observed and decreased only with the subgroup analysis of species. The subgroup analysis of mass spectrometry, library database, and culture time also exhibited high heterogeneity. In summary, our results showed that MALDI-TOF MS could be used for highly accurate detection of clinically pathogenic dermatophytes, which could be an alternative diagnostic method in addition to morphological and molecular methods. LAY ABSTRACT This meta-analysis comprehensively investigated the qualitative accuracy of clinical dermatophytes through MALDI-TOF MS. Owing to the high accuracy observed at both genus and species levels, this approach could be an alternative diagnostic method in addition to morphological and molecular methods.
Collapse
Affiliation(s)
- Jin Chen
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xihuan Sun
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yiming Zeng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
16
|
Performance of lipid fingerprint-based MALDI-ToF for the diagnosis of mycobacterial infections. Clin Microbiol Infect 2021; 27:912.e1-912.e5. [PMID: 32861860 PMCID: PMC8186428 DOI: 10.1016/j.cmi.2020.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Bacterial diagnosis of mycobacteria is often challenging because of the variability of the sensitivity and specificity of the assay used, and it can be expensive to perform accurately. Although matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has become the workhorse of clinical laboratories, the current MALDI methodology (which is based on cytosolic protein profiling) for mycobacteria is still challenging due to the number of steps involved (up to seven) and potential biosafety concerns. Knowing that mycobacteria produce surface-exposed species-specific lipids, we here hypothesized that the detection of those molecules could offer a rapid, reproducible and robust method for mycobacterial identification. METHODS We evaluated the performance of an alternative methodology based on characterized species-specific lipid profiling of intact bacteria, without any sample preparation, by MALDI MS; it uses MALDI-time-of-flight (ToF) MS combined with a specific matrix (super-2,5-dihydroxybenzoic acid solubilized in an apolar solvent system) to analyse lipids of intact heat-inactivated mycobacteria. Cultured mycobacteria are heat-inactivated and loaded directly onto the MALDI target followed by addition of the matrix. Acquisition of the data is done in both positive and negative ion modes. Blinded studies were performed using 273 mycobacterial strains comprising both the Mycobacterium tuberculosis (Mtb) complex and non-tuberculous mycobacteria (NTMs) subcultured in Middlebrook 7H9 media supplemented with 10% OADC (oleic acid/dextrose/catalase) growth supplement and incubated for up to 2 weeks at 37°C. RESULTS The method we have developed is fast (<10 mins) and highly sensitive (<1000 bacteria required); 96.7% of the Mtb complex strains (204/211) were correctly assigned as MTB complex and 91.7% (22/24) NTM species were correctly assigned based only on intact bacteria species-specific lipid profiling by MALDI-ToF MS. CONCLUSIONS Intact bacterial lipid profiling provides a biosafe and unique route for rapid and accurate mycobacterial identification.
Collapse
|
17
|
Use of MALDI-TOF MS (Bruker Daltonics) for identification of Mycobacterium species isolated directly from liquid medium. Enferm Infecc Microbiol Clin 2021; 39:241-243. [DOI: 10.1016/j.eimc.2020.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
|
18
|
Yamaguchi Y, Kitano T, Onishi T, Takeyama M, Suzuki Y, Nogami K. A Case of Pediatric Subcutaneous Abscess Caused by Mycobacterium mageritense Infection. Jpn J Infect Dis 2021; 74:377-380. [PMID: 33518619 DOI: 10.7883/yoken.jjid.2020.621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Soft tissue infections with Mycobacterium mageritense are uncommon. We report the case of a 5-year-old girl who developed a subcutaneous abscess in her right ankle caused by M. mageritense. She had a history of acute encephalopathy and adrenal insufficiency and was hospitalized for acute pancreatitis. During hospitalization, the patient developed fever and tachycardia. Blood culture was positive for gram-positive bacilli. Although initial testing with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) reported a different organism, a repeat test identified M. mageritense. One month after the positive blood culture, she developed redness and swelling in the right ankle. The pus from the subcutaneous abscess after drainage grew M. mageritense, which was further confirmed by the sequencing of housekeeping genes. Based on sensitivity testing, the patient was treated with tosufloxacin and linezolid. The local inflammatory signs gradually improved on starting the treatment. The antibiotics were administered for 6 months, and she experienced no relapse during the 8 months of follow-up after the completion of therapy. This is the first case report of a pediatric M. mageritense infection, which also highlights an important potential pitfall of MALDI-TOF MS. Further, we observe that the choice of antimicrobials for the treatment of M. mageritense is more limited in children than in adults.
Collapse
Affiliation(s)
| | - Taito Kitano
- Department of Pediatrics , Nara Medical University, Japan.,Division of Infectious Diseases, The Hospital for Sick Children, Canada
| | - Tomoko Onishi
- Department of Pediatrics , Nara Medical University, Japan
| | | | - Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, Japan
| | - Keiji Nogami
- Department of Pediatrics , Nara Medical University, Japan
| |
Collapse
|
19
|
Cheng WC, Chen LH, Jiang CR, Deng YM, Wang DW, Lin CH, Jou R, Wang JK, Wang YL. Sensible Functional Linear Discriminant Analysis Effectively Discriminates Enhanced Raman Spectra of Mycobacterium Species. Anal Chem 2021; 93:2785-2792. [PMID: 33480698 DOI: 10.1021/acs.analchem.0c03681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis complex (MTBC) is one of the major infectious diseases in the world. Identification of MTBC and differential diagnosis of nontuberculous mycobacteria (NTM) species impose challenges because of their taxonomic similarity. This study describes a differential diagnosis method using the surface-enhanced Raman scattering (SERS) measurement of molecules released by Mycobacterium species. Conventional principal component analysis and linear discriminant analysis methods successfully separated the acquired spectrum of MTBC from those of NTM species but failed to distinguish between the spectra of different NTM species. A novel sensible functional linear discriminant analysis (SLDA), projecting the averaged spectrum of a bacterial specie to the subspace orthogonal to the within-species random variation, thereby eliminating its influence in applying linear discriminant analysis, was employed to effectively discriminate not only MTBC but also species of NTM. The successful demonstration of this SERS-SLDA method opens up new opportunities for the rapid differentiation of Mycobacterium species.
Collapse
Affiliation(s)
- Wei-Chih Cheng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10699, Taiwan
| | - Lu-Hung Chen
- Department of Applied Mathematics, National Chung Hsing University, Taichung 402, Taiwan
| | - Ci-Ren Jiang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ming Deng
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Taipei 11561, Taiwan
| | - Da-Wei Wang
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei 112, Taiwan
| | - Ruwen Jou
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Taipei 11561, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming University, Taipei 112, Taiwan.,Tuberculosis Research Center, Centers for Disease Control, Taipei 10050, Taiwan
| | - Juen-Kai Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10699, Taiwan.,Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yuh-Lin Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10699, Taiwan.,Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Yoo IY, Shim HJ, Yun SA, Kang OK, Chung YN, Kim TY, Lee H, Kim J, Park YJ, Huh HJ, Lee NY. Evaluation of the ASTA MicroIDSys matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of mycobacteria directly from positive MGIT liquid cultures. Int J Infect Dis 2020; 102:172-177. [PMID: 33039611 DOI: 10.1016/j.ijid.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES We evaluated the performance of the MicroIDSys Elite system, a newly developed matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry system for identification of mycobacteria directly from positive MGIT liquid cultures. METHODS Analytical specificity was evaluated with 63 reference strains grown in mycobacteria growth indicator tube media. Prospective performance evaluation was conducted with primary liquid cultures of sputum samples for identification of mycobacteria, and results were compared to multigenerational sequencing as the reference method. Liquid media subcultures were also analyzed. RESULTS The accuracy for the 63 reference strains was 98.4% (62/63). A total of 167 paired mycobacterial primary cultures and subcultures in liquid media, comprised of seven Mycobacterium tuberculosis isolates, 109 slowly growing nontuberculous mycobacterial isolates, and 51 rapidly growing nontuberculous mycobacterial isolates, was identified by the MicroIDSys Elite system. Using primary liquid cultures, the MicroIDSys Elite system correctly identified 143 (85.6%) isolates; 21 (12.6%) resulted in "no identification"; and three (1.8%) isolates were misidentified. Using liquid media subcultures with this system, 159 (95.2%) isolates were correctly identified; seven (4.2%) resulted in "no identification"; and one (0.6%) isolate was misidentified. CONCLUSION The MicroIDSys Elite system is a useful routine diagnostic tool for identification of mycobacterial species from liquid culture.
Collapse
Affiliation(s)
- In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyang Jin Shim
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sun Ae Yun
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - On Kyun Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoo Na Chung
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyeyoung Lee
- Department of Laboratory Medicine, International St. Mary's Hospital, College of Medicine, The Catholic Kwandong University, Incheon, Republic of Korea
| | - Jayoung Kim
- Department of Laboratory Medicine, International St. Mary's Hospital, College of Medicine, The Catholic Kwandong University, Incheon, Republic of Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Li YS, Tseng WL, Lu CY. Sensitive detection of quinoline-derivatized sitagliptin in small volumes of human plasma by MALDI-TOF mass spectrometry. Talanta 2020; 218:121143. [PMID: 32797900 DOI: 10.1016/j.talanta.2020.121143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors are incretin-based medications used as oral antidiabetic agents for the treatment of type 2 diabetes. However, DPP-4 inhibitors produce side effects like acute pancreatitis, upper respiratory tract infection, nasopharyngitis, urinary tract infection, serious allergies, cardiovascular diseases, hemolysis, and retinopathy. Hence, the development of a fast and simple method to detect DPP-4 inhibitors in body fluids is important. In this study, we developed a derivatization-assisted microextraction method to enhance the detection sensitivity for trace levels of a DPP-4 inhibitor, sitagliptin, from a small volume (10 μL) of human plasma by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Subjecting the analyte to 100 W microwave irradiation after derivatization using a quinoline alkylating reagent (8-bromomethyl quinilone, BrMQ) shortened the reaction time to ~120 s and allowed the target analyte to be easily extracted to a small volume of the organic layer (20 μL). The analyte was then detected by MALDI-TOF MS using α-cyano-4-hydroxycinnamic acid as the matrix. The relative standard deviation and relative error were below 10% in intra- and inter-day assays. Using sitagliptin-d4 as an internal standard, the limits of quantitation and detection were found to be 0.03 μg/mL and 0.01 μg/mL, respectively. All the derivatization and extraction procedures described herein were of microliter grade. This method could effectively reduce the use of organic chemicals and solvents, thereby proving to be an eco-friendly strategy that will cause no harm to the environment.
Collapse
Affiliation(s)
- Yi-Shan Li
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, College of Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
22
|
Fujita S, Kawakami Y, Yamasaki H, Sugihara S, Miyake T, Miyamoto Y, Hoshino Y, Ishii N, Yamasaki O, Morizane S. Coexistence of Mycobacterium ulcerans ssp. shinshuense and Mycobacterium avium in a patient with Buruli ulcer-compatible lesions. J Dermatol 2020; 47:e400-e401. [PMID: 32881049 DOI: 10.1111/1346-8138.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shusaku Fujita
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshio Kawakami
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Haruka Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Sugihara
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Miyake
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Norihisa Ishii
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,National Sanatorium Tamazenshoen, Tokyo, Japan
| | - Osamu Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
23
|
Feature of Adhesins Produced by Human Clinical Isolates of Mycobacterium intracellulare, Mycobacterium intracellulare subsp. chimaera and Closely Related Species. Microorganisms 2020; 8:microorganisms8081154. [PMID: 32751435 PMCID: PMC7465531 DOI: 10.3390/microorganisms8081154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
The Mycobacterium avium complex includes two closely related species, Mycobacterium avium and Mycobacterium intracellulare. They are opportunistic pathogens in humans and responsible for severe disease in a wide variety of animals. Yet, little is known about factors involved in their pathogenicity. Here, we identified, purified and characterized adhesins belonging to the heparin-binding hemagglutinin (HBHA) and laminin-binding protein (LBP) family from M. intracellulare ATCC13950 and examined clinical isolates from patients with different pathologies associated with M. intracellulare infection for the presence and conservation of HBHA and LBP. Using a recombinant derivative strain of M. intracellulare ATCC13950 producing green fluorescent protein and luciferase, we found that the addition of heparin inhibited mycobacterial adherence to A549 cells, whereas the addition of laminin enhanced adherence. Both HBHA and LBP were purified by heparin-Sepharose chromatography and their methylation profiles were determined by mass spectrometry. Patients with M. intracellulare infection mounted strong antibody responses to both proteins. By using PCR and immunoblot analyses, we found that both proteins were highly conserved among all 17 examined clinical M. intracellulare isolates from patients with diverse disease manifestations, suggesting a conserved role of these adhesins in M. intracellulare virulence in humans and their potential use as a diagnostic tool.
Collapse
|
24
|
Lee MR, Chang LY, Ko JC, Wang HC, Huang YW. Nontuberculous mycobacterial lung disease epidemiology in Taiwan: A systematic review. J Formos Med Assoc 2020; 119 Suppl 1:S4-S12. [PMID: 32482605 DOI: 10.1016/j.jfma.2020.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are critical emerging global infectious pathogens. Though NTM can be mere colonizers when isolated from human specimens, NTM are also responsible for diverse human infections. NTM-lung disease (NTM-LD) is the most common human disease entity. The present review aims to provide general insight into NTM-LD epidemiology in Taiwan. In reviewing NTM epidemiology in Taiwan, we discovered three distinguishing features. First, NTM disease incidence has increased in Taiwan over the past decade. Second, the distribution of NTM varies geographically in Taiwan. Mycobacterium avium-intracellulare complex (MAC) is the dominant species in northern Taiwan, whereas Mycobacterium abscessus complex and MAC may be equally dominant in southern Taiwan. Third, researchers in Taiwan have published valuable research investigating NTM among special patient populations, including patients in intensive care units, with ventilator dependency, with pulmonary tuberculosis, and who are infected with specific NTM species. The largest obstacle to clarifying NTM epidemiology in Taiwan may be the lack of routine NTM species identification in laboratories. Increased awareness of NTM diseases and acknowledgment that NTM species identification is crucial and guides clinical management are essential steps for facilitating the identification of NTM species in laboratories.
Collapse
Affiliation(s)
- Meng-Rui Lee
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lih-Yu Chang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Wen Huang
- Respiratory and Critical Care Center, Changhua Hospital, Ministry of Health & Welfare, Changhua, Taiwan.
| |
Collapse
|
25
|
Nomura F, Tsuchida S, Murata S, Satoh M, Matsushita K. Mass spectrometry-based microbiological testing for blood stream infection. Clin Proteomics 2020; 17:14. [PMID: 32435163 PMCID: PMC7222329 DOI: 10.1186/s12014-020-09278-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The most successful application of mass spectrometry (MS) in laboratory medicine is identification (ID) of microorganisms using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in blood stream infection. We describe MALDI-TOF MS-based bacterial ID with particular emphasis on the methods so far developed to directly identify microorganisms from positive blood culture bottles with MALDI-TOF MS including our own protocols. We touch upon the increasing roles of Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) as well. MAIN BODY Because blood culture bottles contain a variety of nonbacterial proteins that may interfere with analysis and interpretation, appropriate pretreatments are prerequisites for successful ID. Pretreatments include purification of bacterial pellets and short-term subcultures to form microcolonies prior to MALDI-TOF MS analysis. Three commercial protocols are currently available: the Sepsityper® kit (Bruker Daltonics), the Vitek MS blood culture kit (bioMerieux, Inc.), and the rapid BACpro® II kit (Nittobo Medical Co., Tokyo). Because these commercially available kits are costly and bacterial ID rates using these kits are not satisfactory, particularly for Gram-positive bacteria, various home-brew protocols have been developed: 1. Stepwise differential sedimentation of blood cells and microorganisms, 2. Combination of centrifugation and lysis procedures, 3. Lysis-vacuum filtration, and 4. Centrifugation and membrane filtration technique (CMFT). We prospectively evaluated the performance of this CMFT protocol compared with that of Sepsityper® using 170 monomicrobial positive blood cultures. Although preliminary, the performance of the CMFT was significantly better than that of Sepsityper®, particularly for Gram-positive isolates. MALDI-TOF MS-based testing of polymicrobial blood specimens, however, is still challenging. Also, its contribution to assessment of susceptibility and resistance to antibiotics is still limited. For this purpose, liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) should be more useful because this approach can identify as many as several thousand peptide sequences. CONCLUSION MALDI-TOF MS is now an essential tool for rapid bacterial ID of pathogens that cause blood stream infection. For the purpose of assessment of susceptibility and resistance to antibiotics of the pathogens, the roles of liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) will increase in the future.
Collapse
Affiliation(s)
- Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Syota Murata
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| |
Collapse
|
26
|
Abstract
Truffles are edible mushrooms with similar morphological characteristics, that make it difficult to distinguish between highly prized truffles (such as the Périgord black T. melanosporum) and inexpensive truffles (such as the Asian Black T. indicum). These biological and economic features have led to several misidentifications and/or fraudulent profit in the truffle markets. In this paper, we investigate Matrix-assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) biotyping to identify 34 commercial fresh truffles from Europe and Asia. The MALDI-TOF MS clustering rapidly distinguished seven Tuber species identified by ITS phylogenetic analysis. The tasty T. melanosporum was clearly differentiated from the Chinese and less expensive truffles. These cheaper mushrooms were marketed as T. indicum but corresponded to a mix of three species. In total, the method confirmed misidentifications in 26% of commercial specimens. Several unknown blind-coded truffles were rapidly identified, with scores >= 2, using the Bruker Biotyper algorithm against MS databases. This study demonstrates that MALDI-TOF MS is a reliable, rapid and cheaper new tool compared with molecular methods for the identification of truffle species and could be used to control frauds in the truffle markets. It could also be useful for the certification of truffle-inoculated seedlings and/or diversity in forest ecosystems.
Collapse
|
27
|
Matsumoto Y, Kinjo T, Motooka D, Nabeya D, Jung N, Uechi K, Horii T, Iida T, Fujita J, Nakamura S. Comprehensive subspecies identification of 175 nontuberculous mycobacteria species based on 7547 genomic profiles. Emerg Microbes Infect 2019; 8:1043-1053. [PMID: 31287781 PMCID: PMC6691804 DOI: 10.1080/22221751.2019.1637702] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The prevalence of nontuberculous mycobacteria (NTM) pulmonary diseases has been increasing worldwide. NTM consist of approximately 200 species and distinguishing between them at the subspecies level is critical to treatment. In this study, we sequenced 63 NTM genomes, 27 of which were newly determined, by hybrid assembly using sequencers from Illumina and Oxford Nanopore Technologies (ONT). This analysis expanded the available genomic data to 175 NTM species and redefined their subgenus classification. We also developed a novel multi-locus sequence typing (MLST) database based on 184 genes from 7547 assemblies and an identification software, mlstverse, which can also be used for detecting other bacteria given a suitable MLST database. This method showed the highest sensitivity and specificity amongst conventional methods and demonstrated the capacity for rapid detection of NTM, 10 min of sequencing of the ONT MinION being sufficient. Application of this methodology could improve disease epidemiology and increase the cure rates of NTM diseases.
Collapse
Affiliation(s)
- Yuki Matsumoto
- a Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases , Osaka University , Suita , Japan
| | - Takeshi Kinjo
- b Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine , University of the Ryukyus , Nakagami-gun , Japan
| | - Daisuke Motooka
- a Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases , Osaka University , Suita , Japan.,c Laboratory of Pathogen Detection and Identification, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases , Osaka University , Suita , Japan
| | - Daijiro Nabeya
- b Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine , University of the Ryukyus , Nakagami-gun , Japan
| | - Nicolas Jung
- a Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases , Osaka University , Suita , Japan
| | - Kohei Uechi
- b Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine , University of the Ryukyus , Nakagami-gun , Japan.,d Division of Clinical Laboratory and Blood Transfusion , University of the Ryukyus Hospital , Nakagami-gun , Japan
| | - Toshihiro Horii
- a Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases , Osaka University , Suita , Japan
| | - Tetsuya Iida
- a Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases , Osaka University , Suita , Japan
| | - Jiro Fujita
- b Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine , University of the Ryukyus , Nakagami-gun , Japan
| | - Shota Nakamura
- a Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases , Osaka University , Suita , Japan.,c Laboratory of Pathogen Detection and Identification, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases , Osaka University , Suita , Japan.,e Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives , Osaka University , Suita , Japan
| |
Collapse
|
28
|
Brown-Elliott BA, Fritsche TR, Olson BJ, Vasireddy S, Vasireddy R, Iakhiaeva E, Alame D, Wallace RJ, Branda JA. Comparison of Two Commercial Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Systems for Identification of Nontuberculous Mycobacteria. Am J Clin Pathol 2019; 152:527-536. [PMID: 31314059 PMCID: PMC6733354 DOI: 10.1093/ajcp/aqz073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES This multicenter study's aim was to assess the performance of two commercially available matrix-assisted laser desorption/ionization time of flight mass spectrometry systems in identifying a challenge collection of clinically relevant nontuberculous mycobacteria (NTM). METHODS NTM clinical isolates (n = 244) belonging to 23 species/subspecies were identified by gene sequencing and analyzed using Bruker Biotyper with Mycobacterial Library v5.0.0 and bioMérieux VITEK MS with v3.0 database. RESULTS Using the Bruker or bioMérieux systems, 92% and 95% of NTM strains, respectively, were identified at least to the complex/group level; 62% and 57%, respectively, were identified to the highest taxonomic level. Differentiation between members of Mycobacterium abscessus, M fortuitum, M mucogenicum, M avium, and M terrae complexes/groups was problematic for both systems, as was identification of M chelonae for the Bruker system. CONCLUSIONS Both systems identified most NTM isolates to the group/complex level, and many to the highest taxonomic level. Performance was comparable.
Collapse
Affiliation(s)
| | - Thomas R Fritsche
- Marshfield Clinic Health System, Marshfield, WI
- University of Wisconsin, La Crosse
| | | | | | | | | | - Diana Alame
- Thomas Jefferson University, Philadelphia, PA
| | | | - John A Branda
- Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Welker M, Van Belkum A, Girard V, Charrier JP, Pincus D. An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Rev Proteomics 2019; 16:695-710. [PMID: 31315000 DOI: 10.1080/14789450.2019.1645603] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has entered clinical diagnostics and is today a generally accepted and integral part of the workflow for microbial identification. MALDI-TOF MS identification systems received approval from national and international institutions, such as the USA-FDA, and are continuously improved and adopted to other fields like veterinary and industrial microbiology. The question is whether MALDI-TOF MS also has the potential to replace other conventional and molecular techniques operated in routine diagnostic laboratories. Areas covered: We give an overview of new advancements of mass spectral analysis in the context of microbial diagnostics. In particular, the expansion of databases to increase the range of readily identifiable bacteria and fungi, the refined discrimination of species complexes, subspecies, and types, the testing for antibiotic resistance or susceptibility, progress in sample preparation including automation, and applications of other mass spectrometry techniques are discussed. Expert opinion: Although many new approaches of MALDI-TOF MS are still in the stage of proof of principle, it is expectable that MALDI-TOF MS will expand its role in the clinical microbiology laboratory of the future. New databases, instruments and analytical software modules will continue to be developed to further improve diagnostic efficacy.
Collapse
Affiliation(s)
- Martin Welker
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Alex Van Belkum
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Victoria Girard
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | | | - David Pincus
- bioMérieux, Microbiology Innovation , Hazelwood , MO , USA
| |
Collapse
|
30
|
Iemura-Kashiwagi M, Ito I, Ikeguchi R, Kadoya M, Iemura T, Yoshida S, Suzuki K, Hirai T. Soft tissue infection caused by Mycolicibacter kumamotonensis. J Infect Chemother 2019; 26:136-139. [PMID: 31345743 DOI: 10.1016/j.jiac.2019.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
Abstract
Mycolicibacter kumamotonensis (M. kumamotonensis), formerly Mycobacterium kumamotonense, is a nontuberculous mycobacteria species, which was first separated from Mycobacterium terrae complex in 2006. Reports about infections caused by M. kumamotonensis are extremely rare, with most of them being lung infection. Here, we report the case of a 68-year-old man with a hobby of gardening who developed swelling in his right middle finger. He underwent surgical debridement at a previous hospital and was diagnosed with nontuberculous mycobacteria infection based on positive findings of acid-fast staining of pus obtained from the surgical specimen. He was treated with rifampicin, ethambutol, and clarithromycin, but the swelling worsened. Therefore, he was referred to our hospital for further examination and treatment. We performed a second debridement and added isoniazid to the treatment regimen, but the swelling continued to worsen. We then administered levofloxacin, but his condition did not change. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and DNA sequencing analysis confirmed M. kumamotonensis as the causative bacterium. Since the finger swelling did not improve, the patient underwent a third debridement and amikacin was added to the treatment regimen. Finally, the infection was controlled. He completed amikacin therapy and will continue treatment with the other five antibiotics for a total of 24 months. To the best of our knowledge, this is the first report of a patient with M. kumamotonensis soft tissue infection. We consider this case might provide important insights into the diagnosis and treatment of soft tissue infections caused by M. kumamotonensis.
Collapse
Affiliation(s)
| | - Isao Ito
- Department of Respiratory Medicine, Kyoto University Hospital, Japan.
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Kyoto University Hospital, Japan
| | - Masatoshi Kadoya
- Center for Rheumatic Disease, Japanese Red Cross Society Kyoto Daiichi Hospital, Kyoto, Japan
| | - Tomoki Iemura
- Department of Hematology, Kyoto University Hospital, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Japan
| | - Katsuhiro Suzuki
- Internal Medicine, National Hospital Organization Kinki-chuo Chest Medical Center, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Hospital, Japan
| |
Collapse
|
31
|
Bisht D, Sharma D, Sharma D, Singh R, Gupta VK. Recent insights intoMycobacterium tuberculosisthrough proteomics and implications for the clinic. Expert Rev Proteomics 2019; 16:443-456. [DOI: 10.1080/14789450.2019.1608185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| | - Devesh Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| | - Divakar Sharma
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rananjay Singh
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| | - Vivek Kumar Gupta
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| |
Collapse
|
32
|
Rotcheewaphan S, Lemon JK, Desai UU, Henderson CM, Zelazny AM. Rapid one-step protein extraction method for the identification of mycobacteria using MALDI-TOF MS. Diagn Microbiol Infect Dis 2019; 94:355-360. [PMID: 31053254 DOI: 10.1016/j.diagmicrobio.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 11/19/2022]
Abstract
Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry is a quick and accurate method for mycobacterial identification from protein extracts. Our new one-step extraction method successfully reduced routine multistep extraction procedure time from over 60 min to under 10 min and used only 1 μL loopful of mycobacteria while providing clinically acceptable identification scores (≥1.8). Overall, 86.8% and 4.4% of mycobacteria isolates (n = 68) were identified to the species/complex and genus levels, respectively, by one-step loop extraction method, comparable to the routine extraction method. Viability studies confirmed killing of mycobacterial isolates after 5 min in the extraction solution replacing lengthy heat killing step. Retrospective 7-month data analysis showed 100% of rapidly and slowly growing mycobacterial isolates were identified to the species/complex level by rapid extraction methods. Our rapid extraction methods substantially reduced processing time and microbial biomass required for testing without sacrificing quality and accuracy of mycobacterial identification.
Collapse
Affiliation(s)
- Suwatchareeporn Rotcheewaphan
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jamie K Lemon
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Uma U Desai
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Christina M Henderson
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Adrian M Zelazny
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Jones RS, Shier KL, Master RN, Bao JR, Clark RB. Current significance of the Mycobacterium chelonae-abscessus group. Diagn Microbiol Infect Dis 2019; 94:248-254. [PMID: 30954313 DOI: 10.1016/j.diagmicrobio.2019.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 02/08/2023]
Abstract
Organisms of the Mycobacterium chelonae-abscessus group can be significant pathogens in humans. They produce a number of diseases including acute, invasive and chronic infections, which may be difficult to diagnose correctly. Identification among members of this group is complicated by differentiating at least eleven (11) known species and subspecies and complexity of identification methodologies. Treatment of their infections may be problematic due to their correct species identification, antibiotic resistance, their differential susceptibility to the limited number of drugs available, and scarcity of susceptibility testing.
Collapse
Affiliation(s)
- Robert S Jones
- Infectious Disease Department, Quest Diagnostics Nichols Institute, Chantilly, VA 20131
| | - Kileen L Shier
- Infectious Disease Department, Quest Diagnostics Nichols Institute, Chantilly, VA 20131
| | - Ronald N Master
- Infectious Disease Department, Quest Diagnostics Nichols Institute, Chantilly, VA 20131
| | - Jian R Bao
- Infectious Disease Department, Quest Diagnostics Nichols Institute, Chantilly, VA 20131
| | - Richard B Clark
- Infectious Disease Department, Quest Diagnostics Nichols Institute, Chantilly, VA 20131.
| |
Collapse
|
34
|
Rapid Identification of Clinically Relevant Mycobacterium Species by Multicolor Melting Curve Analysis. J Clin Microbiol 2019; 57:JCM.01096-18. [PMID: 30333128 DOI: 10.1128/jcm.01096-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/07/2018] [Indexed: 11/20/2022] Open
Abstract
The sustained increase in the incidence of nontuberculous mycobacterial (NTM) infection and the difficulty in distinguishing these infections from tuberculosis constitute an urgent need for NTM species-level identification. The MeltPro Myco assay is the first diagnostic system that identifies 19 clinically relevant mycobacteria in a single reaction based on multicolor melting curve analysis run on a real-time PCR platform. The assay was comprehensively evaluated regarding its analytical and clinical performances. The MeltPro Myco assay accurately identified 51 reference mycobacterial strains to the species/genus level and showed no cross-reactivity with 16 nonmycobacterial strains. The limit of detection was 300 bacilli/ml, and 1% of the minor species was detected in the case of mixed infections. Clinical studies using 1,163 isolates collected from five geographically distinct health care units showed that the MeltPro Myco assay correctly identified 1,159 (99.7%) samples. Further testing with 94 smear-positive sputum samples showed that all samples were correctly identified. Additionally, the entire assay can be performed within 3 h. The results of this study confirmed the efficacy of this assay in the reliable identification of mycobacteria, suggesting that it might potentially be used as a screening tool in regions endemic for tuberculosis.
Collapse
|
35
|
Application of MALDI Biotyper System for Rapid Identification of Bacteria Isolated from a Fresh Produce Market. Curr Microbiol 2019; 76:290-296. [PMID: 30603962 DOI: 10.1007/s00284-018-01624-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022]
Abstract
MALDI-TOF MS has revolutionized the identification of microorganisms and has become an indispensable part of routine diagnostics in the clinical microbiological laboratory. However, application of this technique in microbial surveillance outside of clinical settings is limited. In this study, we have evaluated the performance of a Bruker MALDI Biotyper System for the identification of bacteria isolated from the hand palms of fresh produce handlers and their surrounding environments in a wholesale fresh produce market in Doha, Qatar. The accuracy was verified against the results obtained by bacterial 16S rRNA gene sequencing. A total of 105 isolates were tested, of which 67 (64%) isolates were identified by MALDI-TOF MS and 101 isolates (96%) were identified by 16S rRNA gene sequencing, either at the genus level or species level. However, MALDI-TOF MS identified more isolates (41%) at the species level than 16S rRNA gene sequencing (28%). MALDI-TOF MS was particularly useful in the species level identification of Enterobacteriaceae. MALDI-TOF MS successfully identified most known human pathogens in a rapid and cost-effective manner but failed to identify a significant number of isolates that were of environmental origin, suggesting room for further expansion of the reference database.
Collapse
|
36
|
Huh HJ, Kim SY, Jhun BW, Shin SJ, Koh WJ. Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. INFECTION GENETICS AND EVOLUTION 2018; 72:169-182. [PMID: 30315892 DOI: 10.1016/j.meegid.2018.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/31/2023]
Abstract
Accumulating evidence suggests that human infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, indicating that NTM disease is no longer uncommon in many countries. As a result of an increasing emphasis on the importance of differential identification of NTM species, several molecular tools have recently been introduced in clinical and experimental settings. These advances have led to a much better understanding of the diversity of NTM species with regard to clinical aspects and the potential factors responsible for drug resistance that influence the different outcomes of NTM disease. In this paper, we review currently available molecular diagnostics for identification and differentiation of NTM species by summarizing data from recently applied methods, including commercially available assays, and their relevant strengths and weaknesses. We also highlight drug resistance-associated genes in clinically important NTM species. Understanding the basis for different treatment outcomes with different causative species and drug-resistance mechanisms will eventually improve current treatment regimens and facilitate the development of better control measures for NTM diseases.
Collapse
Affiliation(s)
- Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
37
|
Psaroulaki A, Chochlakis D. Use of MALDI-TOF mass spectrometry in the battle against bacterial infectious diseases: recent achievements and future perspectives. Expert Rev Proteomics 2018; 15:537-539. [PMID: 29999433 DOI: 10.1080/14789450.2018.1499469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anna Psaroulaki
- a Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine , University of Crete , Heraklion , Crete , Greece
| | - Dimosthenis Chochlakis
- a Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine , University of Crete , Heraklion , Crete , Greece
| |
Collapse
|
38
|
Florio W, Tavanti A, Barnini S, Ghelardi E, Lupetti A. Recent Advances and Ongoing Challenges in the Diagnosis of Microbial Infections by MALDI-TOF Mass Spectrometry. Front Microbiol 2018; 9:1097. [PMID: 29896172 PMCID: PMC5986882 DOI: 10.3389/fmicb.2018.01097] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Timeliness and accuracy in the diagnosis of microbial infections are associated with decreased mortality and reduced length of hospitalization, especially for severe, life-threatening infections. A rapid diagnosis also allows for early streamlining of empirical antimicrobial therapies, thus contributing to limit the emergence and spread of antimicrobial resistance. The introduction of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for routine identification of microbial pathogens has profoundly influenced microbiological diagnostics, and is progressively replacing biochemical identification methods. Compared to currently used identification methods, MALDI-TOF MS has the advantage of identifying bacteria and yeasts directly from colonies grown on culture plates for primary isolation in a few minutes and with considerable material and labor savings. The reliability and accuracy of MALDI-TOF MS in identification of clinically relevant bacteria and yeasts has been demonstrated by several studies showing that the performance of MALDI-TOF MS is comparable or superior to phenotypic methods currently in use in clinical microbiology laboratories, and can be further improved by database updates and analysis software upgrades. Besides microbial identification from isolated colonies, new perspectives are being explored for MALDI-TOF MS, such as identification of pathogens directly from positive blood cultures, sub-species typing, and detection of drug resistance determinants. In this review, we summarize the state of the art in routine identification of microbial pathogens by MALDI-TOF MS, and highlight recent advancements of this technology in special applications, such as strain typing, assessment of drug susceptibility, and detection of virulence factors.
Collapse
Affiliation(s)
- Walter Florio
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | | | | | - Emilia Ghelardi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| |
Collapse
|