1
|
State (Rosoiu) S, Enache LB, Potorac P, Prodana M, Enachescu M. Synthesis of Copper Nanostructures for Non-Enzymatic Glucose Sensors via Direct-Current Magnetron Sputtering. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4144. [PMID: 36500774 PMCID: PMC9739512 DOI: 10.3390/nano12234144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
In this paper, Cu nanocolumnar structure electrodes are synthetized using a clean and easy-to-scale-up direct-current magnetron sputtering (DC-MS) technique for non-enzymatic glucose sensing. The nanocolumnar structure increases the active surface area of the deposit, with the nanocolumns showing a mean size diameter of 121.0 nm ± 27.2 and a length of 2.52 µm ± 0.23. A scanning transmission electron (STEM) analysis shows the presence of Cu and a small amount of Cu2O. The behavior of the electrodes in alkaline environments and the electrochemical affinity of the Cu nanocolumns (CuNCs) towards the electro-oxidation of glucose are investigated using cyclic voltammetry (CV). After performing CV in NaOH solution, the columnar structures present corrosion products containing Cu2O, as revealed by STEM and X-ray diffraction (XRD) analyses. The amperometric responses of the CuNCs to the successive addition of glucose show a linear range up to 2 mM and a limit of detection of 5.2 µM. Furthermore, the electrodes are free from chloride poisoning, and they are insensitive to dopamine, uric acid, ascorbic acid, and acetaminophen at their physiological concentrations.
Collapse
Affiliation(s)
- Sabrina State (Rosoiu)
- Center for Surface Science and Nanotechnology, Politehnica University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Laura-Bianca Enache
- Center for Surface Science and Nanotechnology, Politehnica University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Pavel Potorac
- Center for Surface Science and Nanotechnology, Politehnica University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Mariana Prodana
- Department of General Chemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, Politehnica University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest, Romania
| |
Collapse
|
2
|
Baran T, Visibile A, Busch M, He X, Wojtyla S, Rondinini S, Minguzzi A, Vertova A. Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances. Molecules 2021; 26:7271. [PMID: 34885863 PMCID: PMC8658916 DOI: 10.3390/molecules26237271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
This work aims at reviewing the most impactful results obtained on the development of Cu-based photocathodes. The need of a sustainable exploitation of renewable energy sources and the parallel request of reducing pollutant emissions in airborne streams and in waters call for new technologies based on the use of efficient, abundant, low-toxicity and low-cost materials. Photoelectrochemical devices that adopts abundant element-based photoelectrodes might respond to these requests being an enabling technology for the direct use of sunlight to the production of energy fuels form water electrolysis (H2) and CO2 reduction (to alcohols, light hydrocarbons), as well as for the degradation of pollutants. This review analyses the physical chemical properties of Cu2O (and CuO) and the possible strategies to tune them (doping, lattice strain). Combining Cu with other elements in multinary oxides or in composite photoelectrodes is also discussed in detail. Finally, a short overview on the possible applications of these materials is presented.
Collapse
Affiliation(s)
- Tomasz Baran
- SajTom Light Future, Wężerów 37/1, 32-090 Wężerów, Poland; (T.B.); (S.W.)
| | - Alberto Visibile
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden;
| | - Michael Busch
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland;
| | - Xiufang He
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Szymon Wojtyla
- SajTom Light Future, Wężerów 37/1, 32-090 Wężerów, Poland; (T.B.); (S.W.)
| | - Sandra Rondinini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Alberto Vertova
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| |
Collapse
|
3
|
Kang DY, Kim BH, Lee TH, Shim JW, Kim S, Sung HJ, Chang KJ, Kim TG. Dopant-Tunable Ultrathin Transparent Conductive Oxides for Efficient Energy Conversion Devices. NANO-MICRO LETTERS 2021; 13:211. [PMID: 34657227 PMCID: PMC8520554 DOI: 10.1007/s40820-021-00735-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Ultrathin film-based transparent conductive oxides (TCOs) with a broad work function (WF) tunability are highly demanded for efficient energy conversion devices. However, reducing the film thickness below 50 nm is limited due to rapidly increasing resistance; furthermore, introducing dopants into TCOs such as indium tin oxide (ITO) to reduce the resistance decreases the transparency due to a trade-off between the two quantities. Herein, we demonstrate dopant-tunable ultrathin (≤ 50 nm) TCOs fabricated via electric field-driven metal implantation (m-TCOs; m = Ni, Ag, and Cu) without compromising their innate electrical and optical properties. The m-TCOs exhibit a broad WF variation (0.97 eV), high transmittance in the UV to visible range (89-93% at 365 nm), and low sheet resistance (30-60 Ω cm-2). Experimental and theoretical analyses show that interstitial metal atoms mainly affect the change in the WF without substantial losses in optical transparency. The m-ITOs are employed as anode or cathode electrodes for organic light-emitting diodes (LEDs), inorganic UV LEDs, and organic photovoltaics for their universal use, leading to outstanding performances, even without hole injection layer for OLED through the WF-tailored Ni-ITO. These results verify the proposed m-TCOs enable effective carrier transport and light extraction beyond the limits of traditional TCOs.
Collapse
Affiliation(s)
- Dae Yun Kang
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Bo-Hyun Kim
- Department of Advanced Materials Engineering, Kongju National University, Cheonan, 31080, Republic of Korea
| | - Tae Ho Lee
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Won Shim
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungmin Kim
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ha-Jun Sung
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kee Joo Chang
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Tae Geun Kim
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Jeon HS, Timoshenko J, Rettenmaier C, Herzog A, Yoon A, Chee SW, Oener S, Hejral U, Haase FT, Roldan Cuenya B. Selectivity Control of Cu Nanocrystals in a Gas-Fed Flow Cell through CO 2 Pulsed Electroreduction. J Am Chem Soc 2021; 143:7578-7587. [PMID: 33956433 PMCID: PMC8154520 DOI: 10.1021/jacs.1c03443] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
In this study, we
have taken advantage of a pulsed CO2 electroreduction reaction
(CO2RR) approach to tune the
product distribution at industrially relevant current densities in
a gas-fed flow cell. We compared the CO2RR selectivity
of Cu catalysts subjected to either potentiostatic conditions (fixed
applied potential of −0.7 VRHE) or pulsed electrolysis
conditions (1 s pulses at oxidative potentials ranging from Ean = 0.6 to 1.5 VRHE, followed by
1 s pulses at −0.7 VRHE) and identified the main
parameters responsible for the enhanced product selectivity observed
in the latter case. Herein, two distinct regimes were observed: (i)
for Ean = 0.9 VRHE we obtained
10% enhanced C2 product selectivity (FEC2H4 = 43.6% and FEC2H5OH = 19.8%) in comparison to the potentiostatic CO2RR at −0.7 VRHE (FEC2H4 = 40.9% and FEC2H5OH = 11%),
(ii) while for Ean = 1.2 VRHE, high CH4 selectivity (FECH4 =
48.3% vs 0.1% at constant −0.7 VRHE) was observed. Operando spectroscopy (XAS, SERS) and ex situ microscopy (SEM and TEM) measurements revealed that these differences
in catalyst selectivity can be ascribed to structural modifications
and local pH effects. The morphological reconstruction of the catalyst
observed after pulsed electrolysis with Ean = 0.9 VRHE, including the presence of highly defective
interfaces and grain boundaries, was found to play a key role in the
enhancement of the C2 product formation. In turn, pulsed
electrolysis with Ean = 1.2 VRHE caused the consumption
of OH– species near the catalyst surface, leading
to an OH-poor environment favorable for CH4 production.
Collapse
Affiliation(s)
- Hyo Sang Jeon
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Aram Yoon
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - See Wee Chee
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Sebastian Oener
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Uta Hejral
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Felix T Haase
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
5
|
Ramaswamy P, Devkota S, Pokharel R, Nalamati S, Stevie F, Jones K, Reynolds L, Iyer S. A study of dopant incorporation in Te-doped GaAsSb nanowires using a combination of XPS/UPS, and C-AFM/SKPM. Sci Rep 2021; 11:8329. [PMID: 33859310 PMCID: PMC8050051 DOI: 10.1038/s41598-021-87825-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
We report the first study on doping assessment in Te-doped GaAsSb nanowires (NWs) with variation in Gallium Telluride (GaTe) cell temperature, using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), conductive-atomic force microscopy (C-AFM), and scanning Kelvin probe microscopy (SKPM). The NWs were grown using Ga-assisted molecular beam epitaxy with a GaTe captive source as the dopant cell. Te-incorporation in the NWs was associated with a positive shift in the binding energy of the 3d shells of the core constituent elements in doped NWs in the XPS spectra, a lowering of the work function in doped NWs relative to undoped ones from UPS spectra, a significantly higher photoresponse in C-AFM and an increase in surface potential of doped NWs observed in SKPM relative to undoped ones. The carrier concentration of Te-doped GaAsSb NWs determined from UPS spectra are found to be consistent with the values obtained from simulated I–V characteristics. Thus, these surface analytical tools, XPS/UPS and C-AFM/SKPM, that do not require any sample preparation are found to be powerful characterization techniques to analyze the dopant incorporation and carrier density in homogeneously doped NWs.
Collapse
Affiliation(s)
- Priyanka Ramaswamy
- Department of Electrical and Computer Engineering, North Carolina A&T State University, Greensboro, NC, 27401, USA
| | - Shisir Devkota
- Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, 27401, USA
| | - Rabin Pokharel
- Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, 27401, USA
| | - Surya Nalamati
- Department of Electrical and Computer Engineering, North Carolina A&T State University, Greensboro, NC, 27401, USA
| | - Fred Stevie
- Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC, 27695, USA
| | - Keith Jones
- Asylum Research, an Oxford Instruments Company, 6310 Hollister Ave., Santa Barbara, CA, 93117, USA
| | - Lew Reynolds
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shanthi Iyer
- Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, 27401, USA.
| |
Collapse
|
6
|
Tsai CH, Chen SY, Gloter A, Song JM. Template-Free and Surfactant-Free Synthesis of Selective Multi-Oxide-Coated Ag Nanowires Enabling Tunable Surface Plasmon Resonance. NANOMATERIALS 2020; 10:nano10101949. [PMID: 33007846 PMCID: PMC7599830 DOI: 10.3390/nano10101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022]
Abstract
Without using templates, seeds and surfactants, this study successfully prepared multi-oxide-layer coated Ag nanowires that enable tunable surface plasmon resonance without size or shape changes. A spontaneously grown ultra-thin titania layer onto the Ag nanowire surface causes a shift in surface plasmon resonance towards low energy (high wavelength) and also acts as a preferential site for the subsequent deposition of various oxides, e.g., TiO2 and CeO2. The difference in refractive indices results in further plasmonic resonance shifts. This verifies that the surface plasma resonance wavelength of one-dimensional nanostructures can be adjusted using refractive indices and shell oxide thickness design.
Collapse
Affiliation(s)
- Chi-Hang Tsai
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan;
| | - Shih-Yun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan;
- Correspondence: (S.-Y.C.); (J.-M.S.)
| | - Alexandre Gloter
- Laboratoire de Physique des Solides, Université Paris-Saclay, 91405 Orsay, France;
| | - Jenn-Ming Song
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.C.); (J.-M.S.)
| |
Collapse
|
7
|
Shinde PP, Adiga SP, Pandian S, Mayya KS, Shin HJ, Park S. Effect of encapsulation on electronic transport properties of nanoscale Cu(111) films. Sci Rep 2019; 9:3488. [PMID: 30837632 PMCID: PMC6401372 DOI: 10.1038/s41598-019-40193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/28/2019] [Indexed: 11/21/2022] Open
Abstract
The stiff compromise between reliability and conductivity of copper interconnects used in sub-nanometer nodes has brought into focus the choice of encapsulation material. While reliability was the primary driver so far, herein, we investigate how electronic conductivity of Cu(111) thin films is influenced by the encapsulation material using density functional theory and Boltzmann transport equation. Atomically thin 2D materials, namely conducting graphene and insulating graphane both retain the conductivity of Cu films whereas partially hydrogenated graphene (HGr) results in reduction of surface density of states and a reduction in Cu film conductivity. Among transition metal elements, we find that atoms in Co encapsulation layer, which essentially act as magnetic impurities, serve as electron scattering centres resulting in a decrease in conductivity by at least 15% for 11 nm thick Cu film. On the other hand, Mo, Ta, and Ru have more favorable effect on conductivity when compared to Co. The cause of decrease in conductivity for Co and HGr is discussed by investigating the electronic band structure and density of states. Our DFT calculations suggest that pristine graphene sheet is a good encapsulation material for advanced Cu interconnects both from chemical protection and conductivity point of view.
Collapse
Affiliation(s)
- Prashant P Shinde
- Materials Simulation (SAIT-India), Samsung R&D Institute, Bangalore, India.
| | | | - Shanthi Pandian
- Materials Simulation (SAIT-India), Samsung R&D Institute, Bangalore, India
| | - K Subramanya Mayya
- Materials Simulation (SAIT-India), Samsung R&D Institute, Bangalore, India
| | - Hyeon-Jin Shin
- Inorganic Material Lab, Samsung Advanced Institute of Technology, Suwon, 433-803, Republic of Korea
| | - Seongjun Park
- Inorganic Material Lab, Samsung Advanced Institute of Technology, Suwon, 433-803, Republic of Korea
| |
Collapse
|