1
|
Xu F, Gao W, Zhang M, Zhang F, Sun X, Wu B, Liu Y, Li X, Li H. Diagnostic implications of ubiquitination-related gene signatures in Alzheimer's disease. Sci Rep 2024; 14:10728. [PMID: 38730027 PMCID: PMC11087467 DOI: 10.1038/s41598-024-61363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
The purpose of this study was to explore the diagnostic implications of ubiquitination-related gene signatures in Alzheimer's disease. In this study, we first collected 161 samples from the GEO database (including 87 in the AD group and 74 in the normal group). Subsequently, through differential expression analysis and the iUUCD 2.0 database, we obtained 3450 Differentially Expressed Genes (DEGs) and 806 Ubiquitin-related genes (UbRGs). After taking the intersection, we obtained 128 UbR-DEGs. Secondly, by conducting GO and KEGG enrichment analysis on these 128 UbR-DEGs, we identified the main molecular functions and biological pathways related to AD. Furthermore, through the utilization of GSEA analysis, we have gained insight into the enrichment of functions and pathways within both the AD and normal groups. Further, using lasso regression analysis and cross-validation techniques, we identified 22 characteristic genes associated with AD. Subsequently, we constructed a logistic regression model and optimized it, resulting in the identification of 6 RUbR-DEGs: KLHL21, WDR82, DTX3L, UBTD2, CISH, and ATXN3L. In addition, the ROC result showed that the diagnostic model we built has excellent accuracy and reliability in identifying AD patients. Finally, we constructed a lncRNA-miRNA-mRNA (competing endogenous RNA, ceRNA) regulatory network for AD based on six RUbR-DEGs, further elucidating the interaction between UbRGs and lncRNA, miRNA. In conclusion, our findings will contribute to further understanding of the molecular pathogenesis of AD and provide a new perspective for AD risk prediction, early diagnosis and targeted therapy in the population.
Collapse
Affiliation(s)
- Fei Xu
- Heilongjiang Provincial Administration of Traditional Chinese Medicine, Harbin, 150036, Heilongjiang, China
| | - Wei Gao
- Jiangsu College of Nursing, Huaian, 223003, Jiangsu, China
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Miao Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| | - Fuyue Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - XiaoFei Sun
- Jiangsu College of Nursing, Huaian, 223003, Jiangsu, China
| | - Bao Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujiang, China
| | - Yali Liu
- Shanghai University of Sport, Shanghai, 200438, China
| | - Xue Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Honglin Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
2
|
Akyol S, Ashrafi N, Yilmaz A, Turkoglu O, Graham SF. Metabolomics: An Emerging "Omics" Platform for Systems Biology and Its Implications for Huntington Disease Research. Metabolites 2023; 13:1203. [PMID: 38132886 PMCID: PMC10744751 DOI: 10.3390/metabo13121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Huntington's disease (HD) is a progressive, fatal neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. The precise mechanisms of HD progression are poorly understood; however, it is known that there is an expansion of the trinucleotide cytosine-adenine-guanine (CAG) repeat in the Huntingtin gene. Important new strategies are of paramount importance to identify early biomarkers with predictive value for intervening in disease progression at a stage when cellular dysfunction has not progressed irreversibly. Metabolomics is the study of global metabolite profiles in a system (cell, tissue, or organism) under certain conditions and is becoming an essential tool for the systemic characterization of metabolites to provide a snapshot of the functional and pathophysiological states of an organism and support disease diagnosis and biomarker discovery. This review briefly highlights the historical progress of metabolomic methodologies, followed by a more detailed review of the use of metabolomics in HD research to enable a greater understanding of the pathogenesis, its early prediction, and finally the main technical platforms in the field of metabolomics.
Collapse
Affiliation(s)
- Sumeyya Akyol
- NX Prenatal Inc., 4350 Brownsboro Road, Louisville KY 40207, USA;
| | - Nadia Ashrafi
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
| | - Ali Yilmaz
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Onur Turkoglu
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| |
Collapse
|
3
|
Zagare A, Preciat G, Nickels SL, Luo X, Monzel AS, Gomez-Giro G, Robertson G, Jaeger C, Sharif J, Koseki H, Diederich NJ, Glaab E, Fleming RMT, Schwamborn JC. Omics data integration suggests a potential idiopathic Parkinson's disease signature. Commun Biol 2023; 6:1179. [PMID: 37985891 PMCID: PMC10662437 DOI: 10.1038/s42003-023-05548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
The vast majority of Parkinson's disease cases are idiopathic. Unclear etiology and multifactorial nature complicate the comprehension of disease pathogenesis. Identification of early transcriptomic and metabolic alterations consistent across different idiopathic Parkinson's disease (IPD) patients might reveal the potential basis of increased dopaminergic neuron vulnerability and primary disease mechanisms. In this study, we combine systems biology and data integration approaches to identify differences in transcriptomic and metabolic signatures between IPD patient and healthy individual-derived midbrain neural precursor cells. Characterization of gene expression and metabolic modeling reveal pyruvate, several amino acid and lipid metabolism as the most dysregulated metabolic pathways in IPD neural precursors. Furthermore, we show that IPD neural precursors endure mitochondrial metabolism impairment and a reduced total NAD pool. Accordingly, we show that treatment with NAD precursors increases ATP yield hence demonstrating a potential to rescue early IPD-associated metabolic changes.
Collapse
Affiliation(s)
- Alise Zagare
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - German Preciat
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Sarah L Nickels
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Xi Luo
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Gemma Gomez-Giro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Graham Robertson
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Christian Jaeger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, 230-0045, Japan
| | - Nico J Diederich
- Centre Hospitalier de Luxembourg (CHL), 4, Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Ronan M T Fleming
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
4
|
Suciu I, Delp J, Gutbier S, Ückert AK, Spreng AS, Eberhard P, Karreman C, Schreiber F, Madjar K, Rahnenführer J, Celardo I, Amelio I, Leist M. Dynamic Metabolic and Transcriptional Responses of Proteasome-Inhibited Neurons. Antioxidants (Basel) 2023; 12:164. [PMID: 36671027 PMCID: PMC9854434 DOI: 10.3390/antiox12010164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Proteasome inhibition is associated with parkinsonian pathology in vivo and degeneration of dopaminergic neurons in vitro. We explored here the metabolome (386 metabolites) and transcriptome (3257 transcripts) regulations of human LUHMES neurons, following exposure to MG-132 [100 nM]. This proteasome inhibitor killed cells within 24 h but did not reduce viability for 12 h. Overall, 206 metabolites were changed in live neurons. The early (3 h) metabolome changes suggested a compromised energy metabolism. For instance, AMP, NADH and lactate were up-regulated, while glycolytic and citric acid cycle intermediates were down-regulated. At later time points, glutathione-related metabolites were up-regulated, most likely by an early oxidative stress response and activation of NRF2/ATF4 target genes. The transcriptome pattern confirmed proteostatic stress (fast up-regulation of proteasome subunits) and also suggested the progressive activation of additional stress response pathways. The early ones (e.g., HIF-1, NF-kB, HSF-1) can be considered a cytoprotective cellular counter-regulation, which maintained cell viability. For instance, a very strong up-regulation of AIFM2 (=FSP1) may have prevented fast ferroptotic death. For most of the initial period, a definite life-death decision was not taken, as neurons could be rescued for at least 10 h after the start of proteasome inhibition. Late responses involved p53 activation and catabolic processes such as a loss of pyrimidine synthesis intermediates. We interpret this as a phase of co-occurrence of protective and maladaptive cellular changes. Altogether, this combined metabolomics-transcriptomics analysis informs on responses triggered in neurons by proteasome dysfunction that may be targeted by novel therapeutic intervention in Parkinson's disease.
Collapse
Affiliation(s)
- Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
- Graduate School of Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Johannes Delp
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Simon Gutbier
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Anna-Katharina Ückert
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
- Graduate School of Biological Sciences, University of Konstanz, 78457 Konstanz, Germany
| | - Anna-Sophie Spreng
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
- Graduate School of Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Philipp Eberhard
- Department of Computer and Information Science, University of Konstanz, 78457 Konstanz, Germany
| | - Christiaan Karreman
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, 78457 Konstanz, Germany
- Faculty of Information Technology, Monash University, Clayton 3800, Australia
| | - Katrin Madjar
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
- The Center for Alternatives to Animal Testing in Europe, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
5
|
Madaj ZB, Dahabieh MS, Kamalumpundi V, Muhire B, Pettinga J, Siwicki RA, Ellis AE, Isaguirre C, Escobar Galvis ML, DeCamp L, Jones RG, Givan SA, Adams M, Sheldon RD. Prior metabolite extraction fully preserves RNAseq quality and enables integrative multi-'omics analysis of the liver metabolic response to viral infection. RNA Biol 2023; 20:186-197. [PMID: 37095747 PMCID: PMC10132226 DOI: 10.1080/15476286.2023.2204586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
Here, we provide an in-depth analysis of the usefulness of single-sample metabolite/RNA extraction for multi-'omics readout. Using pulverized frozen livers of mice injected with lymphocytic choriomeningitis virus (LCMV) or vehicle (Veh), we isolated RNA prior (RNA) or following metabolite extraction (MetRNA). RNA sequencing (RNAseq) data were evaluated for differential expression analysis and dispersion, and differential metabolite abundance was determined. Both RNA and MetRNA clustered together by principal component analysis, indicating that inter-individual differences were the largest source of variance. Over 85% of LCMV versus Veh differentially expressed genes were shared between extraction methods, with the remaining 15% evenly and randomly divided between groups. Differentially expressed genes unique to the extraction method were attributed to randomness around the 0.05 FDR cut-off and stochastic changes in variance and mean expression. In addition, analysis using the mean absolute difference showed no difference in the dispersion of transcripts between extraction methods. Altogether, our data show that prior metabolite extraction preserves RNAseq data quality, which enables us to confidently perform integrated pathway enrichment analysis on metabolomics and RNAseq data from a single sample. This analysis revealed pyrimidine metabolism as the most LCMV-impacted pathway. Combined analysis of genes and metabolites in the pathway exposed a pattern in the degradation of pyrimidine nucleotides leading to uracil generation. In support of this, uracil was among the most differentially abundant metabolites in serum upon LCMV infection. Our data suggest that hepatic uracil export is a novel phenotypic feature of acute infection and highlight the usefulness of our integrated single-sample multi-'omics approach.
Collapse
Affiliation(s)
- Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael S. Dahabieh
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Vijayvardhan Kamalumpundi
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Brejnev Muhire
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - J. Pettinga
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
| | - Rebecca A. Siwicki
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Genomics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Abigail E. Ellis
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Christine Isaguirre
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Lisa DeCamp
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Russell G. Jones
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Scott A. Givan
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
| | - Marie Adams
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Genomics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D. Sheldon
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
6
|
Lee J, Kim S, Kim YH, Park U, Lee J, McKee AC, Kim KH, Ryu H, Lee J. Non-Targeted Metabolomics Approach Revealed Significant Changes in Metabolic Pathways in Patients with Chronic Traumatic Encephalopathy. Biomedicines 2022; 10:1718. [PMID: 35885023 PMCID: PMC9313062 DOI: 10.3390/biomedicines10071718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that is frequently found in athletes and those who have experienced repetitive head traumas. CTE is associated with a variety of neuropathologies, which cause cognitive and behavioral impairments in CTE patients. However, currently, CTE can only be diagnosed after death via brain autopsy, and it is challenging to distinguish it from other neurodegenerative diseases with similar clinical features. To better understand this multifaceted disease and identify metabolic differences in the postmortem brain tissues of CTE patients and control subjects, we performed ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS)-based non-targeted metabolomics. Through multivariate and pathway analysis, we found that the brains of CTE patients had significant changes in the metabolites involved in astrocyte activation, phenylalanine, and tyrosine metabolism. The unique metabolic characteristics of CTE identified in this study were associated with cognitive dysfunction, amyloid-beta deposition, and neuroinflammation. Altogether, this study provided new insights into the pathogenesis of CTE and suggested appealing targets for both diagnosis and treatment for the disease.
Collapse
Affiliation(s)
- Jinkyung Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.L.); (Y.H.K.)
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea;
| | - Suhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.K.); (U.P.)
| | - Yoon Hwan Kim
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.L.); (Y.H.K.)
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea;
| | - Uiyeol Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.K.); (U.P.)
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center (BUADRC), Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; (J.L.); (A.C.M.)
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Research Center (BUADRC), Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; (J.L.); (A.C.M.)
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea;
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.K.); (U.P.)
| | - Jeongae Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.L.); (Y.H.K.)
| |
Collapse
|
7
|
Śmierciak N, Szwajca M, Popiela TJ, Bryll A, Karcz P, Donicz P, Turek A, Krzyściak W, Pilecki M. Redefining the Cut-Off Ranges for TSH Based on the Clinical Picture, Results of Neuroimaging and Laboratory Tests in Unsupervised Cluster Analysis as Individualized Diagnosis of Early Schizophrenia. J Pers Med 2022; 12:jpm12020247. [PMID: 35207735 PMCID: PMC8874519 DOI: 10.3390/jpm12020247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid abnormalities, including mild forms of hypothyroidism and hyperthyroidism, are reported as risk factors for the development of a number of neuropsychiatric disorders, including schizophrenia. The diagnostic process still takes into account the extreme ranges of the accepted reference values for serum TSH since the concentration of free thyroxine in the serum does not change by definition. TSH mU/L cut-off values in psychiatric patients are currently clinically considered in the case of extremely high serum TSH levels (>4.0 mU/L). The results obtained in this study suggest that the clinically significant value has a lower TSH cut-off point with an upper limit of 2–2.5 mU/L. The criteria for the differential diagnosis of patients with schizophrenia, however, mainly take into account statutory reference ranges without a background related to the history of thyroid diseases in the family. The results indicate the need to lower the upper cut-off values for TSH among patients with early psychosis, which is related to the potential clinical significance of the obtained values both in the field of clinical evaluation and neuroimaging and laboratory evaluation parameters. The cut-off points obtained with the prior available knowledge coincided with the values established in the unsupervised clustering method, which further confirms the legitimacy of their use in the individualized diagnosis strategy of schizophrenia.
Collapse
Affiliation(s)
- Natalia Śmierciak
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (P.D.); (A.T.)
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (P.D.); (A.T.)
| | - Tadeusz J. Popiela
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
- Correspondence: (T.J.P.); (W.K.); (M.P.)
| | - Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Michałowskiego 12, 31-126 Krakow, Poland;
| | - Paulina Donicz
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (P.D.); (A.T.)
| | - Aleksander Turek
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (P.D.); (A.T.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Łazarza 16, 31-530 Krakow, Poland
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Correspondence: (T.J.P.); (W.K.); (M.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (P.D.); (A.T.)
- Correspondence: (T.J.P.); (W.K.); (M.P.)
| |
Collapse
|
8
|
Jeon P, Mackinley M, Théberge J, Palaniyappan L. The trajectory of putative astroglial dysfunction in first episode schizophrenia: a longitudinal 7-Tesla MRS study. Sci Rep 2021; 11:22333. [PMID: 34785674 PMCID: PMC8595701 DOI: 10.1038/s41598-021-01773-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
Myo-inositol is mainly found in astroglia and its levels has been shown to be reduced in the anterior cingulate cortex (ACC) of patients with schizophrenia. We investigate the status of astroglial integrity indexed by ACC myo-inositol at the onset and over the first 6 months of treatment of first episode schizophrenia. We employed 7 T magnetic resonance spectroscopy (1H-MRS) and quantified myo-inositol spectra at the dorsal ACC in 31 participants; 21 patients with schizophrenia with median lifetime antipsychotic exposure of less than 3 days, followed up after 6 months of treatment, and 10 healthy subjects scanned twice over the same period. We studied the time by group interaction for myo-inositol after adjusting for gender and age. We report significant reduction in myo-inositol concentration in the ACC in schizophrenia at an early, untreated state of acute illness that becomes insignificant over time, after instituting early intervention. This trajectory indicates that dynamic astroglial changes are likely to operate in the early stages of schizophrenia. MRS myo-inositol may be a critical marker of amelioration of active psychosis in early stages of schizophrenia.
Collapse
Affiliation(s)
- Peter Jeon
- Department of Medical Biophysics, Western University, London, Canada
- Imaging Division, Lawson Health Research Institute, London, Canada
| | - Michael Mackinley
- Imaging Division, Lawson Health Research Institute, London, Canada
- Robarts Research Institute, Western University, London, Canada
- Department of Neuroscience, Western University, London, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, Canada
- Imaging Division, Lawson Health Research Institute, London, Canada
- Diagnostic Imaging, St. Joseph's Health Care, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Department of Psychiatry, Western University, London, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Western University, London, Canada.
- Imaging Division, Lawson Health Research Institute, London, Canada.
- Robarts Research Institute, Western University, London, Canada.
- Department of Psychiatry, Western University, London, Canada.
- Robarts Research Institute, UWO, 1151 Richmond Street N., Room 3208, London, ON, N6A 5B7, Canada.
| |
Collapse
|
9
|
Dineen RA, Raschke F, McGlashan HL, Pszczolkowski S, Hack L, Cooper AD, Prasad M, Chow G, Whitehouse WP, Auer DP. Multiparametric cerebellar imaging and clinical phenotype in childhood ataxia telangiectasia. NEUROIMAGE-CLINICAL 2019; 25:102110. [PMID: 31855653 PMCID: PMC6926372 DOI: 10.1016/j.nicl.2019.102110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
Linear decline in cerebellar volume in people with classical A-T across childhood. Divergent volume trajectories in children with and without A-T in the first decade. Alterations in metabolites seen in childhood A-T independent of age and volume. Fractional fourth ventricular volume predicts neurological status in childhood A-T.
Background Ataxia Telangiectasia (A-T) is an inherited multisystem disorder with cerebellar neurodegeneration. The relationships between imaging metrics of cerebellar health and neurological function across childhood in A-T are unknown, but may be important for determining timing and impact of therapeutic interventions. Purpose To test the hypothesis that abnormalities of cerebellar structure, physiology and cellular health occur in childhood A-T and correlate with neurological disability, we performed multiparametric cerebellar MRI and establish associations with disease status in childhood A-T. Methods Prospective cross-sectional observational study. 22 young people (9 females / 13 males, age 6.6–17.8 years) with A-T and 24 matched healthy controls underwent 3-Tesla MRI with volumetric, diffusion and proton spectroscopic acquisitions. Participants with A-T underwent structured neurological assessment, and expression / activity of ataxia-telangiectasia mutated (ATM) kinase were recorded. Results Ataxia-telangiectasia participants had cerebellar volume loss (fractional total cerebellar volume: 5.3% vs 8.7%, P < 0.0005, fractional 4th ventricular volumes: 0.19% vs 0.13%, P < 0.0005), that progressed with age (fractional cerebellar volumes, r = -0.66, P = 0.001), different from the control group (t = -4.88, P < 0.0005). The relationship between cerebellar volume and age was similar for A-T participants with absent ATM kinase production and those producing non-functioning ATM kinase. Markers of cerebellar white matter injury were elevated in ataxia-telangiectasia vs controls (apparent diffusion coefficient: 0.89 × 10−3 mm2 s−1 vs 0.69 × 10−3 mm2 s−1, p < 0.0005) and correlated (age-corrected) with neurometabolite ratios indicating impaired neuronal viability (N-acetylaspartate:creatine r = -0.70, P < 0.001); gliosis (inositol:creatine r = 0.50, P = 0.018; combined glutamine/glutamate:creatine r = -0.55, P = 0.008) and increased myelin turnover (choline:creatine r = 0.68, P < 0.001). Fractional 4th ventricular volume was the only variable retained in the regression model predicting neurological function (adjusted r2 = 0.29, P = 0.015). Conclusions Quantitative MRI demonstrates cerebellar abnormalities in children with A-T, providing non-invasive measures of progressive cerebellar injury and markers reflecting neurological status. These MRI metrics may be of value in determining timing and impact of interventions aimed at altering the natural history of A-T.
Collapse
Affiliation(s)
- Rob A Dineen
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, United Kingdom.
| | - Felix Raschke
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, United Kingdom; Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Hannah L McGlashan
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, United Kingdom; School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, Australia
| | - Stefan Pszczolkowski
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, United Kingdom
| | - Lorna Hack
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, United Kingdom
| | - Andrew D Cooper
- Sir Peter Mansfield Imaging Centre, University of Nottingham, United Kingdom
| | - Manish Prasad
- Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, United Kingdom
| | - Gabriel Chow
- Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, United Kingdom
| | - William P Whitehouse
- Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, United Kingdom; Division of Child Health, University of Nottingham, United Kingdom
| | - Dorothee P Auer
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, United Kingdom
| |
Collapse
|
10
|
Das TK, Dey A, Sabesan P, Javadzadeh A, Théberge J, Radua J, Palaniyappan L. Putative Astroglial Dysfunction in Schizophrenia: A Meta-Analysis of 1H-MRS Studies of Medial Prefrontal Myo-Inositol. Front Psychiatry 2018; 9:438. [PMID: 30298023 PMCID: PMC6160540 DOI: 10.3389/fpsyt.2018.00438] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/24/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Several lines of evidence support a role for astroglial pathology in schizophrenia. Myo-inositol is particularly abundant in astroglia. Many small sized studies have reported on myo-inositol concentration in schizophrenia, but to date these have not been pooled to estimate a collective effect size. Methods: We reviewed all proton magnetic resonance spectroscopy (1H-MRS) studies reporting myo-inositol values for patients satisfying DSM or ICD based criteria for schizophrenia in comparison to a healthy controls group in the medial prefrontal cortex published until February 2018. A random-effects model was used to calculate the pooled effect size using metafor package. A meta-regression analysis of moderator variables was also undertaken. Results: The literature search identified 19 studies published with a total sample size of 585 controls, 561 patients with schizophrenia. Patients with schizophrenia had significantly reduced medial prefrontal myo-inositol compared to controls (RFX standardized mean difference = 0.19, 95% CI [0.05-0.32], z = 2.72, p = 0.0067; heterogeneity p = 0.09). Studies with more female patients reported more notable schizophrenia-related reduction in myo-inositol (z = 2.53, p = 0.011). Discussion: We report a small, but significant reduction in myo-inositol concentration in the medial prefrontal cortex in schizophrenia. The size of the reported effect indicates that the biological pathways affecting the astroglia are likely to operate only in a subset of patients with schizophrenia. MRS myo-inositol could be a useful tool to stratify and investigate such patients.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Department of Psychiatry, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| | - Avyarthana Dey
- Department of Psychiatry, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, London, ON, Canada
| | | | - Alborz Javadzadeh
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Jean Théberge
- Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Joaquim Radua
- FIDMAG Germanes Hospitalàries, CIBERSAM, Sant Boi de Llobregat & Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| |
Collapse
|