1
|
Becchimanzi A, Nicoletti R, Di Lelio I, Russo E. Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae). Int J Mol Sci 2024; 25:4922. [PMID: 38732132 PMCID: PMC11084805 DOI: 10.3390/ijms25094922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Insects possess an effective immune system, which has been extensively characterized in several model species, revealing a plethora of conserved genes involved in recognition, signaling, and responses to pathogens and parasites. However, some taxonomic groups, characterized by peculiar trophic niches, such as plant-sap feeders, which are often important pests of crops and forestry ecosystems, have been largely overlooked regarding their immune gene repertoire. Here we annotated the immune genes of soft scale insects (Hemiptera: Coccidae) for which omics data are publicly available. By using immune genes of aphids and Drosophila to query the genome of Ericerus pela, as well as the transcriptomes of Ceroplastes cirripediformis and Coccus sp., we highlight the lack of peptidoglycan recognition proteins, galectins, thaumatins, and antimicrobial peptides in Coccidae. This work contributes to expanding our knowledge about the evolutionary trajectories of immune genes and offers a list of promising candidates for developing new control strategies based on the suppression of pests' immunity through RNAi technologies.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics, 81100 Caserta, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
| |
Collapse
|
2
|
Nicoletti R, Russo E, Becchimanzi A. Cladosporium-Insect Relationships. J Fungi (Basel) 2024; 10:78. [PMID: 38276024 PMCID: PMC10820778 DOI: 10.3390/jof10010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based on the examination of the available literature. Certain strains establish direct interactions with pests or beneficial insects or indirectly influence them through their endophytic development in plants. Entomopathogenicity is often connected to the production of toxic secondary metabolites, although there is a case where these compounds have been reported to favor pollinator attraction, suggesting an important role in angiosperm reproduction. Other relationships include mycophagy, which, on the other hand, may reflect an ecological advantage for these extremely adaptable fungi using insects as carriers for spreading in the environment. Several Cladosporium species colonize insect structures, such as galleries of ambrosia beetles, leaf rolls of attelabid weevils and galls formed by cecidomyid midges, playing a still uncertain symbiotic role. Finally, the occurrence of Cladosporium in the gut of several insect species has intriguing implications for pest management, also considering that some strains have proven to be able to degrade insecticides. These interactions especially deserve further investigation to understand the impact of these fungi on pest control measures and strategies to preserve beneficial insects.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
3
|
An JQ, Yu SH, Wei SJ, Zhang HP, Shi YC, Zhao QY, Fu ZY, Yang P. The Complete Mitochondrial Genome of the Chinese White Wax Scale Insect, Ericerus pela Chavannes (Hemiptera: Coccidae), with Novel Gene Arrangement and Truncated tRNA Genes. INSECTS 2023; 14:290. [PMID: 36975975 PMCID: PMC10055984 DOI: 10.3390/insects14030290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The Chinese white wax scale insect, Ericerus pela Chavannes (Hemiptera: Coccidae), is one of the scale insects with great economic value and has been dispersed and reared in China for over one thousand years. Its mitochondrial genome provides essential information for the molecular identification and genetic study of this species. We assembled the complete mitochondrial genome of E. pela based on PacBio sequencing and analyzed its genomic features. The genome was 17,766 bp in length with 13 protein-coding genes, 22 tRNAs, and two rRNA genes. The analysis results showed E. pela had significant gene rearrangements involving tRNAs compared with other Coccoidea species. Furthermore, E. pela's nine tRNAs were identified to have obvious truncated structures. The phylogenetic tree compiled of the species showed a long branch of the Coccoidea lineage, which indicated the high evolutionary rate in this group. Our study revealed the mitochondrial characteristics of E. pela and enriched the mitochondrial genetic information on Coccoidea species. It also determined the occurrence of gene rearrangement for the species in this superfamily.
Collapse
Affiliation(s)
- Jia-Qi An
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Hui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hong-Ping Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Yuan-Chong Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Qiu-Yu Zhao
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Zuo-Yi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| |
Collapse
|
4
|
Liu W, Yu SH, Zhang HP, Fu ZY, An JQ, Zhang JY, Yang P. Two Cladosporium Fungi with Opposite Functions to the Chinese White Wax Scale Insect Have Different Genome Characters. J Fungi (Basel) 2022; 8:jof8030286. [PMID: 35330288 PMCID: PMC8949958 DOI: 10.3390/jof8030286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Insects encounter infection of microorganisms, and they also harbor endosymbiosis to participate in nutrition providing and act as a defender against pathogens. We previously found the Chinese white wax scale insect, Ericerus pela, was infected and killed by Cladosporium sp. (pathogen). We also found it harbored Cladosporium sp. (endogensis). In this study, we cultured these two Cladosporium fungi and sequenced their genome. The results showed Cladosporium sp. (endogensis) has a larger genome size and more genes than Cladosporium sp. (pathogen). Pan-genome analysis showed Cladosporium sp. (endogensis)-specific genes enriched in pathways related to nutrition production, such as amino acid metabolism, carbohydrate metabolism, and energy metabolism. These pathways were absent in that of Cladosporium sp. (pathogen). Gene Ontology analysis showed Cladosporium sp. (pathogen)-specific genes enriched in the biosynthesis of asperfuranone, emericellamide, and fumagillin. These terms were not found in that of Cladosporium sp. (endogensis). Pathogen Host Interactions analysis found Cladosporium sp. (endogensis) had more genes related to loss of pathogenicity and reduced virulence than Cladosporium sp. (pathogen). Cytotoxicity assay indicated Cladosporium sp. (pathogen) had cytotoxicity, while Cladosporium sp. (endogensis) had no cytotoxicity. These characters reflect the adaptation of endosymbiosis to host-restricted lifestyle and the invader of the entomopathogen to the host.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Shu-Hui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (S.-H.Y.); (H.-P.Z.)
| | - Hong-Ping Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (S.-H.Y.); (H.-P.Z.)
| | - Zuo-Yi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jia-Qi An
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jin-Yang Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
- Correspondence:
| |
Collapse
|
5
|
Fu ZY, An JQ, Liu W, Zhang HP, Yang P. Genomic Analyses of the Fungus Paraconiothyrium sp. Isolated from the Chinese White Wax Scale Insect Reveals Its Symbiotic Character. Genes (Basel) 2022; 13:genes13020338. [PMID: 35205383 PMCID: PMC8872350 DOI: 10.3390/genes13020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
The Chinese white wax scale, Ericerus pela, is an insect native to China. It harbors a variety of microbes. The Paraconiothyrium fungus was isolated from E. pela and genome sequenced in this study. A fungal cytotoxicity assay was performed on the Aedes albopictus cell line C6/36. The assembled Paraconiothyrium sp. genome was 39.55 Mb and consisted of 14,174 genes. The coding sequences accounted for 50.75% of the entire genome. Functional pathway analyses showed that Paraconiothyrium sp. possesses complete pathways for the biosynthesis of 20 amino acids, 10 of which E. pela lacks. It also had complementary genes in the vitamin B groups synthesis pathways. Secondary metabolism prediction showed many gene clusters that produce polyketide. Additionally, a large number of genes associated with ‘reduced virulence’ in the genome were annotated with the Pathogen–Host Interaction database. A total of 651 genes encoding carbohydrate-active enzymes were predicted to be mostly involved in plant polysaccharide degradation. Pan-specific genomic analyses showed that genes unique to Paraconiothyrium sp. were enriched in the pathways related to amino acid metabolism and secondary metabolism. GO annotation analysis yielded similar results. The top COG categories were ‘carbohydrate transport and metabolism’, ‘lipid transport and metabolism’, and ‘secondary metabolite biosynthesis, transport and catabolism’. Phylogenetic analyses based on gene family and pan genes showed that Paraconiothyrium sp is clustered together with species from the Didymosphaeriaceae family. A multi-locus sequence analysis showed that it converged with the same branch as P. brasiliense and they formed one group with fungi from the Paraconiothyrium genus. To validate the in vitro toxicity of Paraconiothyrium sp., a cytotoxicity assay was performed. The results showed that medium-cultured Paraconiothyrium sp. had no harmful effect on cell viability. No toxins were secreted by the fungus during growth. Our results imply that Paraconiothyrium sp. may establish a symbiotic relationship with the host to supply complementary nutrition to E. pela.
Collapse
Affiliation(s)
- Zuo-Yi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jia-Qi An
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Wei Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Hong-Ping Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China;
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
- Correspondence:
| |
Collapse
|
6
|
Papanastasiou I, Kavallieratos NG, Papadoulis GT, Emmanouil C, Emmanouel NG. Geographical Distribution and Long-Term Monitoring of Physokermes hellenicus (Hemiptera: Coccomorpha: Coccidae) on Abies spp. (Pinales: Pinaceae) in Greece. INSECTS 2021; 12:1001. [PMID: 34821801 PMCID: PMC8622177 DOI: 10.3390/insects12111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
The scale Physokermes hellenicus (Kozár & Gounari) (Hemiptera: Coccidae) has been recently included in the Greek entomofauna as a beneficial honeydew species. However, there are no adequate data about its geographical distribution and degree of infestation. Therefore, a study was conducted to examine these parameters in fifteen mountains of Greece. Furthermore, the monitoring of P. hellenicus infestation was carried out over a six-year period with regard to natural enemies and honeydew presence at three mountains (i.e., Menalon, Parnis and Tymfristos) that are traditional honeybee foraging areas. An extensive geographical distribution of the scale was negatively correlated with the latitude. Over the period of the study, P. hellenicus infestation exhibited a decreasing trend in the three mountains, which was more obvious at Menalon. The abundance of natural enemies of P. hellenicus, their effectiveness on honeydew excretion and the fecundity of P. hellenicus are discussed. The reduction in the honey produced at the Menalon mountain (a protected designation of origin product) could be attributed to the reduced presence of P. hellenicus in the fir forest. Among the other identified arthropods, Dreyfusia nordmannianae Eckstein (Hemiptera: Adelgidae) is reported for the first time infesting Abies cephalonica (Pinales: Pinaceae) in Greece. Furthermore, this species is reported for the first time as a co-parasite with P. hellenicus on A. cephalonica in Greece. Since D. nordmannianae is a serious pest, additional research is needed to determine its status in Greek fir forest ecosystems.
Collapse
Affiliation(s)
- Iosif Papanastasiou
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece; (G.T.P.); (N.G.E.)
- Hellenic Agricultural Organization-DEMETER, 56–58 Kourtidou Street and Nirvana Street, 11145 Athens, Greece
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece; (G.T.P.); (N.G.E.)
| | - Georgios Th. Papadoulis
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece; (G.T.P.); (N.G.E.)
| | - Christina Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Nikolaos G. Emmanouel
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece; (G.T.P.); (N.G.E.)
| |
Collapse
|
7
|
Wu H, Rao ZC, Cao L, De Clercq P, Han RC. Infection of Ophiocordyceps sinensis Fungus Causes Dramatic Changes in the Microbiota of Its Thitarodes Host. Front Microbiol 2020; 11:577268. [PMID: 33343519 PMCID: PMC7744566 DOI: 10.3389/fmicb.2020.577268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022] Open
Abstract
The Chinese cordyceps is a unique and valuable parasitic complex of Thitarodes/Hepialus ghost moths and the Ophiocordyceps sinensis fungus for medicine and health foods from the Tibetan Plateau. During artificial cultivation of Chinese cordyceps, the induction of blastospores into hyphae is a prerequisite for mummification of the infected Thitarodes larvae. To explore the microbial involvement in the induction of mycelia-blastospore transition, the microbiota of the hemolymph and gut from Thitarodes xiaojinensis larvae with or without injected O. sinensis blastospores were investigated by culture-dependent and -independent methods. Twenty-five culturable bacterial species and 14 fungal species, together with 537 bacterial operational taxonomic units (OTUs) and 218 fungal OTUs, were identified from the hemolymph and gut of samples from five stages including living larvae without injected fungi (A) or with high blastospore load (B), mummifying larvae without mycelia coating (C), freshly mummifying larvae coated with mycelia (D), and completely mummified larvae with mycelia (E). Two culturable bacterial species (Serratia plymuthica, Serratia proteamaculans), and 47 bacterial and 15 fungal OTUs were considered as shared species. The uninfected larval hemolymph contained 13 culturable bacterial species but no fungal species, together with 164 bacterial and 73 fungal OTUs. To our knowledge, this is the first study to detect large bacterial communities from the hemolymph of healthy insect larvae. When the living larvae contained high blastospore load, the culturable bacterial community was sharply inhibited in the hemolymph but the bacterial and fungal community greatly increased in the gut. In general, high blastospore load increased bacterial diversity but sharply decreased fungal diversity in the hemolymph and gut by OTUs. The bacterial loads of four culturable species (Chryseobacterium sp., Pseudomonas fragi, S. plymuthica, S. proteamaculans) increased significantly and O. sinensis and Pseudomonas spp. became dominant microbes, when the infected larvae became mummified, indicating their possible involvement in the larval mummification process. The discovery of many opportunistic pathogenic bacteria in the hemolymph of the healthy larvae, the larval microbial diversity influenced by O. sinensis challenge and the involvement of dominant bacteria during larval mummification process provide new insight into the infection and mummification mechanisms of O. sinensis in its Thitarodes hosts.
Collapse
Affiliation(s)
- Hua Wu
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhong-Chen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Patrick De Clercq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Park R, Dzialo MC, Spaepen S, Nsabimana D, Gielens K, Devriese H, Crauwels S, Tito RY, Raes J, Lievens B, Verstrepen KJ. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. MICROBIOME 2019; 7:147. [PMID: 31699144 PMCID: PMC6839111 DOI: 10.1186/s40168-019-0748-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 05/20/2023]
Abstract
House flies (Musca domestica) are widespread, synanthropic filth flies commonly found on decaying matter, garbage, and feces as well as human food. They have been shown to vector microbes, including clinically relevant pathogens. Previous studies have demonstrated that house flies carry a complex and variable prokaryotic microbiota, but the main drivers underlying this variability and the influence of habitat on the microbiota remain understudied. Moreover, the differences between the external and internal microbiota and the eukaryotic components have not been examined. To obtain a comprehensive view of the fly microbiota and its environmental drivers, we sampled over 400 flies from two geographically distinct countries (Belgium and Rwanda) and three different environments-farms, homes, and hospitals. Both the internal as well as external microbiota of the house flies were studied, using amplicon sequencing targeting both bacteria and fungi. Results show that the house fly's internal bacterial community is very diverse yet relatively consistent across geographic location and habitat, dominated by genera Staphylococcus and Weissella. The external bacterial community, however, varies with geographic location and habitat. The fly fungal microbiota carries a distinct signature correlating with the country of sampling, with order Capnodiales and genus Wallemia dominating Belgian flies and genus Cladosporium dominating Rwandan fly samples. Together, our results reveal an intricate country-specific pattern for fungal communities, a relatively stable internal bacterial microbiota and a variable external bacterial microbiota that depends on geographical location and habitat. These findings suggest that vectoring of a wide spectrum of environmental microbes occurs principally through the external fly body surface, while the internal microbiome is likely more limited by fly physiology.
Collapse
Affiliation(s)
- Rahel Park
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Maria C Dzialo
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Stijn Spaepen
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Donat Nsabimana
- Biology Department, School of Science, College of Science and technology, University of Rwanda, RN1, Butare, Rwanda
| | - Kim Gielens
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Herman Devriese
- Safety, Health & Environment Department, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sam Crauwels
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Campus De Nayer, Fortsesteenweg 30A, 2860, Sint-Katelijne Waver, Belgium
| | - Raul Y Tito
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Bioinformatics and (eco-)systems biology lab, Department of Microbiology and Immunology, Rega institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jeroen Raes
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Bioinformatics and (eco-)systems biology lab, Department of Microbiology and Immunology, Rega institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bart Lievens
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Campus De Nayer, Fortsesteenweg 30A, 2860, Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium.
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium.
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium.
| |
Collapse
|
9
|
Yang P, Yu S, Hao J, Liu W, Zhao Z, Zhu Z, Sun T, Wang X, Song Q. Genome sequence of the Chinese white wax scale insect Ericerus pela: the first draft genome for the Coccidae family of scale insects. Gigascience 2019; 8:giz113. [PMID: 31518402 PMCID: PMC6743827 DOI: 10.1093/gigascience/giz113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/11/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The Chinese white wax scale insect, Ericerus pela, is best known for producing wax, which has been widely used in candle production, casting, Chinese medicine, and wax printing products for thousands of years. The secretion of wax, and other unusual features of scale insects, is thought to be an adaptation to their change from an ancestral ground-dwelling lifestyle to a sedentary lifestyle on the higher parts of plants. As well as helping to improve its economic value, studies of E. pela might also help to explain the adaptation of scale insects. However, no genomic data are currently available for E. pela. FINDINGS To assemble the E. pela genome, 303.92 Gb of data were generated using Illumina and Pacific Biosciences sequencing, producing 277.22 Gb of clean data for assembly. The assembled genome size was 0.66 Gb, with 1,979 scaffolds and a scaffold N50 of 735 kb. The guanine + cytosine content was 33.80%. A total of 12,022 protein-coding genes were predicted, with a mean coding sequence length of 1,370 bp. Twenty-six fatty acyl-CoA reductase genes and 35 acyltransferase genes were identified. Evolutionary analysis revealed that E. pela and aphids formed a sister group and split ∼241.1 million years ago. There were 214 expanded gene families and 2,219 contracted gene families in E. pela. CONCLUSION We present the first genome sequence from the Coccidae family. These results will help to increase our understanding of the evolution of unique features in scale insects, and provide important genetic information for further research.
Collapse
Affiliation(s)
- Pu Yang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Shuhui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Junjun Hao
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Wei Liu
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Zunling Zhao
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology/Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Sun
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Xueqing Wang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Luan L, Chi Z, Liu C. Chinese White Wax Solid Lipid Nanoparticles as a Novel Nanocarrier of Curcumin for Inhibiting the Formation of Staphylococcus aureus Biofilms. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E763. [PMID: 31109013 PMCID: PMC6567159 DOI: 10.3390/nano9050763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022]
Abstract
Chinese white wax solid lipid nanoparticles (cwSLNs) were prepared by high shear homogenization and ultrasound methods. Using an optimized formula, spherical cwSLNs with an average particle size of 401.9 ± 21.3 nm were obtained. The cwSLNs showed high entrapment efficiency, approximately 84.6%, for loading curcumin. The curcumin loaded cwSLNs (Cur-cwSLNs) exhibited sustained drug release properties. Notably, Cur-cwSLNs had a higher drug release rate at pH 4.5 than at pH 7.4, which suggested their applicability in an acidic environment. Cur-cwSLNs were able to inhibit the growth of Staphylococcus aureus and were more effective at reducing the biofilms produced by this bacterium compared to free curcumin. This study confirmed that cwSLNs may be novel carriers for increasing the bioavailability of curcumin with the potential to inhibit the formation of S. aureus biofilms.
Collapse
Affiliation(s)
- Lin Luan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|