1
|
Cinar M, Martinez-Medina L, Puvvula P, Arakelyan A, Vardarajan B, Anthony N, Nagaraju G, Park D, Feng L, Sheff F, Mosunjac M, Saxe D, Flygare S, Alese O, Kaufman J, Lonial S, Sarmiento J, Lossos I, Vertino P, Lopez J, El-Rayes B, Bernal-Mizrachi L. Transposon DNA sequences facilitate the tissue-specific gene transfer of circulating tumor DNA between human cells. Nucleic Acids Res 2024; 52:7539-7555. [PMID: 38783375 PMCID: PMC11260451 DOI: 10.1093/nar/gkae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
The exchange of genes between cells is known to play an important physiological and pathological role in many organisms. We show that circulating tumor DNA (ctDNA) facilitates cell-specific gene transfer between human cancer cells and explain part of the mechanisms behind this phenomenon. As ctDNA migrates into the nucleus, genetic information is transferred. Cell targeting and ctDNA integration require ERVL, SINE or LINE DNA sequences. Chemically manufactured AluSp and MER11C sequences replicated multiple myeloma (MM) ctDNA cell targeting and integration. Additionally, we found that ctDNA may alter the treatment response of MM and pancreatic cancer models. This study shows that retrotransposon DNA sequences promote cancer gene transfer. However, because cell-free DNA has been detected in physiological and other pathological conditions, our findings have a broader impact than just cancer. Furthermore, the discovery that transposon DNA sequences mediate tissue-specific targeting will open up a new avenue for the delivery of genes and therapies.
Collapse
Affiliation(s)
- Munevver Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | | | - Arsen Arakelyan
- Bioinformatics group, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | | | - Neil Anthony
- Integrated Cellular Imaging Core, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ganji P Nagaraju
- Division of hematology and oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongkyoo Park
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Lei Feng
- Kodikaz Therapeutic Solutions, Inc, New York, NY, USA
| | - Faith Sheff
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Marina Mosunjac
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Debra Saxe
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Steven Flygare
- Department of Computational Biology/ Genetics, The University of Utah, Salt Lake City, UT, USA
| | - Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Jonathan L Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Juan M Sarmiento
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Izidore S Lossos
- Department of Medicine, Division of Hematology-Oncology and Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Paula M Vertino
- Department of Biomedical Genetics and the Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Jose A Lopez
- Bloodworks Northwest Research Institute, Division of Hematology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bassel El-Rayes
- Division of hematology and oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Bruschi M, Angeletti A, Prunotto M, Meroni PL, Ghiggeri GM, Moroni G, Sinico RA, Franceschini F, Fredi M, Vaglio A, Cavalli A, Scapozza L, Patel JJ, Tan JC, Lo KC, Cavagna L, Petretto A, Pratesi F, Migliorini P, Locatelli F, Pazzola G, Pesce G, Giannese D, Manfredi A, Ramirez GA, Esposito P, Murdaca G, Negrini S, Bui F, Trezzi B, Emmi G, Cavazzana I, Binda V, Fenaroli P, Pisan I, Montecucco C, Santoro D, Scolari F, Mescia F, Volpi S, Mosca M, Tincani A, Ravelli A, Murtas C, Candiano G, Caridi G, La Porta E, Verrina E. A critical view on autoantibodies in lupus nephritis: Concrete knowledge based on evidence. Autoimmun Rev 2024; 23:103535. [PMID: 38552995 DOI: 10.1016/j.autrev.2024.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Deposition of autoantibodies in glomeruli is a key factor in the development of lupus nephritis (LN). For a long time, anti-dsDNA and anti-C1q antibodies were thought to be the main cause of the kidney damage. However, recent studies have shown that the list of autoantibidies that have renal tropism and deposit in the kidney in LN is increasing and the link between anti-dsDNA and renal pathology is weak due to potential confounders. Aspecific bindings of dsDNA with cationic antibodies and of anti-dsDNA with several renal antigens such as actinin, laminin, entactin, and annexinA2 raised doubts about the specific target of these antibodies in the kidney. Moreover, the isotype of anti-dsDNA in SLE and LN has never received adequate interest until the recent observation that IgG2 are preponderant over IgG1, IgG3 and IgG4. Based on the above background, recent studies investigated the involvement of anti-dsDNA IgG2 and of other antibodies in LN. It was concluded that circulating anti-dsDNA IgG2 levels do not distinguish between LN versus non-renal SLE, and, in patients with LN, their levels do not change over time. Circulating levels of other antibodies such as anti-ENO1 and anti-H2 IgG2 were, instead, higher in LN vs non-renal SLE at the time of diagnosis and decreased following therapies. Finally, new classes of renal antibodies that potentially modify the anti-inflammatory response in the kidney are emerging as new co-actors in the pathogenetic scenario. They have been defined as 'second wave antibodies' for the link with detoxifying mechanisms limiting the oxidative stress in glomeruli that are classically stimulated in a second phase of inflammation. These findings have important clinical implications that may modify the laboratory approach to LN. Serum levels of anti-ENO1 and anti-H2 IgG2 should be measured in the follow up of patients for designing the length of therapies and identify those patients who respond to treatments. Anti-SOD2 could help to monitor and potentiate the anti-inflammatory response in the kidney.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano-Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy.
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Gabriella Moroni
- Department of Biomedical Sciences, Humanitas University and IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Franco Franceschini
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Italy
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, and Nephrology and Dialysis Unit, Meyer Children's Hospital, Firenze, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Leonardo Scapozza
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | | | - Ken C Lo
- Nimble Therapeutics, Madison, WI, USA
| | - Lorenzo Cavagna
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Francesco Locatelli
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Giulia Pazzola
- Nephrology and Dialysis, Arciospedale Santa Maria nuova, Reggio Emilia, Italy
| | - Giampaola Pesce
- Nephrology and Dialysis, Arciospedale Santa Maria nuova, Reggio Emilia, Italy
| | | | - Angelo Manfredi
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Giuseppe A Ramirez
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Pasquale Esposito
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genova, Italy
| | | | - Simone Negrini
- Department of Internal Medicine, University of Genoa, Italy
| | - Federica Bui
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genova, Italy
| | - Barbara Trezzi
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Giacomo Emmi
- Lupus Clinic Department of biomedicine, University of Florence, University Hospital Careggi, Florence, Italy
| | - Ilaria Cavazzana
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Valentina Binda
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, and Nephrology and Dialysis Unit, Meyer Children's Hospital, Firenze, Italy
| | - Paride Fenaroli
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | - Isabella Pisan
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | | | - Domenico Santoro
- Nephrology and Dialysis Unit, University of Messina and G Martino Hospital, Messina, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Federica Mescia
- Division of Nephrology and Dialysis, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Stefano Volpi
- Division of Paediatric Rheumatology and Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Mosca
- Rheumatologu Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Angela Tincani
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Angelo Ravelli
- Division of Paediatric Rheumatology and Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Corrado Murtas
- Nephrology and Dialysis Unit, Ospedale Belcolle, 01100 Viterbo, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Caridi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Edoardo La Porta
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
3
|
Khatri S, Bustos AH, Jørgensen CD, Torok KS, Gjerdrum LMR, Astakhova K. Synthetic Nucleic Acid Antigens in Localized Scleroderma. Int J Mol Sci 2023; 24:17507. [PMID: 38139335 PMCID: PMC10744100 DOI: 10.3390/ijms242417507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
We investigated the impact of synthetic nucleic acid antigens on the autoantibody profiles in patients with localized scleroderma, an autoimmune skin disease. Anti-DNA antibodies, including double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA), are common among autoimmune diseases, such as systemic lupus erythematosus and localized scleroderma. Based on recent studies, we hypothesized that the sequence of nucleic acid antigens has an impact on the autoimmune reactions in localized scleroderma. To test our hypothesis, we synthesized a panel of DNA and RNA antigens and used them for autoantibody profiling of 70 children with localized scleroderma compared with the healthy controls and patients with pediatric systemic lupus erythematosus (as a disease control). Among the tested antigens, dsD4, which contains the sequence of the human oncogene BRAF, showed a particularly strong presence in localized scleroderma but not systemic lupus erythematosus. Disease activity in patients was significantly associated with dsD4 autoantibody levels. We confirmed this result in vivo by using a bleomycin-induced mouse model of localized scleroderma. When administered intraperitoneally, dsD4 promoted an active polyclonal response in the mouse model. Our study highlights sequence specificity for nucleic acid antigens in localized scleroderma that could potentially lead to developing novel early-stage diagnostic tools.
Collapse
Affiliation(s)
- Sangita Khatri
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.K.); (A.H.B.)
| | - Adrian H. Bustos
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.K.); (A.H.B.)
| | - Christian Damsgaard Jørgensen
- Department of Mathematical Sciences, Aalborg University, 9220 Aalborg, Denmark;
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Kathryn S. Torok
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Lise-Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.K.); (A.H.B.)
| |
Collapse
|
4
|
The Autoantigen Repertoire and the Microbial RNP World. Trends Mol Med 2021; 27:422-435. [PMID: 33722441 DOI: 10.1016/j.molmed.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 02/08/2023]
Abstract
Although autoimmunity and autoimmune disease (AID) are relatively common, the repertoire of autoantigens is paradoxically very limited. Highly enriched in this autoantigen repertoire are nucleic acids and their binding proteins, which together form large macromolecular structures. Most of these complexes are of ancient evolutionary origin, with homologs throughout multiple kingdoms of life. Why and if these nucleic acid-protein particles drive the development of autoimmunity remains unresolved. Recent advances in our understanding of the microbiome may provide clues about the origins of autoimmunity - and the particular puzzle of why the autoantigen repertoire is so particularly enriched in ribonucleoprotein particles (RNPs). We discuss the possibility that autoimmunity to some RNPs may arise from molecular mimicry to microbial orthologs.
Collapse
|
5
|
Khatri S, Psaraftis N, Funaro A, Arinuma Y, Fujieda Y, Mader S, Jørgensen CD, Astakhova K. Serological comparison of systemic lupus erythematosus with neuropsychiatric lupus using synthetic nucleic acid antigens. J Transl Autoimmun 2020; 3:100068. [PMID: 33205038 PMCID: PMC7652778 DOI: 10.1016/j.jtauto.2020.100068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
Neuropsychiatric systemic lupus erythematosus is an autoimmune disorder characterized by an irregular exchange between the central nervous system and the immune system, leading to the outbreak of neurological conditions with possible disabling effects. Although neuropsychiatric systemic lupus erythematosus is the most common expression of lupus condition, it is still poorly understood. In this study, we focus on the development of an advantageous method based on the application of synthetic nucleic acids and protein-based antigen arrays in order to characterize autoreactive antibodies in neuropsychiatric systemic lupus erythematosus. We confirmed the benefits of using synthetic oligonucleotides such as assay reproducibility, elevated affinity and specificity to autoreactive antibodies. We also demonstrated presence of autoantibodies towards three particular synthetic double stranded antigens and verify similarity of antinuclear antibody patterns in ordinary lupus and neuropsychiatric systemic lupus erythematosus.
Collapse
Affiliation(s)
- Sangita Khatri
- Department of Chemistry, Technical University of Denmark, 207 Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Nikos Psaraftis
- Department of Chemistry, Technical University of Denmark, 207 Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Alessia Funaro
- Department of Chemistry, Technical University of Denmark, 207 Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Yoshiyuki Arinuma
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, 1-15-1, Minamiku, Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Simone Mader
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians University Munich, Martinsried, Germany
| | | | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 207 Kemitorvet, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Guo G, Chen A, Ye L, Wang H, Chen Z, Yan K, Shi X, Li B, Lin Q, You X, Jiang C, Zhang Q, Ding X, Xue X, Zhang H. TCONS_00483150 as a novel diagnostic biomarker of systemic lupus erythematosus. Epigenomics 2020; 12:973-988. [PMID: 32677847 DOI: 10.2217/epi-2019-0265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We aimed to identify differentially expressed Long noncoding RNAs (lncRNAs) and explore their functional roles in systemic lupus erythematosus (SLE). Materials & methods: We identified dysregulated lncRNAs and investigated their prognostic values and potential functions using MiRTarget2, catRAPID omics and Bedtools/blast/Pearson analyses. Results: Among the 143 differentially expressed lncRNAs, TCONS_00483150 could be used to distinguish patients with SLE from healthy controls and those with rheumatoid arthritis and patients with active/stable SLE from healthy controls. TCONS_00483150 was significantly correlated with anti-Rib-P antibody positivity and low C3 levels; TCONS_00483150 dysregulation might contribute to the metabolism of RNA and proteins in SLE patients. Conclusion: Overall, our findings offer a transcriptome-wide overview of aberrantly expressed lncRNAs in patients with SLE and highlight TCONS_00483150 as a potential novel diagnostic biomarker.
Collapse
Affiliation(s)
- Gangqiang Guo
- School of Life Sciences and Technology, Tongji University, Shanghai, PR China.,Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, PR China
| | - Aqiong Chen
- Department of Rheumatology, Ningbo Medical Center Lihuili Hospital, Ningbo, PR China
| | - Lele Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, PR China.,Department of Gynecologic Oncology, Wenzhou Central Hospital, Wenzhou, PR China
| | - Huijing Wang
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Department of Rheumatology, South Campus, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Zhiyuan Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, PR China
| | - Kejing Yan
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, PR China
| | - Xinyu Shi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, PR China
| | - Baoqing Li
- Department of Laboratory Medicine, Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, PR China
| | - Qiaoai Lin
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaohan You
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, PR China
| | - Cizhong Jiang
- School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Qingfeng Zhang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaokai Ding
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, PR China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, PR China
| | - Huidi Zhang
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
7
|
Khatri S, Mellins ED, Torok KS, Bukhari SA, Astakhova K. Combined Assay for Detecting Autoantibodies to Nucleic Acids and Apolipoprotein H in Patients with Systemic Lupus Erythematosus. Methods Mol Biol 2020; 2063:57-71. [PMID: 31667763 DOI: 10.1007/978-1-0716-0138-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The complicated clinical picture and biomolecular pattern of human autoimmune diseases (ADs) make knowledge on their etiology still fragmentary. The diagnostic approaches for ADs require improvement both for clinical and research effort to progress. Synthetic biomolecular antigens find growing applications for diagnosis and investigation of ADs. The main goal of this work is to detect interaction between synthetic antigens and autoantibodies in systemic lupus erythematosus within a combined, high-throughput assay. A panel of synthetic antigens has been prepared from DNA, RNA, locked nucleic acids and apolipoprotein H. The binding of synthetic antigens to autoantibodies has been confirmed in sera samples from those with active systemic lupus erythematosus (SLE) by indirect enzyme linked immunosorbent assay. Our study provides an efficient methodology for combined autoantibody profiling in SLE.
Collapse
Affiliation(s)
- Sangita Khatri
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby, Denmark.
| | - Elizabeth D Mellins
- Program in Immunology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn S Torok
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syeda Atia Bukhari
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
8
|
A fluorescence/colorimetric dual-mode sensing strategy for miRNA based on graphene oxide. Anal Bioanal Chem 2019; 412:233-242. [PMID: 31828375 DOI: 10.1007/s00216-019-02269-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which are involved in RNA silencing and post-transcriptional regulation of gene expression. Numerous studies have determined the expression of certain miRNAs in specific tissues and cell types, and their aberrant expression is associated with a variety of serious diseases such as cancers, immune-related diseases, and many infectious diseases. This suggests that miRNAs may be attractive and promising non-invasive biomarkers of diseases. In this study, we established a graphene oxide (GO)-based fluorescence/colorimetric dual sensing platform for miRNA by using a newly designed probe. The probe was designed to form a hairpin-like configuration with a fluorescent dye-labeled long tail, possessing a guanine (G)-rich DNAzyme domain in the loop region and target binding domain over the stem region and tail. By introducing this new hairpin-like probe in a conventional GO-based fluorescence platform, we observed both the miRNA-responsive color change by direct observation and sensitive fluorescence increase even below the nanomolar levels in a single solution without an additional separation step.
Collapse
|
9
|
Khatri S, Torok KS, Mirizio E, Liu C, Astakhova K. Autoantibodies in Morphea: An Update. Front Immunol 2019; 10:1487. [PMID: 31354701 PMCID: PMC6634257 DOI: 10.3389/fimmu.2019.01487] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/14/2019] [Indexed: 01/15/2023] Open
Abstract
Skin autoimmune conditions belong to a larger group of connective tissue diseases and primarily affect the skin, but might also involve underlying tissues, such as fat tissue, muscle, and bone. Autoimmune antibodies (autoantibodies) play a role in autoimmune skin diseases, such as localized scleroderma also termed morphea, and systemic scleroderma, also called systemic sclerosis (SSc). The detailed studies on the biological role of autoantibodies in autoimmune skin diseases are limited. This results in a few available tools for effective diagnosis and management of autoimmune skin diseases. This review aims to provide an update on the detection and most recent research on autoantibodies in morphea. Several recent studies have indicated the association of autoantibody profiles with disease subtypes, damage extent, and relapse potential, opening up exciting new possibilities for personalized disease management. We discuss the role of existing autoantibody tests in morphea management and the most recent studies on morphea pathogenesis. We also provide an update on novel autoantibody biomarkers for the diagnosis and study of morphea.
Collapse
Affiliation(s)
- Sangita Khatri
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kathryn S. Torok
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily Mirizio
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher Liu
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Sushko GB, Solov'yov IA, Solov'yov AV. Modeling MesoBioNano systems with MBN Studio made easy. J Mol Graph Model 2019; 88:247-260. [PMID: 30776757 DOI: 10.1016/j.jmgm.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
This paper introduces MesoBioNano (MBN) Studio - a graphical user interface for a popular multiscale simulation package MBN Explorer. MBN Studio has been developed to facilitate setting up and starting MBN Explorer calculations, monitoring their progress and examining the calculation results. It is tailored for any calculations that are supported by MBN Explorer, such as for example the single-point energy calculations, structure optimization, molecular dynamics, and kinetic Monte Carlo simulations. Apart from that MBN Studio has built-in tools allowing the calculation and analysis of specific characteristics that are determined by the output of the simulations, such as the diffusion coefficients of molecular species, melting temperatures and associated heat capacities, radial distribution function; a dedicated modeling plug-in allows constructing molecular systems in a quick and efficient manner. Employing this plug-in, one can easily construct molecular systems of different geometries (e.g., spherical or ellipsoidal nanoparticles, cubic crystalline samples) with various atomic composition. The paper presents the first public release of MBN Studio and provides an overview of its significant capabilities, as well as the reference point for further extensions.
Collapse
Affiliation(s)
- Gennady B Sushko
- MBN Research Center, Altenhöferallee 3, 60438, Frankfurt am Main, Germany.
| | - Ilia A Solov'yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| | - Andrey V Solov'yov
- MBN Research Center, Altenhöferallee 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|