1
|
Wu YS, Taniar D, Adhinugraha K, Tsai LK, Pai TW. Detection of Amyotrophic Lateral Sclerosis (ALS) Comorbidity Trajectories Based on Principal Tree Model Analytics. Biomedicines 2023; 11:2629. [PMID: 37893003 PMCID: PMC10604752 DOI: 10.3390/biomedicines11102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The multifaceted nature and swift progression of Amyotrophic Lateral Sclerosis (ALS) pose considerable challenges to our understanding of its evolution and interplay with comorbid conditions. This study seeks to elucidate the temporal dynamics of ALS progression and its interaction with associated diseases. We employed a principal tree-based model to decipher patterns within clinical data derived from a population-based database in Taiwan. The disease progression was portrayed as branched trajectories, each path representing a series of distinct stages. Each stage embodied the cumulative occurrence of co-existing diseases, depicted as nodes on the tree, with edges symbolizing potential transitions between these linked nodes. Our model identified eight distinct ALS patient trajectories, unveiling unique patterns of disease associations at various stages of progression. These patterns may suggest underlying disease mechanisms or risk factors. This research re-conceptualizes ALS progression as a migration through diverse stages, instead of the perspective of a sequence of isolated events. This new approach illuminates patterns of disease association across different progression phases. The insights obtained from this study hold the potential to inform doctors regarding the development of personalized treatment strategies, ultimately enhancing patient prognosis and quality of life.
Collapse
Affiliation(s)
- Yang-Sheng Wu
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106, Taiwan;
| | - David Taniar
- Department of Software Systems & Cybersecurity, Monash University, Melbourne, VIC 3800, Australia;
| | - Kiki Adhinugraha
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Li-Kai Tsai
- Department of Neurology and Stroke Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Tun-Wen Pai
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106, Taiwan;
| |
Collapse
|
2
|
Tortorella I, Argentati C, Emiliani C, Morena F, Martino S. Biochemical Pathways of Cellular Mechanosensing/Mechanotransduction and Their Role in Neurodegenerative Diseases Pathogenesis. Cells 2022; 11:3093. [PMID: 36231055 PMCID: PMC9563116 DOI: 10.3390/cells11193093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/11/2022] Open
Abstract
In this review, we shed light on recent advances regarding the characterization of biochemical pathways of cellular mechanosensing and mechanotransduction with particular attention to their role in neurodegenerative disease pathogenesis. While the mechanistic components of these pathways are mostly uncovered today, the crosstalk between mechanical forces and soluble intracellular signaling is still not fully elucidated. Here, we recapitulate the general concepts of mechanobiology and the mechanisms that govern the mechanosensing and mechanotransduction processes, and we examine the crosstalk between mechanical stimuli and intracellular biochemical response, highlighting their effect on cellular organelles' homeostasis and dysfunction. In particular, we discuss the current knowledge about the translation of mechanosignaling into biochemical signaling, focusing on those diseases that encompass metabolic accumulation of mutant proteins and have as primary characteristics the formation of pathological intracellular aggregates, such as Alzheimer's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Parkinson's Disease. Overall, recent findings elucidate how mechanosensing and mechanotransduction pathways may be crucial to understand the pathogenic mechanisms underlying neurodegenerative diseases and emphasize the importance of these pathways for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
3
|
How do cells stiffen? Biochem J 2022; 479:1825-1842. [PMID: 36094371 DOI: 10.1042/bcj20210806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Cell stiffness is an important characteristic of cells and their response to external stimuli. In this review, we survey methods used to measure cell stiffness, summarize stimuli that alter cell stiffness, and discuss signaling pathways and mechanisms that control cell stiffness. Several pathological states are characterized by changes in cell stiffness, suggesting this property can serve as a potential diagnostic marker or therapeutic target. Therefore, we consider the effect of cell stiffness on signaling and growth processes required for homeostasis and dysfunction in healthy and pathological states. Specifically, the composition and structure of the cell membrane and cytoskeleton are major determinants of cell stiffness, and studies have identified signaling pathways that affect cytoskeletal dynamics both directly and by altered gene expression. We present the results of studies interrogating the effects of biophysical and biochemical stimuli on the cytoskeleton and other cellular components and how these factors determine the stiffness of both individual cells and multicellular structures. Overall, these studies represent an intersection of the fields of polymer physics, protein biochemistry, and mechanics, and identify specific mechanisms involved in mediating cell stiffness that can serve as therapeutic targets.
Collapse
|
4
|
Szabo K, Varga D, Vegh AG, Liu N, Xiao X, Xu L, Dux L, Erdelyi M, Rovo L, Keller-Pinter A. Syndecan-4 affects myogenesis via Rac1-mediated actin remodeling and exhibits copy-number amplification and increased expression in human rhabdomyosarcoma tumors. Cell Mol Life Sci 2022; 79:122. [PMID: 35128576 PMCID: PMC8818642 DOI: 10.1007/s00018-021-04121-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Skeletal muscle demonstrates a high degree of regenerative capacity repeating the embryonic myogenic program under strict control. Rhabdomyosarcoma is the most common sarcoma in childhood and is characterized by impaired muscle differentiation. In this study, we observed that silencing the expression of syndecan-4, the ubiquitously expressed transmembrane heparan sulfate proteoglycan, significantly enhanced myoblast differentiation, and fusion. During muscle differentiation, the gradually decreasing expression of syndecan-4 allows the activation of Rac1, thereby mediating myoblast fusion. Single-molecule localized superresolution direct stochastic optical reconstruction microscopy (dSTORM) imaging revealed nanoscale changes in actin cytoskeletal architecture, and atomic force microscopy showed reduced elasticity of syndecan-4-knockdown cells during fusion. Syndecan-4 copy-number amplification was observed in 28% of human fusion-negative rhabdomyosarcoma tumors and was accompanied by increased syndecan-4 expression based on RNA sequencing data. Our study suggests that syndecan-4 can serve as a tumor driver gene in promoting rabdomyosarcoma tumor development. Our results contribute to the understanding of the role of syndecan-4 in skeletal muscle development, regeneration, and tumorigenesis.
Collapse
|
5
|
Segal JP, Phillips S, Dubois RM, Silva JR, Haird CM, Gale D, Hopman WM, Gallivan J, Gilron I, Ghasemlou N. Weight bearing as a measure of disease progression in experimental autoimmune encephalomyelitis. J Neuroimmunol 2021; 361:577730. [PMID: 34628133 DOI: 10.1016/j.jneuroim.2021.577730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022]
Abstract
Motor disability in multiple sclerosis is often modeled using experimental autoimmune encephalomyelitis (EAE) and assessed using the clinical score (CS), an observer-dependent tool that can lead to potential bias. The Advanced Dynamic Weight Bearing (ADWB) system was evaluated as an observer-independent measurement of EAE symptoms. ADWB detected weight shifts onto the front paws as mice develop hindlimb motor disability. CS and ADWB were strongly correlated, indicated that these measures are comparable and suggesting that ADWB may be an appropriate observer-independent tool for the assessment of EAE progression.
Collapse
Affiliation(s)
- Julia P Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sarah Phillips
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rosalin M Dubois
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jaqueline R Silva
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Cortney M Haird
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Daniel Gale
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Wilma M Hopman
- Clinical Research Centre, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Jason Gallivan
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Ian Gilron
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada.
| |
Collapse
|
6
|
Barbosa M, Gomes C, Sequeira C, Gonçalves-Ribeiro J, Pina CC, Carvalho LA, Moreira R, Vaz SH, Vaz AR, Brites D. Recovery of Depleted miR-146a in ALS Cortical Astrocytes Reverts Cell Aberrancies and Prevents Paracrine Pathogenicity on Microglia and Motor Neurons. Front Cell Dev Biol 2021; 9:634355. [PMID: 33968923 PMCID: PMC8103001 DOI: 10.3389/fcell.2021.634355] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive astrocytes in Amyotrophic Lateral Sclerosis (ALS) change their molecular expression pattern and release toxic factors that contribute to neurodegeneration and microglial activation. We and others identified a dysregulated inflammatory miRNA profile in ALS patients and in mice models suggesting that they represent potential targets for therapeutic intervention. Such cellular miRNAs are known to be released into the secretome and to be carried by small extracellular vesicles (sEVs), which may be harmful to recipient cells. Thus, ALS astrocyte secretome may disrupt cell homeostasis and impact on ALS pathogenesis. Previously, we identified a specific aberrant signature in the cortical brain of symptomatic SOD1-G93A (mSOD1) mice, as well as in astrocytes isolated from the same region of 7-day-old mSOD1 mice, with upregulated S100B/HMGB1/Cx43/vimentin and downregulated GFAP. The presence of downregulated miR-146a on both cases suggests that it can be a promising target for modulation in ALS. Here, we upregulated miR-146a with pre-miR-146a, and tested glycoursodeoxycholic acid (GUDCA) and dipeptidyl vinyl sulfone (VS) for their immunoregulatory properties. VS was more effective in restoring astrocytic miR-146a, GFAP, S100B, HMGB1, Cx43, and vimentin levels than GUDCA, which only recovered Cx43 and vimentin mRNA. The miR-146a inhibitor generated typical ALS aberrancies in wild type astrocytes that were abolished by VS. Similarly, pre-miR-146a transfection into the mSOD1 astrocytes abrogated aberrant markers and intracellular Ca2+ overload. Such treatment counteracted miR-146a depletion in sEVs and led to secretome-mediated miR-146a enhancement in NSC-34-motor neurons (MNs) and N9-microglia. Secretome from mSOD1 astrocytes increased early/late apoptosis and FGFR3 mRNA in MNs and microglia, but not when derived from pre-miR-146a or VS-treated cells. These last strategies prevented the impairment of axonal transport and synaptic dynamics by the pathological secretome, while also averted microglia activation through either secretome, or their isolated sEVs. Proteomic analysis of the target cells indicated that pre-miR-146a regulates mitochondria and inflammation via paracrine signaling. We demonstrate that replenishment of miR-146a in mSOD1 cortical astrocytes with pre-miR-146a or by VS abrogates their phenotypic aberrancies and paracrine deleterious consequences to MNs and microglia. These results propose miR-146a as a new causal and emerging therapeutic target for astrocyte pathogenic processes in ALS.
Collapse
Affiliation(s)
- Marta Barbosa
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Cátia Gomes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Sequeira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Campos Pina
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Luís A Carvalho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Vaz
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Benlefki S, Sanchez-Vicente A, Milla V, Lucas O, Soulard C, Younes R, Gergely C, Bowerman M, Raoul C, Scamps F, Hilaire C. Expression of ALS-linked SOD1 Mutation in Motoneurons or Myotubes Induces Differential Effects on Neuromuscular Function In vitro. Neuroscience 2020; 435:33-43. [PMID: 32234507 DOI: 10.1016/j.neuroscience.2020.03.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/31/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that selectively affects upper and lower motoneurons. Dismantlement of the neuromuscular junction (NMJ) is an early pathological hallmark of the disease whose cellular origin remains still debated. We developed an in vitro NMJ model to investigate the differential contribution of motoneurons and muscle cells expressing ALS-causing mutation in the superoxide dismutase 1 (SOD1) to neuromuscular dysfunction. The primary co-culture system allows the formation of functional NMJs and fosters the expression of the ALS-sensitive fast fatigable type II-b myosin heavy chain (MHC) isoform. Expression of SOD1G93A in myotubes does not prevent the formation of a functional NMJ but leads to decreased contraction frequency and lowers the slow type I MHC isoform transcript levels. Expression of SOD1G93A in both motoneurons and myotubes or in motoneurons alone however alters the formation of a functional NMJ. Our results strongly suggest that motoneurons are a major factor involved in the process of NMJ dismantlement in an experimental model of ALS.
Collapse
Affiliation(s)
- Salim Benlefki
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Ana Sanchez-Vicente
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Vanessa Milla
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Olivier Lucas
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Claire Soulard
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Richard Younes
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France; Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Csilla Gergely
- Charles Coulomb Laboratory, L2C, UMR5221, Montpellier University, CNRS, Montpellier, France
| | - Mélissa Bowerman
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Frédérique Scamps
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France.
| | - Cécile Hilaire
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France.
| |
Collapse
|
8
|
Li P, Liu A, Liu C, Qu Z, Xiao W, Huang J, Liu Z, Zhang S. Role and mechanism of catechin in skeletal muscle cell differentiation. J Nutr Biochem 2019; 74:108225. [DOI: 10.1016/j.jnutbio.2019.108225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
|
9
|
Vaughan M, Lamia KA. Isolation and Differentiation of Primary Myoblasts from Mouse Skeletal Muscle Explants. J Vis Exp 2019. [PMID: 31680669 DOI: 10.3791/60310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primary myoblasts are undifferentiated proliferating precursors of skeletal muscle. They can be cultured and studied as muscle precursors or induced to differentiate into later stages of muscle development. The protocol provided here describes a robust method for the isolation and culture of a highly proliferative population of myoblast cells from young adult mouse skeletal muscle explants. These cells are useful for the study of the metabolic properties of skeletal muscle of different mouse models, as well as in other downstream applications such as transfection with exogenous DNA or transduction with viral expression vectors. The level of differentiation and metabolic profile of these cells depends on the length of exposure, and composition of the media used to induce myoblast differentiation. These methods provide a robust system for the study of mouse muscle cell metabolism ex vivo. Importantly, unlike in vivo models, the methods described here provide a cell population that can be expanded and studied with high levels of reproducibility.
Collapse
|
10
|
Abdallah M, Martin M, El Tahchi MR, Balme S, Faour WH, Varga B, Cloitre T, Páll O, Cuisinier FJG, Gergely C, Bassil MJ, Bechelany M. Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32623-32632. [PMID: 31424195 DOI: 10.1021/acsami.9b09337] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barrier. GBM is an extracellular matrix (ECM) that acts as a mechanical support and provides biophysical signals that control normal podocytes behavior in the process of glomerular filtration. Thus, the ECM stiffness represents an essential characteristic that controls podocyte function. Hydrolyzed Polyacrylamide (PAAm) hydrogels are smart polyelectrolyte materials. Their biophysical properties can be tuned as desired to mimic the natural ECM. Therefore, these hydrogels are investigated as new ECM-like constructs to engineer a podocyte-like basement membrane that forms with cultured human podocytes a functional glomerular-like filtration barrier. Such ECM-like PAAm hydrogel construct will provide unique opportunity to reveal podocyte cell biological responses in an in vivo-like setting by controlling the physical properties of the PAAm membranes. In this work, Hydrolyzed PAAm scaffolds having different stiffness ranging between 0.6-44 kPa are prepared. The correlation between the hydrogel structural and mechanical properties and Podocyte morphology, elasticity, cytoskeleton reorganization, and podocin expression is evaluated. Results show that hydrolyzed PAAm hydrogels promote good cell adhesion and growth and are suitable materials for the development of future 3D smart scaffolds. In addition, the hydrogel properties can be easily modulated over a wide physiological range by controlling the cross-linker concentration. Finally, tuning the hydrogel properties is an effective strategy to control the cells function. This work addressed the complexity of podocytes behavior which will further enhance our knowledge to develop a kidney-on-chip model much needed in kidney function studies in both healthy and diseased states.
Collapse
Affiliation(s)
- Maya Abdallah
- Institut Européen des Membranes, ENSCM, CNRS , Université de Montpellier , Montpellier 34090 , France
- Biomaterials and Intelligent Materials Research Laboratory (LBMI) , Lebanese University , Faculty of Sciences 2, Physic Department , Jdeidet 90656 , Lebanon
| | - Marta Martin
- Laboratoire Charles Coulomb , Université de Montpellier , CNRS , Montpellier 34095 , France
| | - Mario R El Tahchi
- Biomaterials and Intelligent Materials Research Laboratory (LBMI) , Lebanese University , Faculty of Sciences 2, Physic Department , Jdeidet 90656 , Lebanon
| | - Sebastien Balme
- Institut Européen des Membranes, ENSCM, CNRS , Université de Montpellier , Montpellier 34090 , France
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine , Lebanese American University , P.O. Box 36 , Byblos , Lebanon
| | - Béla Varga
- Laboratoire Charles Coulomb , Université de Montpellier , CNRS , Montpellier 34095 , France
| | - Thierry Cloitre
- Laboratoire Charles Coulomb , Université de Montpellier , CNRS , Montpellier 34095 , France
| | - Orsolya Páll
- Laboratoire de Bioingénierie et Nanosciences , Université de Montpellier , Montpellier 34090 , France
| | - Frédéric J G Cuisinier
- Laboratoire de Bioingénierie et Nanosciences , Université de Montpellier , Montpellier 34090 , France
| | - Csilla Gergely
- Laboratoire Charles Coulomb , Université de Montpellier , CNRS , Montpellier 34095 , France
| | - Maria J Bassil
- Biomaterials and Intelligent Materials Research Laboratory (LBMI) , Lebanese University , Faculty of Sciences 2, Physic Department , Jdeidet 90656 , Lebanon
| | - Mikhael Bechelany
- Institut Européen des Membranes, ENSCM, CNRS , Université de Montpellier , Montpellier 34090 , France
| |
Collapse
|