1
|
Icosahedral cluster formation in Ni-based hydrogen separation amorphous membranes and the effect of hydrogenation-a first principles structural study. J Mol Model 2021; 28:4. [PMID: 34888702 DOI: 10.1007/s00894-021-05003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
The demand for hydrogen is increasing due to commercialization of fuel cells. Palladium (Pd)-based crystalline membranes have been used for separation of hydrogen from a mixture of gases in coal-based power generation process. However, very high cost of Pd has prompted to explore inexpensive alternative alloys. Amorphous Ni-Nb-Zr alloy membranes are promising cheaper alternatives which exhibit comparable hydrogen permeability to Pd membranes at nominal temperature of ~ 400 °C. Constant exposure to high temperature and hydrogen pressure may lead to changes in the local atomic structure and possible devitrification of membrane. It is critical to understand short-range order of these membranes in order to improve their hydrogen permeability and durability. Icosahedral clusters are the building blocks of amorphous material and hydrogen is expected to interact with them in various different ways. The density functional theory-based molecular dynamics (DFT-MD) approach is the best suited approach to study the local atomic structures for (Ni0.6Nb0.4)90Zr10 and (Ni0.6Nb0.4)70Zr30 amorphous membranes with the help of nearest neighbor distances and icosahedral cluster analysis. It can help predict the behavior of the membrane under extreme operating conditions. Three types of icosahedra (so called Ni-centered, Zr-centered, and Nb-centered) were identified in six different compositions in these amorphous alloys. Evolution of these icosahedra with temperature and in the presence of hydrogen gave an insight into the local structure of the membrane. Zr plays an important role in the formation of icosahedra. Hydrogen atoms interact with the icosahedra in three different ways. It is observed that H atoms did not show tendency to enter Ni-centered icosahedra leading to easier hydrogen diffusion outside the icosahedra. Hence, the more the number of Ni-centered icosahedra, the better the permeation properties of the alloy.
Collapse
|
2
|
Gault B, Klaes B, Morgado FF, Freysoldt C, Li Y, De Geuser F, Stephenson LT, Vurpillot F. Reflections on the Spatial Performance of Atom Probe Tomography in the Analysis of Atomic Neighborhoods. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 28:1-11. [PMID: 34666868 DOI: 10.1017/s1431927621012952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atom probe tomography (APT) is often introduced as providing “atomic-scale” mapping of the composition of materials and as such is often exploited to analyze atomic neighborhoods within a material. Yet quantifying the actual spatial performance of the technique in a general case remains challenging, as it depends on the material system being investigated as well as on the specimen's geometry. Here, by using comparisons with field-ion microscopy experiments, field-ion imaging and field evaporation simulations, we provide the basis for a critical reflection on the spatial performance of APT in the analysis of pure metals, low alloyed systems and concentrated solid solutions (i.e., akin to high-entropy alloys). The spatial resolution imposes strong limitations on the possible interpretation of measured atomic neighborhoods, and directional neighborhood analyses restricted to the depth are expected to be more robust. We hope this work gets the community to reflect on its practices, in the same way, it got us to reflect on our work.
Collapse
Affiliation(s)
- Baptiste Gault
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, Düsseldorf40237, Germany
- Department of Materials, Royal School of Mines, Imperial College, Prince Consort Road, LondonSW7 2BP, UK
| | - Benjamin Klaes
- Groupe Physique des Matériaux, Université de Rouen, Saint Etienne du Rouvray, Normandie76800, France
| | - Felipe F Morgado
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, Düsseldorf40237, Germany
| | - Christoph Freysoldt
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, Düsseldorf40237, Germany
| | - Yue Li
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, Düsseldorf40237, Germany
| | - Frederic De Geuser
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMAP, Grenoble38000, France
| | - Leigh T Stephenson
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, Düsseldorf40237, Germany
| | - François Vurpillot
- Groupe Physique des Matériaux, Université de Rouen, Saint Etienne du Rouvray, Normandie76800, France
| |
Collapse
|