1
|
Teixeira EAA, de Souza LMD, Vieira R, Lirio JM, Coria SH, Convey P, Rosa CA, Rosa LH. Enzymes and biosurfactants of industrial interest produced by culturable fungi present in sediments of Boeckella Lake, Hope Bay, north-east Antarctic Peninsula. Extremophiles 2024; 28:30. [PMID: 38907846 DOI: 10.1007/s00792-024-01345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
This study characterized cultivable fungi present in sediments obtained from Boeckella Lake, Hope Bay, in the north-east of the Antarctic Peninsula, and evaluated their production of enzymes and biosurfactants of potential industrial interest. A total of 116 fungal isolates were obtained, which were classified into 16 genera within the phyla Ascomycota, Basidiomycota and Mortierellomycota, in rank. The most abundant genera of filamentous fungi included Pseudogymnoascus, Pseudeurotium and Antarctomyces; for yeasts, Thelebolales and Naganishia taxa were dominant. Overall, the lake sediments exhibited high fungal diversity and moderate richness and dominance. The enzymes esterase, cellulase and protease were the most abundantly produced by these fungi. Ramgea cf. ozimecii, Holtermanniella wattica, Leucosporidium creatinivorum, Leucosporidium sp., Mrakia blollopis, Naganishia sp. and Phenoliferia sp. displayed enzymatic index > 2. Fourteen isolates of filamentous fungi demonstrated an Emulsification Index 24% (EI24%) ≥ 50%; among them, three isolates of A. psychrotrophicus showed an EI24% > 80%. Boeckella Lake itself is in the process of drying out due to the impact of regional climate change, and may be lost completely in approaching decades, therefore hosts a threatened community of cultivable fungi that produce important biomolecules with potential application in biotechnological processes.
Collapse
Affiliation(s)
- Elisa Amorim Amâncio Teixeira
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Láuren Machado Drumond de Souza
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Rosemary Vieira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Luiz Henrique Rosa
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
2
|
Sannino C, Borruso L, Mezzasoma A, Turchetti B, Ponti S, Buzzini P, Mimmo T, Guglielmin M. The Unusual Dominance of the Yeast Genus Glaciozyma in the Deeper Layer in an Antarctic Permafrost Core (Adélie Cove, Northern Victoria Land) Is Driven by Elemental Composition. J Fungi (Basel) 2023; 9:jof9040435. [PMID: 37108890 PMCID: PMC10145851 DOI: 10.3390/jof9040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Rock glaciers are relatively common in Antarctic permafrost areas and could be considered postglacial cryogenic landforms. Although the extensive presence of rock glaciers, their chemical–physical and biotic composition remain scarce. Chemical–physical parameters and fungal community (by sequencing the ITS2 rDNA, Illumina MiSeq) parameters of a permafrost core were studied. The permafrost core, reaching a depth of 6.10 m, was divided into five units based on ice content. The five units (U1–U5) of the permafrost core exhibited several significant (p < 0.05) differences in terms of chemical and physical characteristics, and significant (p < 0.05) higher values of Ca, K, Li, Mg, Mn, S, and Sr were found in U5. Yeasts dominated on filamentous fungi in all the units of the permafrost core; additionally, Ascomycota was the prevalent phylum among filamentous forms, while Basidiomycota was the dominant phylum among yeasts. Surprisingly, in U5 the amplicon sequence variants (ASVs) assigned to the yeast genus Glaciozyma represented about two-thirds of the total reads. This result may be considered extremely rare in Antarctic yeast diversity, especially in permafrost habitats. Based on of the chemical–physical composition of the units, the dominance of Glaciozyma in the deepest unit was correlated with the elemental composition of the core.
Collapse
Affiliation(s)
- Ciro Sannino
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Ambra Mezzasoma
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Benedetta Turchetti
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Stefano Ponti
- Department of Theoretical and Applied Sciences, Insubria University, 21100 Varese, Italy
| | - Pietro Buzzini
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Mauro Guglielmin
- Department of Theoretical and Applied Sciences, Insubria University, 21100 Varese, Italy
| |
Collapse
|
3
|
Nikitin DA. Ecological Characteristics of Antarctic Fungi. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 508:32-54. [PMID: 37186046 DOI: 10.1134/s0012496622700120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 05/17/2023]
Abstract
In view of the high responsiveness of polar ecosystems to the global climate change, the research of Antarctic microorganisms has become a topical issue. The unique ecosystems that have developed under the severe climate conditions of the continent lack flowering plants but are dominated by soil mycobiota. In addition to performing their classical ecological functions, Antarctic fungi form the basis of local communities, e.g., endoliths and microbial mats. Furthermore, Antarctic fungi are a major force that mediates transformation of rock minerals in situ and makes biologically significant elements available for other organisms. For these reasons, mycobiota plays a central role in the maintenance of ecological equilibrium in Antarctica. The dominant fungal division on the continent is Ascomycota (77.1%), and not Basidiomycota (9.1%), as it is the case on other continents. For a number of reasons, yeasts and yeast-like micromycetes (mainly basidiomycetes) are more tolerant to extreme conditions in various Antarctic biotopes than filamentous fungi. Substantial evidence suggests that filamentous fungi and yeasts are better adapted to existence in ecosystems with extremely low temperatures than other microorganisms. Due to the long-term isolation of Antarctica from other continents, local biota has been evolving largely independently, which led to emergence of multiple endemic fungal taxa. The presence of eurytopes on the continent is presumably related to the global warming and growing anthropogenic pressure. This review discusses the current state of research on the structure of fungal communities of Antarctic subaerial and subaquatic biotopes, the ecological role of yeast-mycelial dimorphism in Antarctic fungi, the problem of endemism of Antarctic mycobiota, as well as the ecological and physiological adaptations of fungi to low temperatures; it also justifies the relevance of research into secondary metabolites of psychrophilic micromycetes.
Collapse
Affiliation(s)
- D A Nikitin
- Dokuchaev Soil Science Institute, 119017, Moscow, Russia.
- Institute of Geography, Russian Academy of Sciences, 119017, Moscow, Russia.
| |
Collapse
|
4
|
Guglielmin M, Azzaro M, Buzzini P, Battistel D, Roman M, Ponti S, Turchetti B, Sannino C, Borruso L, Papale M, Lo Giudice A. A possible unique ecosystem in the endoglacial hypersaline brines in Antarctica. Sci Rep 2023; 13:177. [PMID: 36604573 PMCID: PMC9814585 DOI: 10.1038/s41598-022-27219-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Here, we present the results related to a new unique terrestrial ecosystem found in an englacial hypersaline brine found in Northern Victoria Land (Antarctica). Both the geochemistry and microbial (prokaryotic and fungal) diversity revealed an unicity with respect to all the other known Antarctic brines and suggested a probable ancient origin mainly due a progressive cryoconcentration of seawater. The prokaryotic community presented some peculiarities, such as the occurrence of sequences of Patescibacteria (which can thrive in nutrient-limited water environments) or few Spirochaeta, and the presence of archaeal sequences of Methanomicrobia closely related to Methanoculleus, a methanogen commonly detected in marine and estuarine environments. The high percentage (35%) of unassigned fungal taxa suggested the presence of a high degree of undiscovered diversity within a structured fungal community (including both yeast and filamentous life forms) and reinforce the hypothesis of a high degree of biological uniqueness of the habitat under study.
Collapse
Affiliation(s)
- M. Guglielmin
- grid.18147.3b0000000121724807Department of Theoretical and Applied Sciences, Insubria University, Via Dunant, 3, 21100 Varese, Italy ,grid.18147.3b0000000121724807Climate Change Research Center, Insubria University, Via Regina Teodolinda, 37, 22100 Como, Italy
| | - M. Azzaro
- grid.5326.20000 0001 1940 4177Institute of Polar Sciences, National Research Council, Spianata S. Raineri. 86, 98122 Messina, Italy
| | - P. Buzzini
- grid.9027.c0000 0004 1757 3630Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - D. Battistel
- grid.5326.20000 0001 1940 4177Institute of Polar Sciences, National Research Council, Spianata S. Raineri. 86, 98122 Messina, Italy ,grid.7240.10000 0004 1763 0578Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino, 155, 30172 Mestre, VE Italy
| | - M. Roman
- grid.7240.10000 0004 1763 0578Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino, 155, 30172 Mestre, VE Italy
| | - S. Ponti
- grid.18147.3b0000000121724807Department of Theoretical and Applied Sciences, Insubria University, Via Dunant, 3, 21100 Varese, Italy
| | - B. Turchetti
- grid.9027.c0000 0004 1757 3630Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - C. Sannino
- grid.9027.c0000 0004 1757 3630Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - L. Borruso
- grid.34988.3e0000 0001 1482 2038Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 9100 Bozen-Bolzano, Italy
| | - M. Papale
- grid.5326.20000 0001 1940 4177Institute of Polar Sciences, National Research Council, Spianata S. Raineri. 86, 98122 Messina, Italy
| | - A. Lo Giudice
- grid.5326.20000 0001 1940 4177Institute of Polar Sciences, National Research Council, Spianata S. Raineri. 86, 98122 Messina, Italy
| |
Collapse
|
5
|
Rosa LH, Ogaki MB, Lirio JM, Vieira R, Coria SH, Pinto OHB, Carvalho-Silva M, Convey P, Rosa CA, Câmara PEAS. Fungal diversity in a sediment core from climate change impacted Boeckella Lake, Hope Bay, north-eastern Antarctic Peninsula assessed using metabarcoding. Extremophiles 2022; 26:16. [PMID: 35499659 DOI: 10.1007/s00792-022-01264-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023]
Abstract
We studied the fungal DNA present in a lake sediment core obtained from Trinity Peninsula, Hope Bay, north-eastern Antarctic Peninsula, using metabarcoding through high-throughput sequencing (HTS). Sequences obtained were assigned to 146 amplicon sequence variants (ASVs) primarily representing unknown fungi, followed by the phyla Ascomycota, Rozellomycota, Basidiomycota, Chytridiomycota and Mortierellomycota. The most abundant taxa were assigned to Fungal sp., Pseudeurotium hygrophilum, Rozellomycota sp. 1, Pseudeurotiaceae sp. 1 and Chytridiomycota sp. 1. The majority of the DNA reads, representing 40 ASVs, could only be assigned at higher taxonomic levels and may represent taxa not currently included in the sequence databases consulted and/or be previously undescribed fungi. Different sections of the core were characterized by high sequence diversity, richness and moderate ecological dominance indices. The assigned diversity was dominated by cosmopolitan cold-adapted fungi, including known saprotrophic, plant and animal pathogenic and symbiotic taxa. Despite the overall dominance of Ascomycota and Basidiomycota and psychrophilic Mortierellomycota, members of the cryptic phyla Rozellomycota and Chytridiomycota were also detected in abundance. As Boeckella Lake may cease to exist in approaching decades due the effects of local climatic changes, it also an important location for the study of the impacts of these changes on Antarctic microbial diversity.
Collapse
Affiliation(s)
- Luiz Henrique Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil.
| | - Mayara Baptistucci Ogaki
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | | | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.,Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | | |
Collapse
|
6
|
Antarctica as a reservoir of planetary analogue environments. Extremophiles 2021; 25:437-458. [PMID: 34586500 DOI: 10.1007/s00792-021-01245-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
One of the main objectives of astrobiological research is the investigation of the habitability of other planetary bodies. Since space exploration missions are expensive and require long-term organization, the preliminary study of terrestrial environments is an essential step to prepare and support exploration missions. The Earth hosts a multitude of extreme environments whose characteristics resemble celestial bodies in our Solar System. In these environments, the physico-chemical properties partly match extraterrestrial environments and could clarify limits and adaptation mechanisms of life, the mineralogical or geochemical context, and support and interpret data sent back from planetary bodies. One of the best terrestrial analogues is Antarctica, whose conditions lie on the edge of habitability. It is characterized by a cold and dry climate (Onofri et al., Nova Hedwigia 68:175-182, 1999), low water availability, strong katabatic winds, salt concentration, desiccation, and high radiation. Thanks to the harsh conditions like those in other celestial bodies, Antarctica offers good terrestrial analogues for celestial body (Mars or icy moons; Léveillé, CR Palevol 8:637-648, https://doi.org/10.1016/j.crpv.2009.03.005 , 2009). The continent could be distinguished into several habitats, each with characteristics similar to those existing on other bodies. Here, we reported a description of each simulated parameter within the habitats, in relation to each of the simulated extraterrestrial environments.
Collapse
|
7
|
First Insights into the Microbiology of Three Antarctic Briny Systems of the Northern Victoria Land. DIVERSITY 2021. [DOI: 10.3390/d13070323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different polar environments (lakes and glaciers), also in Antarctica, encapsulate brine pools characterized by a unique combination of extreme conditions, mainly in terms of high salinity and low temperature. Since 2014, we have been focusing our attention on the microbiology of brine pockets from three lakes in the Northern Victoria Land (NVL), lying in the Tarn Flat (TF) and Boulder Clay (BC) areas. The microbial communities have been analyzed for community structure by next generation sequencing, extracellular enzyme activities, metabolic potentials, and microbial abundances. In this study, we aim at reconsidering all available data to analyze the influence exerted by environmental parameters on the community composition and activities. Additionally, the prediction of metabolic functions was attempted by the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) tool, highlighting that prokaryotic communities were presumably involved in methane metabolism, aromatic compound biodegradation, and organic compound (proteins, polysaccharides, and phosphates) decomposition. The analyzed cryoenvironments were different in terms of prokaryotic diversity, abundance, and retrieved metabolic pathways. By the analysis of DNA sequences, common operational taxonomic units ranged from 2.2% to 22.0%. The bacterial community was dominated by Bacteroidetes. In both BC and TF brines, sequences of the most thermally tolerant and methanogenic Archaea were detected, some of them related to hyperthermophiles.
Collapse
|
8
|
Borruso L, Bani A, Pioli S, Ventura M, Panzacchi P, Antonielli L, Giammarchi F, Polo A, Tonon G, Brusetti L. Do Aerial Nitrogen Depositions Affect Fungal and Bacterial Communities of Oak Leaves? Front Microbiol 2021; 12:633535. [PMID: 33935994 PMCID: PMC8085328 DOI: 10.3389/fmicb.2021.633535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
The amount of nitrogen (N) deposition onto forests has globally increased and is expected to double by 2050, mostly because of fertilizer production and fossil fuel burning. Several studies have already investigated the effects of N depositions in forest soils, highlighting negative consequences on plant biodiversity and the associated biota. Nevertheless, the impact of N aerial inputs deposited directly on the tree canopy is still unexplored. This study aimed to investigate the influence of increased N deposition on the leaf-associated fungal and bacterial communities in a temperate forest dominated by Sessile oak [Quercus petraea (Matt.) Liebl.]. The study area was located in the Monticolo forest (South Tyrol, Italy), where an ecosystem experiment simulating an increased N deposition has been established. The results highlighted that N deposition affected the fungal beta-diversity and bacterial alpha-diversity without affecting leaf total N and C contents. We found several indicator genera of both fertilized and natural conditions within bacteria and fungi, suggesting a highly specific response to altered N inputs. Moreover, we found an increase of symbiotrophic fungi in N-treated, samples which are commonly represented by lichen-forming mycobionts. Overall, our results indicated that N-deposition, by increasing the level of bioavailable nutrients in leaves, could directly influence the bacterial and fungal community diversity.
Collapse
Affiliation(s)
- Luigimaria Borruso
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Alessia Bani
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- School of Life Sciences, University of Essex Colchester Campus, Essex, United Kingdom
| | - Silvia Pioli
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Maurizio Ventura
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Pietro Panzacchi
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
| | - Livio Antonielli
- Center for Health & Bioresources, AIT Austrian Institute of Technology, Vienna, Austria
| | - Francesco Giammarchi
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Andrea Polo
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giustino Tonon
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Lorenzo Brusetti
- Department of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
9
|
|
10
|
Câmara PEAS, Carvalho-Silva M, Pinto OHB, Amorim ET, Henriques DK, da Silva TH, Pellizzari F, Convey P, Rosa LH. Diversity and Ecology of Chlorophyta (Viridiplantae) Assemblages in Protected and Non-protected Sites in Deception Island (Antarctica, South Shetland Islands) Assessed Using an NGS Approach. MICROBIAL ECOLOGY 2021; 81:323-334. [PMID: 32860076 DOI: 10.1007/s00248-020-01584-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 05/20/2023]
Abstract
Assessment of the diversity of algal assemblages in Antarctica has until now largely relied on traditional microbiological culture approaches. Here we used DNA metabarcoding through high-throughput sequencing (HTS) to assess the uncultured algal diversity at two sites on Deception Island, Antarctica. The first was a relatively undisturbed site within an Antarctic Specially Protected Area (ASPA 140), and the second was a site heavily impacted by human visitation, the Whalers Bay historic site. We detected 65 distinct algal taxa, 50 from within ASPA 140 and 61 from Whalers Bay. Of these taxa, 46 were common to both sites, and 19 only occurred at one site. Algal richness was about six times greater than reported in previous studies using culture methods. A high proportion of DNA reads obtained was assigned to the highly invasive species Caulerpa webbiana at Whalers Bay, and the potentially pathogenic genus Desmodesmus was found at both sites. Our data demonstrate that important differences exist between these two protected and human-impacted sites on Deception Island in terms of algal diversity, richness, and abundance. The South Shetland Islands have experienced considerable effects of climate change in recent decades, while warming through geothermal activity on Deception Island itself makes this island one of the most vulnerable to colonization by non-native species. The detection of DNA of non-native taxa highlights concerns about how human impacts, which take place primarily through tourism and national research operations, may influence future biological colonization processes in Antarctica.
Collapse
Affiliation(s)
| | | | - Otávio H B Pinto
- Departamento de Biologia Celular e Molecular, Universidade de Brasília (UnB), Brasilia, Brazil
| | - Eduardo T Amorim
- Departamento de Botânica, Universidade de Brasília (UnB), Brasilia, Brazil
- Centro Nacional de Conservação da Flora/Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (CNCFlora/JBRJ), Rio de Janeiro, Brazil
| | | | - Thamar Holanda da Silva
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Franciane Pellizzari
- Departamento de Ciências Biológicas, Universidade Estadual do Paraná, Paranaguá, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
11
|
Comparison of the Performance and Microbial Community Structure of Two Outdoor Pilot-Scale Photobioreactors Treating Digestate. Microorganisms 2020; 8:microorganisms8111754. [PMID: 33171685 PMCID: PMC7695279 DOI: 10.3390/microorganisms8111754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022] Open
Abstract
This study aimed at examining and comparing the nutrient removal efficiency, biomass productivity and microbial community structure of two outdoor pilot-scale photobioreactors, namely a bubble column and a raceway pond, treating the liquid fraction of an agricultural digestate. Bacterial and eukaryotic communities were characterized using a metabarcoding approach and quantitative PCR. The abundance, composition, diversity, and dynamics of the main microbes were then correlated to the environmental conditions and operational parameters of the reactors. Both photobioreactors were dominated either by Chlorella sp. or Scenedesmus sp. in function of temperature, irradiance and the nitrogen compounds derived by nitrification. Other species, such as Chlamydomonas and Planktochlorella, were sporadically present, demonstrating that they have more specific niche requirement. Pseudomonas sp. always dominated the bacterial community in both reactors, except in summertime, when a bloom of Calothrix occurred in the raceway pond. In autumn, the worsening of the climate conditions decreased the microalgal growth, promoting predation by Vorticella sp. The study highlights the factors influencing the structure and dynamics of the microbial consortia and which ecological mechanisms are driving the microbial shifts and the consequent reactor performance. On these bases, control strategies could be defined to optimize the management of the microalgal-based technologies.
Collapse
|
12
|
Porcino N, Cosenza A, Azzaro M. A review on the geochemistry of lakes in Victoria Land (Antarctica). CHEMOSPHERE 2020; 251:126229. [PMID: 32171943 DOI: 10.1016/j.chemosphere.2020.126229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
This paper reports briefly the concentrations of major elements of 3116 samples of lakes in the Victoria Land region. The data obtained by different works were processed through multivariate chemometric techniques to gain insight into the biogeochemical processes taking place in the lacustrine systems. Antarctic ice-free areas contain lakes and ponds that have interesting chemical features and are of wide global significance as early warning indicators of climatic and environmental change.
Collapse
Affiliation(s)
- Nunziatina Porcino
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, Spianata San Raineri, 86, 98122, Messina (ME), Italy.
| | - Alessandro Cosenza
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri 86, 98122, Messina (ME), Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri 86, 98122, Messina (ME), Italy
| |
Collapse
|
13
|
Sannino C, Borruso L, Mezzasoma A, Battistel D, Zucconi L, Selbmann L, Azzaro M, Onofri S, Turchetti B, Buzzini P, Guglielmin M. Intra- and inter-cores fungal diversity suggests interconnection of different habitats in an Antarctic frozen lake (Boulder Clay, Northern Victoria Land). Environ Microbiol 2020; 22:3463-3477. [PMID: 32510727 DOI: 10.1111/1462-2920.15117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 01/28/2023]
Abstract
A perennially frozen lake at Boulder Clay site (Victoria Land, Antarctica), characterized by the presence of frost mounds, have been selected as an in situ model for ecological studies. Different samples of permafrost, glacier ice and brines have been studied as a unique habitat system. An additional sample of brines (collected in another frozen lake close to the previous one) was also considered. Alpha- and beta-diversity of fungal communities showed both intra- and inter-cores significant (p < 0.05) differences, which suggest the presence of interconnection among the habitats. Therefore, the layers of frost mound and the deep glacier could be interconnected while the brines could probably be considered as an open habitat system not interconnected with each other. Moreover, the absence of similarity between the lake ice and the underlying permafrost suggested that the lake is perennially frozen based. The predominance of positive significant (p < 0.05) co-occurrences among some fungal taxa allowed to postulate the existence of an ecological equilibrium in the habitats systems. The positive significant (p < 0.05) correlation between salt concentration, total organic carbon and pH, and some fungal taxa suggests that a few abiotic parameters could drive fungal diversity inside these ecological niches.
Collapse
Affiliation(s)
- Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX giugno 74, Perugia, 06121, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - Ambra Mezzasoma
- Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX giugno 74, Perugia, 06121, Italy
| | - Dario Battistel
- Department of Environmental Science, Informatics and Statistics, University Ca' Foscari, Venice, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.,Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council, Messina, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX giugno 74, Perugia, 06121, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX giugno 74, Perugia, 06121, Italy
| | - Mauro Guglielmin
- Department of Theoretical and Applied Sciences, Insubria University, Varese, Italy
| |
Collapse
|
14
|
Rizzo C, Conte A, Azzaro M, Papale M, Rappazzo AC, Battistel D, Roman M, Lo Giudice A, Guglielmin M. Cultivable Bacterial Communities in Brines from Perennially Ice-Covered and Pristine Antarctic Lakes: Ecological and Biotechnological Implications. Microorganisms 2020; 8:E819. [PMID: 32486118 PMCID: PMC7355736 DOI: 10.3390/microorganisms8060819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
The diversity and biotechnological potentialities of bacterial isolates from brines of three Antarctic lakes of the Northern Victoria Land (namely Boulder Clay and Tarn Flat areas) were first explored. Cultivable bacterial communities were analysed mainly in terms of bacterial response to contaminants (i.e., antibiotics and heavy metals) and oxidation of contaminants (i.e., aliphatic and aromatic hydrocarbons and polychlorobiphenyls). Moreover, the biosynthesis of biomolecules (antibiotics, extracellular polymeric substances and enzymes) with applications for human health and environmental protection was assayed. A total of 74 and 141 isolates were retrieved from Boulder Clay and Tarn Flat brines, respectively. Based on 16S rRNA gene sequence similarities, bacterial isolates represented three phyla, namely Proteobacteria (i.e., Gamma- and Alphaproteobacteria), Bacteroidetes and Actinobacteria, with differences encountered among brines. At genus level, Rhodobacter, Pseudomonas, Psychrobacter and Leifsonia members were dominant. Results obtained from this study on the physiological and enzymatic features of cold-adapted isolates from Antarctic lake brines provide interesting prospects for possible applications in the biotechnological field through future targeted surveys. Finally, findings on contaminant occurrence and bacterial response suggest that bacteria might be used as bioindicators for tracking human footprints in these remote polar areas.
Collapse
Affiliation(s)
- Carmen Rizzo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, National Institute of Biology, Villa Pace, 98167 Messina, Italy;
| | - Antonella Conte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy; (M.A.); (M.P.); (A.C.R.)
| | - Maria Papale
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy; (M.A.); (M.P.); (A.C.R.)
| | - Alessandro C. Rappazzo
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy; (M.A.); (M.P.); (A.C.R.)
| | - Dario Battistel
- Dipartimento di Scienze Ambientali, Informatica e Statistica, University Ca’ Foscari, 30123 Venezia, Italy; (D.B.); (M.R.)
| | - Marco Roman
- Dipartimento di Scienze Ambientali, Informatica e Statistica, University Ca’ Foscari, 30123 Venezia, Italy; (D.B.); (M.R.)
| | - Angelina Lo Giudice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy; (M.A.); (M.P.); (A.C.R.)
| | - Mauro Guglielmin
- Dipartimento di Scienze Teoriche e Applicate, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
15
|
Sannino C, Borruso L, Smiraglia C, Bani A, Mezzasoma A, Brusetti L, Turchetti B, Buzzini P. Dynamics of in situ growth and taxonomic structure of fungal communities in Alpine supraglacial debris. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Papale M, Lo Giudice A, Conte A, Rizzo C, Rappazzo AC, Maimone G, Caruso G, La Ferla R, Azzaro M, Gugliandolo C, Paranhos R, Cabral AS, Romano Spica V, Guglielmin M. Microbial Assemblages in Pressurized Antarctic Brine Pockets (Tarn Flat, Northern Victoria Land): A Hotspot of Biodiversity and Activity. Microorganisms 2019; 7:E333. [PMID: 31505750 PMCID: PMC6780602 DOI: 10.3390/microorganisms7090333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/03/2022] Open
Abstract
Two distinct pressurized hypersaline brine pockets (named TF4 and TF5), separated by a thin ice layer, were detected below an ice-sealed Antarctic lake. Prokaryotic (bacterial and archaeal) diversity, abundances (including virus-like particles) and metabolic profiles were investigated by an integrated approach, including traditional and new-generation methods. Although similar diversity indices were computed for both Bacteria and Archaea, distinct bacterial and archaeal assemblages were observed. Bacteroidetes and Gammaproteobacteria were more abundant in the shallowest brine pocket, TF4, and Deltaproteobacteria, mainly represented by versatile sulphate-reducing bacteria, dominated in the deepest, TF5. The detection of sulphate-reducing bacteria and methanogenic Archaea likely reflects the presence of a distinct synthrophic consortium in TF5. Surprisingly, members assigned to hyperthermophilic Crenarchaeota and Euryarchaeota were common to both brines, indicating that these cold habitats host the most thermally tolerant Archaea. The patterns of microbial communities were different, coherently with the observed microbiological diversity between TF4 and TF5 brines. Both the influence exerted by upward movement of saline brines from a sub-surface anoxic system and the possible occurrence of an ancient ice remnant from the Ross Ice Shelf were the likely main factors shaping the microbial communities.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Antonella Conte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy.
| | - Carmen Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy.
| | - Alessandro C Rappazzo
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Giovanna Maimone
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Rosabruna La Ferla
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Concetta Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy.
| | - Rodolfo Paranhos
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21.941-590, Brazil.
| | - Anderson S Cabral
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21.941-590, Brazil.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome "Foro Italico", P.zza Lauro De Bosis 6, 00135 Rome, Italy.
| | - Mauro Guglielmin
- Dipartimento di Scienze Teoriche e Applicate, University of Insubria, 21100 Varese, Italy.
| |
Collapse
|
17
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 2019; 94:1443-1476. [PMID: 31021528 PMCID: PMC6850671 DOI: 10.1111/brv.12510] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). Throughout this review we use an evolutionary and comparative-genomics perspective to understand fungal ecological diversity. Finally, we highlight the importance of genome-enabled inferences to envision plausible narratives and scenarios for important transitions.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREA, Pg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|