1
|
Yang C, da Silva MCM, Howell JA, Larochelle J, Liu L, Gunraj RE, de Oliveira ACP, Candelario-Jalil E. RIPK2 is crucial for the microglial inflammatory response to bacterial muramyl dipeptide but not to lipopolysaccharide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617444. [PMID: 39416057 PMCID: PMC11482783 DOI: 10.1101/2024.10.09.617444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Receptor-interacting serine/threonine protein kinase 2 (RIPK2) is a kinase that plays an essential role in the modulation of innate and adaptive immune responses. As a downstream signaling molecule for nucleotide-binding oligomerization domain 1 (NOD1), NOD2, and Toll-like receptors (TLRs), it is implicated in the signaling triggered by recognition of microbe-associated molecular patterns by NOD1/2 and TLRs. Upon activation of these innate immune receptors, RIPK2 mediates the release of pro-inflammatory factors by activating mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB). However, whether RIPK2 is essential for downstream inflammatory signaling following the activation of NOD1/2, TLRs, or both remains controversial. In this study, we examined the role of RIPK2 in NOD2-and TLR4-dependent signaling cascades following stimulation of microglial cells with bacterial muramyl dipeptide (MDP), a NOD2 agonist, or lipopolysaccharide (LPS), a TLR4 agonist. We utilized a highly specific proteolysis targeting chimera (PROTAC) molecule, GSK3728857A, and found dramatic degradation of RIPK2 in a concentration- and time-dependent manner. Importantly, the PROTAC completely abolished MDP-induced increases in iNOS and COX-2 protein levels and pro-inflammatory gene transcription of Nos2, Ptgs2, Il-1β, Tnfα, Il6, Ccl2, and Mmp9. However, increases in iNOS and COX-2 proteins and pro-inflammatory gene transcription induced by the TLR4 agonist, LPS, were only slightly attenuated with the GSK3728857A pretreatment. Further findings revealed that the RIPK2 PROTAC completely blocked the phosphorylation and activation of p65 NF-κB and p38 MAPK induced by MDP, but it had no effects on the phosphorylation of these two mediators triggered by LPS. Collectively, our findings strongly suggest that RIPK2 plays an essential role in the inflammatory responses of microglia to bacterial MDP but not to LPS.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Maria Carolina Machado da Silva
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Neuropharmacology Laboratory, Department of Pharmacology, Universidade Federal de Minas Gerais, Brazil
| | - John A. Howell
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jonathan Larochelle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lei Liu
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rachel E. Gunraj
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Antônio Carlos Pinheiro de Oliveira
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Neuropharmacology Laboratory, Department of Pharmacology, Universidade Federal de Minas Gerais, Brazil
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Tang J, Liang G, Dong S, Shan S, Zhao M, Guo X. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization in Athetis dissimilis (Lepidoptera: Noctuidae) Under Different Conditions. Front Physiol 2022; 13:842195. [PMID: 35273523 PMCID: PMC8902415 DOI: 10.3389/fphys.2022.842195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Reference genes are the key to study gene expression patterns using quantitative real-time PCR (qRT-PCR). No studies on the reference genes of Athetis dissimilis, an important agricultural pest, have been reported. In order to determine the reference genes for qRT-PCR normalization in A. dissimilis under different conditions, 10 candidate genes [18S ribosomal protein (18S), 28S ribosomal protein (28S), arginine kinase (AK), elongation factor 1 alpha (EF1-α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein L32 (RPL32), ribosomal protein L40 (RPL40), alpha-tubulin (α-TUB), beta-actin (β-ACT), and beta-tubulin (β-TUB)] of A. dissimilis were selected to evaluate their stability as reference genes under different biotic and abiotic conditions by using five tools, geNorm, NormFinder, BestKeeper, ΔCt, and RefFinder. Furthermore, CSP1 and superoxide dismutase (SOD) were used as target genes to validate the candidate reference genes. The results showed that different reference genes were needed under different experimental conditions, among which, EF-1α, RPL40, and 18S are most suitable reference genes for studying genes related development stages of A. dissimilis, RPL40 and α-TUB for larval tissues, α-TUB and 28S for adult tissues, EF-1α and β-ACT for insecticidal treatments, β-ACT and 28S for temperature treatments, EF-1α and β-ACT for starvation treatments, RPL40 and 18S for dietary treatments, and 18S, 28S, and α-TUB for all the samples. These results provide suitable reference genes for studying gene expression in A. dissimilis under different experimental conditions, and also lay the foundation for further research into the function of related genes in A. dissimilis.
Collapse
Affiliation(s)
- Jinrong Tang
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoqi Dong
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Man Zhao
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xianru Guo
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Boel A, Burger J, Vanhomwegen M, Beyens A, Renard M, Barnhoorn S, Casteleyn C, Reinhardt DP, Descamps B, Vanhove C, van der Pluijm I, Coucke P, Willaert A, Essers J, Callewaert B. Slc2a10 knock-out mice deficient in ascorbic acid synthesis recapitulate aspects of arterial tortuosity syndrome and display mitochondrial respiration defects. Hum Mol Genet 2021; 29:1476-1488. [PMID: 32307537 DOI: 10.1093/hmg/ddaa071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Arterial tortuosity syndrome (ATS) is a recessively inherited connective tissue disorder, mainly characterized by tortuosity and aneurysm formation of the major arteries. ATS is caused by loss-of-function mutations in SLC2A10, encoding the facilitative glucose transporter GLUT10. Former studies implicated GLUT10 in the transport of dehydroascorbic acid, the oxidized form of ascorbic acid (AA). Mouse models carrying homozygous Slc2a10 missense mutations did not recapitulate the human phenotype. Since mice, in contrast to humans, are able to intracellularly synthesize AA, we generated a novel ATS mouse model, deficient for Slc2a10 as well as Gulo, which encodes for L-gulonolactone oxidase, an enzyme catalyzing the final step in AA biosynthesis in mouse. Gulo;Slc2a10 double knock-out mice showed mild phenotypic anomalies, which were absent in single knock-out controls. While Gulo;Slc2a10 double knock-out mice did not fully phenocopy human ATS, histological and immunocytochemical analysis revealed compromised extracellular matrix formation. Transforming growth factor beta signaling remained unaltered, while mitochondrial function was compromised in smooth muscle cells derived from Gulo;Slc2a10 double knock-out mice. Altogether, our data add evidence that ATS is an ascorbate compartmentalization disorder, but additional factors underlying the observed phenotype in humans remain to be determined.
Collapse
Affiliation(s)
- Annekatrien Boel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,Ghent-Fertility and Stem cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Joyce Burger
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Marine Vanhomwegen
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Aude Beyens
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marjolijn Renard
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Christophe Casteleyn
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Dieter P Reinhardt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Faculty of Dentistry, McGill University, H3A 0C7 Montreal, Quebec, Canada
| | - Benedicte Descamps
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, 9000 Ghent, Belgium
| | - Christian Vanhove
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, 9000 Ghent, Belgium
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Paul Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Xie J, Liu T, Khashaveh A, Yi C, Liu X, Zhang Y. Identification and Evaluation of Suitable Reference Genes for RT-qPCR Analysis in Hippodamia variegata (Coleoptera: Coccinellidae) Under Different Biotic and Abiotic Conditions. Front Physiol 2021; 12:669510. [PMID: 34079474 PMCID: PMC8165390 DOI: 10.3389/fphys.2021.669510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is an accurate and convenient technique for quantifying expression levels of the target genes. Selection of the appropriate reference gene is of the vital importance for RT-qPCR analysis. Hippodamia variegata is one of the most important predatory natural enemies of aphids. Recently, transcriptome and genome sequencings of H. variegata facilitate the gene functional studies. However, there has been rare investigation on the detection of stably expressed reference genes in H. variegata. In the current study, by using five analytical tools (Delta Ct, geNorm, NormFinder, BestKeeper, and RefFinder), eight candidate reference genes, namely, Actin, EF1α, RPL7, RPL18, RPS23, Tubulin-α, Tubulin-β, and TufA, were evaluated under four experimental conditions including developmental stages, tissues, temperatures, and diets. As a result, a specific set of reference genes were recommended for each experimental condition. These findings will help to improve the accuracy and reliability of RT-qPCR data, and lay a foundation for further exploration on the gene function of H. variegata.
Collapse
Affiliation(s)
- Jiaoxin Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tinghui Liu
- College of Plant Protections, Agricultural University of Hebei, Baoding, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaoqun Yi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Protections, Agricultural University of Hebei, Baoding, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Protections, Agricultural University of Hebei, Baoding, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Liu W, Yuan X, Yuan S, Dai L, Dong S, Liu J, Peng L, Wang M, Tang Y, Xiao Y. Optimal reference genes for gene expression analysis in polyploid of Cyprinus carpio and Carassius auratus. BMC Genet 2020; 21:107. [PMID: 32943013 PMCID: PMC7499967 DOI: 10.1186/s12863-020-00915-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Reference genes are usually stably expressed in various cells and tissues. However, it was reported that the expression of some reference genes may be distinct in different species. In this study, we intend to answer whether the expression of reported traditional reference genes changes or not in the polyploid fish RESULTS: By retrieving the mRNA sequencing data of three different ploidy fish from the NCBI SRA database, we selected 12 candidate reference genes, and examined their expression levels in the 10 tissues and in the four cell lines of three different ploidy fish by real-time PCR. Then, the expression profiles of these 12 candidate reference genes were systematically evaluated by using the software platforms: BestKeeper, NormFinder and geNorm. CONCLUSION The 28S ribosomal protein S5 gene (RPS5) and the ribosomal protein S18 gene (RPS18) are the most suitable reference genes for the polyploid of Cyprinus carpio and Carassius auratus, demonstrated by both of the tissues and the cultured cells.
Collapse
Affiliation(s)
- Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Xiudan Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shuli Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Liuye Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shenghua Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Minmeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yi Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.
| |
Collapse
|
6
|
Yin J, Sun L, Zhang Q, Cao C. Screening and evaluation of the stability of expression of reference genes in Lymantria dispar (Lepidoptera: Erebidae) using qRT-PCR. Gene 2020; 749:144712. [PMID: 32360412 DOI: 10.1016/j.gene.2020.144712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
The quantitative real-time polymerase chain reaction (qRT-PCR) has rapidly become the most sensitive and accurate method for the quantitative analysis of gene expression. Normalization of gene expression to that of relatively stably expressed housekeeping genes is required to facilitate the study of gene expression and to obtain more accurate RT-PCR data. However, no studies of the stability of expression of housekeeping genes in Lymantria dispar have been reported. In the present study, BestKeeper, GeNorm and NormFinder statistical software was used to evaluate the expression of thirteen candidate reference genes in L. dispar under different conditions. The expression levels of candidate reference genes were determined for two biological factors (developmental stages and tissues) and four abiotic treatments (temperature, insecticide, CO2 and starvation). The results showed that the best candidate reference genes in L. dispar were TUB, AK, RPS15 for developmental stages, RPL32 and GAPDH for tissues, ACTB and EF1-α for CO2 stress, GAPDH and RPL32 for temperature stress, RPS3 and GAPDH for insecticide stress, and GAPDH and RPS3 for starvation stress. In summary, EF1-α and TUB are preferential housekeeping genes in L. dispar under various conditions. These results provide a basis for the further study of functional genes of L. dispar.
Collapse
Affiliation(s)
- Jingjing Yin
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Qihui Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
7
|
DeMars KM, Yang C, Candelario-Jalil E. Neuroprotective effects of targeting BET proteins for degradation with dBET1 in aged mice subjected to ischemic stroke. Neurochem Int 2019; 127:94-102. [DOI: 10.1016/j.neuint.2019.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
|
8
|
Evaluating the applicability of mouse SINEs as an alternative normalization approach for RT-qPCR in brain tissue of the APP23 model for Alzheimer’s disease. J Neurosci Methods 2019; 320:128-137. [DOI: 10.1016/j.jneumeth.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/04/2023]
|
9
|
Loontiens S, Depestel L, Vanhauwaert S, Dewyn G, Gistelinck C, Verboom K, Van Loocke W, Matthijssens F, Willaert A, Vandesompele J, Speleman F, Durinck K. Purification of high-quality RNA from a small number of fluorescence activated cell sorted zebrafish cells for RNA sequencing purposes. BMC Genomics 2019; 20:228. [PMID: 30894119 PMCID: PMC6425699 DOI: 10.1186/s12864-019-5608-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/14/2019] [Indexed: 11/30/2022] Open
Abstract
Background Transgenic zebrafish lines with the expression of a fluorescent reporter under the control of a cell-type specific promoter, enable transcriptome analysis of FACS sorted cell populations. RNA quality and yield are key determinant factors for accurate expression profiling. Limited cell number and FACS induced cellular stress make RNA isolation of sorted zebrafish cells a delicate process. We aimed to optimize a workflow to extract sufficient amounts of high-quality RNA from a limited number of FACS sorted cells from Tg(fli1a:GFP) zebrafish embryos, which can be used for accurate gene expression analysis. Results We evaluated two suitable RNA isolation kits (the RNAqueous micro and the RNeasy plus micro kit) and determined that sorting cells directly into lysis buffer is a critical step for success. For low cell numbers, this ensures direct cell lysis, protects RNA from degradation and results in a higher RNA quality and yield. We showed that this works well up to 0.5× dilution of the lysis buffer with sorted cells. In our sort settings, this corresponded to 30,000 and 75,000 cells for the RNAqueous micro kit and RNeasy plus micro kit respectively. Sorting more cells dilutes the lysis buffer too much and requires the use of a collection buffer. We also demonstrated that an additional genomic DNA removal step after RNA isolation is required to completely clear the RNA from any contaminating genomic DNA. For cDNA synthesis and library preparation, we combined SmartSeq v4 full length cDNA library amplification, Nextera XT tagmentation and sample barcoding. Using this workflow, we were able to generate highly reproducible RNA sequencing results. Conclusions The presented optimized workflow enables to generate high quality RNA and allows accurate transcriptome profiling of small populations of sorted zebrafish cells. Electronic supplementary material The online version of this article (10.1186/s12864-019-5608-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siebe Loontiens
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Lisa Depestel
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Suzanne Vanhauwaert
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Givani Dewyn
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Charlotte Gistelinck
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Karen Verboom
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Jo Vandesompele
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Kaat Durinck
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium.
| |
Collapse
|