1
|
Discovery of a Hadean xenocrystic zircon in the Cathaysia Block. Sci Bull (Beijing) 2022; 67:2416-2419. [PMID: 36566064 DOI: 10.1016/j.scib.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
|
2
|
Magmatic thickening of crust in non-plate tectonic settings initiated the subaerial rise of Earth's first continents 3.3 to 3.2 billion years ago. Proc Natl Acad Sci U S A 2021; 118:2105746118. [PMID: 34750257 DOI: 10.1073/pnas.2105746118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
When and how Earth's earliest continents-the cratons-first emerged above the oceans (i.e., emersion) remain uncertain. Here, we analyze a craton-wide record of Paleo-to-Mesoarchean granitoid magmatism and terrestrial to shallow-marine sedimentation preserved in the Singhbhum Craton (India) and combine the results with isostatic modeling to examine the timing and mechanism of one of the earliest episodes of large-scale continental emersion on Earth. Detrital zircon U-Pb(-Hf) data constrain the timing of terrestrial to shallow-marine sedimentation on the Singhbhum Craton, which resolves the timing of craton-wide emersion. Time-integrated petrogenetic modeling of the granitoids quantifies the progressive changes in the cratonic crustal thickness and composition and the pressure-temperature conditions of granitoid magmatism, which elucidates the underlying mechanism and tectonic setting of emersion. The results show that the entire Singhbhum Craton became subaerial ∼3.3 to 3.2 billion years ago (Ga) due to progressive crustal maturation and thickening driven by voluminous granitoid magmatism within a plateau-like setting. A similar sedimentary-magmatic evolution also accompanied the early (>3 Ga) emersion of other cratons (e.g., Kaapvaal Craton). Therefore, we propose that the emersion of Earth's earliest continents began during the late Paleoarchean to early Mesoarchean and was driven by the isostatic rise of their magmatically thickened (∼50 km thick), buoyant, silica-rich crust. The inferred plateau-like tectonic settings suggest that subduction collision-driven compressional orogenesis was not essential in driving continental emersion, at least before the Neoarchean. We further surmise that this early emersion of cratons could be responsible for the transient and localized episodes of atmospheric-oceanic oxygenation (O2-whiffs) and glaciation on Archean Earth.
Collapse
|
3
|
Precambrian and early Cambrian palaeobiology of India: Quo Vadis. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00029-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Evaluation of grain boundaries as percolation pathways in quartz-rich continental crust using Atomic Force Microscopy. Sci Rep 2021; 11:9831. [PMID: 33972600 PMCID: PMC8111022 DOI: 10.1038/s41598-021-89250-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/19/2021] [Indexed: 11/08/2022] Open
Abstract
Hydrous fluids play a vital role in the chemical and rheological evolution of ductile, quartz-bearing continental crust, where fluid percolation pathways are controlled by grain boundary domains. In this study, widths of grain boundary domains in seven quartzite samples metamorphosed under varying crustal conditions were investigated using Atomic Force Microscopy (AFM) which allows comparatively easy, high magnification imaging and precise width measurements. It is observed that dynamic recrystallization at higher metamorphic grades is much more efficient at reducing grain boundary widths than at lower temperature conditions. The concept of force-distance spectroscopy, applied to geological samples for the first time, allows qualitative estimation of variations in the strength of grain boundary domains. The strength of grain boundary domains is inferred to be higher in the high grade quartzites, which is supported by Kernel Average Misorientation (KAM) studies using Electron Backscatter Diffraction (EBSD). The results of the study show that quartzites deformed and metamorphosed at higher grades have narrower channels without pores and an abundance of periodically arranged bridges oriented at right angles to the length of the boundary. We conclude that grain boundary domains in quartz-rich rocks are more resistant to fluid percolation in the granulite rather than the greenschist facies.
Collapse
|
5
|
Heterogeneous Hadean crust with ambient mantle affinity recorded in detrital zircons of the Green Sandstone Bed, South Africa. Proc Natl Acad Sci U S A 2021; 118:2004370118. [PMID: 33602806 DOI: 10.1073/pnas.2004370118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nature of Earth's earliest crust and the processes by which it formed remain major issues in Precambrian geology. Due to the absence of a rock record older than ∼4.02 Ga, the only direct record of the Hadean is from rare detrital zircon and that largely from a single area: the Jack Hills and Mount Narryer region of Western Australia. Here, we report on the geochemistry of Hadean detrital zircons as old as 4.15 Ga from the newly discovered Green Sandstone Bed in the Barberton greenstone belt, South Africa. We demonstrate that the U-Nb-Sc-Yb systematics of the majority of these Hadean zircons show a mantle affinity as seen in zircon from modern plume-type mantle environments and do not resemble zircon from modern continental or oceanic arcs. The zircon trace element compositions furthermore suggest magma compositions ranging from higher temperature, primitive to lower temperature, and more evolved tonalite-trondhjemite-granodiorite (TTG)-like magmas that experienced some reworking of hydrated crust. We propose that the Hadean parental magmas of the Green Sandstone Bed zircons formed from remelting of mafic, mantle-derived crust that experienced some hydrous input during melting but not from the processes seen in modern arc magmatism.
Collapse
|
6
|
Nebel O, Capitanio FA, Moyen JF, Weinberg RF, Clos F, Nebel-Jacobsen YJ, Cawood PA. When crust comes of age: on the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2018.0103. [PMID: 30275165 PMCID: PMC6189554 DOI: 10.1098/rsta.2018.0103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 05/18/2023]
Abstract
The secular evolution of the Earth's crust is marked by a profound change in average crustal chemistry between 3.2 and 2.5 Ga. A key marker for this change is the transition from Archaean sodic granitoid intrusions of the tonalite-trondhjemite-granodiorite (TTG) series to potassic (K) granitic suites, akin (but not identical) to I-type granites that today are associated with subduction zones. It remains poorly constrained as to how and why this change was initiated and if it holds clues about the geodynamic transition from a pre-plate tectonic mode, often referred to as stagnant lid, to mobile plate tectonics. Here, we combine a series of proposed mechanisms for Archaean crustal geodynamics in a single model to explain the observed change in granitoid chemistry. Numeric modelling indicates that upper mantle convection drives crustal flow and subsidence, leading to profound diversity in lithospheric thickness with thin versus thick proto-plates. When convecting asthenospheric mantle interacts with lower lithosphere, scattered crustal drips are created. Under increasing P-T conditions, partial melting of hydrated meta-basalt within these drips produces felsic melts that intrude the overlying crust to form TTG. Dome structures, in which these melts can be preserved, are a positive diapiric expression of these negative drips. Transitional TTG with elevated K mark a second evolutionary stage, and are blends of subsided and remelted older TTG forming K-rich melts and new TTG melts. Ascending TTG-derived melts from asymmetric drips interact with the asthenospheric mantle to form hot, high-Mg sanukitoid. These melts are small in volume, predominantly underplated, and their heat triggered melting of lower crustal successions to form higher-K granites. Importantly, this evolution operates as a disseminated process in space and time over hundreds of millions of years (greater than 200 Ma) in all cratons. This focused ageing of the crust implies that compiled geochemical data can only broadly reflect geodynamic changes on a global or even craton-wide scale. The observed change in crustal chemistry does mark the lead up to but not the initiation of modern-style subduction.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- O Nebel
- School of Earth, Atmosphere and Environment, Monash University, Clayton, 3800 Victoria, Australia
| | - F A Capitanio
- School of Earth, Atmosphere and Environment, Monash University, Clayton, 3800 Victoria, Australia
| | - J-F Moyen
- Laboratoire Magmas et Volcans, Université de Lyon, UJM-UCA-CNRS-IRD, 23 rue Dr. Paul Michelon, 42023 Saint Etienne, France
| | - R F Weinberg
- School of Earth, Atmosphere and Environment, Monash University, Clayton, 3800 Victoria, Australia
| | - F Clos
- School of Earth, Atmosphere and Environment, Monash University, Clayton, 3800 Victoria, Australia
| | | | - P A Cawood
- School of Earth, Atmosphere and Environment, Monash University, Clayton, 3800 Victoria, Australia
| |
Collapse
|