1
|
Wang J, Saul J, Nikonorova IA, Cruz CN, Power KM, Nguyen KC, Hall DH, Barr MM. Ciliary intrinsic mechanisms regulate dynamic ciliary extracellular vesicle release from sensory neurons. Curr Biol 2024; 34:2756-2763.e2. [PMID: 38838665 PMCID: PMC11187650 DOI: 10.1016/j.cub.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Extracellular vesicles (EVs) are submicron membranous structures and key mediators of intercellular communication.1,2 Recent research has highlighted roles for cilia-derived EVs in signal transduction, underscoring their importance as bioactive extracellular organelles containing conserved ciliary signaling proteins.3,4 Members of the transient receptor potential (TRP) channel polycystin-2 (PKD-2) family are found in ciliary EVs of the green algae Chlamydomonas and the nematode Caenorhabditis elegans5,6 and in EVs in the mouse embryonic node and isolated from human urine.7,8 In C. elegans, PKD-2 is expressed in male-specific EV-releasing sensory neurons, which extend ciliary tips to ciliary pore and directly release EVs into the environment.6,9 Males release EVs in a mechanically stimulated manner, regulate EV cargo content in response to mating partners, and deposit PKD-2::GFP-labeled EVs on the vulval cuticle of hermaphrodites during mating.9,10 Combined, our findings suggest that ciliary EV release is a dynamic process. Herein, we identify mechanisms controlling dynamic EV shedding using time-lapse imaging. Cilia can sustain the release of PKD-2-labeled EVs for 2 h. This extended release doesn't require neuronal transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The kinesin-3 motor kinesin-like protein 6 (KLP-6) is necessary for initial and extended EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dynamic replenishment of PKD-2 at the ciliary tip is key to sustained EV release. Our study provides a comprehensive portrait of real-time ciliary EV release and mechanisms supporting cilia as proficient EV release platforms.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Carlos Nava Cruz
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Kaiden M Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ken C Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Wang J, Saul J, Nikonorova IA, Cruz CN, Power KM, Nguyen KC, Hall DH, Barr MM. Ciliary intrinsic mechanisms regulate dynamic ciliary extracellular vesicle release from sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565151. [PMID: 37961114 PMCID: PMC10635059 DOI: 10.1101/2023.11.01.565151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cilia-derived extracellular vesicles (EVs) contain signaling proteins and act in intercellular communication. Polycystin-2 (PKD-2), a transient receptor potential channel, is a conserved ciliary EVs cargo. Caenorhabditis elegans serves as a model for studying ciliary EV biogenesis and function. C. elegans males release EVs in a mechanically-induced manner and deposit PKD-2-labeled EVs onto the hermaphrodite vulva during mating, suggesting an active release process. Here, we study the dynamics of ciliary EV release using time-lapse imaging and find that cilia can sustain the release of PKD-2-labeled EVs for a two-hour duration. Intriguingly, this extended release doesn't require neuronal synaptic transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The ciliary kinesin-3 motor KLP-6 is necessary for both initial and extended ciliary EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dihydroceramide desaturase DEGS1/2 ortholog TTM-5 is highly expressed in the EV-releasing sensory neurons, localizes to cilia, and is required for sustained but not initial ciliary EV release, implicating ceramide in ciliary ectocytosis. The study offers a comprehensive portrait of real-time ciliary EV release, and mechanisms supporting cilia as proficient EV release platforms.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Inna A. Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Carlos Nava Cruz
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Kaiden M. Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ken C. Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Weng JW, Park H, Valotteau C, Chen RT, Essmann CL, Pujol N, Sternberg PW, Chen CH. Body stiffness is a mechanical property that facilitates contact-mediated mate recognition in Caenorhabditis elegans. Curr Biol 2023; 33:3585-3596.e5. [PMID: 37541249 PMCID: PMC10530406 DOI: 10.1016/j.cub.2023.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
Physical contact is prevalent in the animal kingdom to recognize suitable mates by decoding information about sex, species, and maturity. Although chemical cues for mate recognition have been extensively studied, the role of mechanical cues remains elusive. Here, we show that C. elegans males recognize conspecific and reproductive mates through short-range cues, and that the attractiveness of potential mates depends on the sex and developmental stages of the hypodermis. We find that a particular group of cuticular collagens is required for mate attractiveness. These collagens maintain body stiffness to sustain mate attractiveness but do not affect the surface properties that evoke the initial step of mate recognition, suggesting that males utilize multiple sensory mechanisms to recognize suitable mates. Manipulations of body stiffness via physical interventions, chemical treatments, and 3D-printed bionic worms indicate that body stiffness is a mechanical property for mate recognition and increases mating efficiency. Our study thus extends the repertoire of sensory cues of mate recognition in C. elegans and provides a paradigm to study the important roles of mechanosensory cues in social behaviors.
Collapse
Affiliation(s)
- Jen-Wei Weng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Claire Valotteau
- Aix-Marseille Univ, INSERM, CNRS, LAI, Turing Centre for Living Systems, 163 Avenue de Luminy, 13009 Marseille, France
| | - Rui-Tsung Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Clara L Essmann
- Bio3/Bioinformatics and Molecular Genetics, Albert-Ludwigs-University, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Nathalie Pujol
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, 163 Avenue de Luminy, case 906, 13009 Marseille, France
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| | - Chun-Hao Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Ahn S, Yang H, Son S, Lee HS, Park D, Yim H, Choi HJ, Swoboda P, Lee J. The C. elegans regulatory factor X (RFX) DAF-19M module: A shift from general ciliogenesis to cell-specific ciliary and behavioral specialization. Cell Rep 2022; 39:110661. [PMID: 35417689 DOI: 10.1016/j.celrep.2022.110661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Cilia are important for the interaction with environments and the proper function of tissues. While the basic structure of cilia is well conserved, ciliated cells have various functions. To understand the distinctive identities of ciliated cells, the identification of cell-specific proteins and its regulation is essential. Here, we report the mechanism that confers a specific identity on IL2 neurons in Caenorhabditis elegans, neurons important for the dauer larva-specific nictation behavior. We show that DAF-19M, an isoform of the sole C. elegans RFX transcription factor DAF-19, heads a regulatory subroutine, regulating target genes through an X-box motif variant under the control of terminal selector proteins UNC-86 and CFI-1 in IL2 neurons. Considering the conservation of DAF-19M module in IL2 neurons for nictation and in male-specific neurons for mating behavior, we propose the existence of an evolutionarily adaptable, hard-wired genetic module for distinct behaviors that share the feature "recognizing the environment."
Collapse
Affiliation(s)
- Soungyub Ahn
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Heeseung Yang
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Sangwon Son
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hyun Sik Lee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dongjun Park
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hyunsoo Yim
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Fan Y, Zou W, Liu J, Al-Sheikh U, Cheng H, Duan D, Du Chen, Liu S, Chen L, Xu J, Ruhomutally F, Kang L. Polymodal Functionality of C. elegans OLL Neurons in Mechanosensation and Thermosensation. Neurosci Bull 2021; 37:611-622. [PMID: 33555565 PMCID: PMC8099987 DOI: 10.1007/s12264-021-00629-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/25/2020] [Indexed: 12/04/2022] Open
Abstract
Sensory modalities are important for survival but the molecular mechanisms remain challenging due to the polymodal functionality of sensory neurons. Here, we report the C. elegans outer labial lateral (OLL) sensilla sensory neurons respond to touch and cold. Mechanosensation of OLL neurons resulted in cell-autonomous mechanically-evoked Ca2+ transients and rapidly-adapting mechanoreceptor currents with a very short latency. Mechanotransduction of OLL neurons might be carried by a novel Na+ conductance channel, which is insensitive to amiloride. The bona fide mechano-gated Na+-selective degenerin/epithelial Na+ channels, TRP-4, TMC, and Piezo proteins are not involved in this mechanosensation. Interestingly, OLL neurons also mediated cold but not warm responses in a cell-autonomous manner. We further showed that the cold response of OLL neurons is not mediated by the cold receptor TRPA-1 or the temperature-sensitive glutamate receptor GLR-3. Thus, we propose the polymodal functionality of OLL neurons in mechanosensation and cold sensation.
Collapse
Affiliation(s)
- Yuedan Fan
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310053, China
| | - Wenjuan Zou
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310053, China
| | - Jia Liu
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310053, China
| | - Umar Al-Sheikh
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310053, China
| | - Hankui Cheng
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310053, China
| | - Duo Duan
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310053, China
| | - Du Chen
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310053, China
| | - Siyan Liu
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310053, China
| | - Luyi Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Firdosh Ruhomutally
- Department of Human Sciences and Psychology, University of South Africa (UNISA), Pretoria, 0003, South Africa
| | - Lijun Kang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
6
|
Abstract
Mechanosensation such as touch, hearing and proprioception, is functionally regulated by mechano-gated ion channels through the process of transduction. Mechano-gated channels are a subtype of gated ion channels engaged in converting mechanical stimuli to chemical or electrical signals thereby modulating sensation. To date, a few families of mechano-gated channels (DEG/ENaC, TRPN, K2P, TMC and Piezo) have been identified in eukaryotes. Using a tractable genetic model organism Caenorhabditis elegans, the molecular mechanism of mechanosensation have been the focus of much research to comprehend the process of mechanotransduction. Comprising of almost all metazoans classes of ion channels, transporters and receptors, C. elegans is a powerful genetic model to explore mechanosensitive behaviors such as touch sensation and proprioception. The nematode relies primarily on its sensory abilities to survive in its natural environment. Genetic screening, calcium imaging and electrophysiological analysis have established that ENaC proteins and TRPN channel (TRP-4 protein) can characterize mechano-gated channels in C. elegans. A recent study reported that TMCs are likely the pore-forming subunit of a mechano-gated channel in C. elegans. Nevertheless, it still remains unclear whether Piezo as well as other candidate proteins can form mechano-gated channels in C. elegans.
Collapse
Affiliation(s)
- Umar Al-Sheikh
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Lijun Kang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
7
|
How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli. Genetics 2019; 212:25-51. [PMID: 31053616 PMCID: PMC6499529 DOI: 10.1534/genetics.118.300241] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022] Open
Abstract
Caenorhabditis elegans lives in a complex habitat in which they routinely experience large fluctuations in temperature, and encounter physical obstacles that vary in size and composition. Their habitat is shared by other nematodes, by beneficial and harmful bacteria, and nematode-trapping fungi. Not surprisingly, these nematodes can detect and discriminate among diverse environmental cues, and exhibit sensory-evoked behaviors that are readily quantifiable in the laboratory at high resolution. Their ability to perform these behaviors depends on <100 sensory neurons, and this compact sensory nervous system together with powerful molecular genetic tools has allowed individual neuron types to be linked to specific sensory responses. Here, we describe the sensory neurons and molecules that enable C. elegans to sense and respond to physical stimuli. We focus primarily on the pathways that allow sensation of mechanical and thermal stimuli, and briefly consider this animal’s ability to sense magnetic and electrical fields, light, and relative humidity. As the study of sensory transduction is critically dependent upon the techniques for stimulus delivery, we also include a section on appropriate laboratory methods for such studies. This chapter summarizes current knowledge about the sensitivity and response dynamics of individual classes of C. elegans mechano- and thermosensory neurons from in vivo calcium imaging and whole-cell patch-clamp electrophysiology studies. We also describe the roles of conserved molecules and signaling pathways in mediating the remarkably sensitive responses of these nematodes to mechanical and thermal cues. These studies have shown that the protein partners that form mechanotransduction channels are drawn from multiple superfamilies of ion channel proteins, and that signal transduction pathways responsible for temperature sensing in C. elegans share many features with those responsible for phototransduction in vertebrates.
Collapse
|
8
|
Bezares-Calderón LA, Berger J, Jasek S, Verasztó C, Mendes S, Gühmann M, Almeda R, Shahidi R, Jékely G. Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance. eLife 2018; 7:36262. [PMID: 30547885 PMCID: PMC6294549 DOI: 10.7554/elife.36262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Startle responses triggered by aversive stimuli including predators are widespread across animals. These coordinated whole-body actions require the rapid and simultaneous activation of a large number of muscles. Here we study a startle response in a planktonic larva to understand the whole-body circuit implementation of the behaviour. Upon encountering water vibrations, larvae of the annelid Platynereis close their locomotor cilia and simultaneously raise the parapodia. The response is mediated by collar receptor neurons expressing the polycystins PKD1-1 and PKD2-1. CRISPR-generated PKD1-1 and PKD2-1 mutant larvae do not startle and fall prey to a copepod predator at a higher rate. Reconstruction of the whole-body connectome of the collar-receptor-cell circuitry revealed converging feedforward circuits to the ciliary bands and muscles. The wiring diagram suggests circuit mechanisms for the intersegmental and left-right coordination of the response. Our results reveal how polycystin-mediated mechanosensation can trigger a coordinated whole-body effector response involved in predator avoidance.
Collapse
Affiliation(s)
- Luis A Bezares-Calderón
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sanja Jasek
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Csaba Verasztó
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sara Mendes
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Martin Gühmann
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rodrigo Almeda
- Centre for Ocean Life, Technical University of Denmark, Denmark, Kingdom of Denmark
| | - Réza Shahidi
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
9
|
Shao J, Zhang X, Cheng H, Yue X, Zou W, Kang L. Serotonergic neuron ADF modulates avoidance behaviors by inhibiting sensory neurons in C. elegans. Pflugers Arch 2018; 471:357-363. [PMID: 30206705 DOI: 10.1007/s00424-018-2202-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
Serotonin plays an essential role in both the invertebrate and vertebrate nervous systems. ADF, an amphid neuron with dual ciliated sensory endings, is considered to be the only serotonergic sensory neuron in the hermaphroditic Caenorhabditis elegans. This neuron is known to be involved in a range of behaviors including pharyngeal pumping, dauer formation, sensory transduction, and memory. However, whether ADF neuron is directly activated by environmental cues and how it processes these information remains unknown. In this study, we found that ADF neuron responds reliably to noxious stimuli such as repulsive odors, copper, sodium dodecyl sulfonate (SDS), and mechanical perturbation. This response is mediated by cell-autonomous and non-cell autonomous mechanisms. Furthermore, we show that ADF can modulate avoidance behaviors by inhibiting ASH, an amphid neuron with single ciliated ending. This work greatly furthers our understanding of 5-HT's contributions to sensory information perception, processing, and the resulting behavioral responses.
Collapse
Affiliation(s)
- Jiajie Shao
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xiaoyan Zhang
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Hankui Cheng
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xiaomin Yue
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Wenjuan Zou
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Lijun Kang
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|