1
|
Boutachkourt A, Drążyk D, Missal M. Gazing into spatiotemporal 'known unknowns': the influence of uncertainty on pupil size and saccadic eye movements. Sci Rep 2024; 14:17509. [PMID: 39080377 PMCID: PMC11289384 DOI: 10.1038/s41598-024-68233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Expectation of a future stimulus increases the preparedness to act once it actually appears and results in reduced latency of the appropriate motor response. Real world events are uncertain both spatially and/or temporally but this uncertainty could itself be expected. In the presence of both expected spatial and temporal uncertainty, which one should be prioritized by the motor system could depend on the context. Therefore, we investigated the relative weight of expected spatial and temporal uncertainty during the preparation of a saccadic eye movement. A reaction time task was used with a variable foreperiod between a warning and an imperative visual stimuli. Expected temporal and/or spatial uncertainty associated with the stimulus was cued. We found that before imperative stimulus onset, pupil dilation increased with expected temporal uncertainty but was unaltered by spatial uncertainty. After imperative stimulus onset, both types of expected uncertainty affected saccade latency. Maximum eye velocity was modulated by expected spatial uncertainty only. In conclusion, expected temporal and spatial uncertainty do not have the same impact on preparation and execution of a motor response. There could be a prioritization of the relevant information as a function of the evolving expected uncertainty context during the task.
Collapse
Affiliation(s)
- Aïcha Boutachkourt
- Institute of Neurosciences (IONS), Cognition and System (COSY), Université Catholique de Louvain, 53 Av Mounier, B1.53.04 COSY, 1200, Brussels, Belgium
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dominika Drążyk
- Institute of Neurosciences (IONS), Cognition and System (COSY), Université Catholique de Louvain, 53 Av Mounier, B1.53.04 COSY, 1200, Brussels, Belgium
| | - Marcus Missal
- Institute of Neurosciences (IONS), Cognition and System (COSY), Université Catholique de Louvain, 53 Av Mounier, B1.53.04 COSY, 1200, Brussels, Belgium.
| |
Collapse
|
2
|
Drążyk D, Missal M. How Does Temporal Blurring Alter Movement Timing? eNeuro 2023; 10:ENEURO.0496-22.2023. [PMID: 37669857 PMCID: PMC10500974 DOI: 10.1523/eneuro.0496-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023] Open
Abstract
Subjective uncertainty arises because the estimation of the timing of an event into the future is error prone. This impact of stimulus-bound uncertainty on movement preparation has often been investigated using reaction time tasks where a warning stimulus (WS) predicts the occurrence of a "go" signal. The timing of the "go" signal can be chosen from a particular probability distribution with a given variance or uncertainty. It has been repeatedly shown that reaction times covary with the shape of the used "go" signal distribution. This is interpreted as evidence for temporal preparation. Moreover, the variance of the response time should always increase with the duration of the delay between the WS and the "go" signal. This increasing variance has been interpreted as a consequence of the temporal "blurring" of future events (scalar expectancy). The present paper tested the validity of the temporal "blurring" hypothesis in humans with a simple oculomotor reaction time task where subjective and stimulus-bound uncertainties were increased. Subjective uncertainty about the timing of a "go" signal was increased by lengthening the delay between the WS and the "go" signal. Objective uncertainty was altered by increasing the variance of "go" signal timing. Contrary to temporal blurring hypotheses, the study has shown that increasing the delay between events did not significantly increase movement timing variability. These results suggest that temporal blurring could not be a property of movement timing in an implicit timing context.
Collapse
Affiliation(s)
- Dominika Drążyk
- Institute of Neurosciences (IONS), Cognition and System (COSY), Université Catholique de Louvain, Brussels 1200, Belgium
| | - Marcus Missal
- Institute of Neurosciences (IONS), Cognition and System (COSY), Université Catholique de Louvain, Brussels 1200, Belgium
| |
Collapse
|
3
|
Chaves NSG, Janner DE, Poetini MR, Fernandes EJ, de Almeida FP, Musachio EAS, Reginaldo JC, Dahleh MMM, de Carvalho AS, Leimann FV, Gonçalves OH, Ramborger BP, Roehrs R, Prigol M, Guerra GP. β-carotene-loaded nanoparticles protect against neuromotor damage, oxidative stress, and dopamine deficits in a model of Parkinson's disease in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109615. [PMID: 36940893 DOI: 10.1016/j.cbpc.2023.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
β-carotene-loaded nanoparticles improves absorption by increasing bioavailability. The Drosophila melanogaster model of Parkinson's disease must be helpful in investigating potential neuroprotective effects. Four groups of four-day-old flies were exposed to: (1) control; (2) diet containing rotenone (500 μM); (3) β-carotene-loaded nanoparticles (20 μM); (4) β-carotene-loaded nanoparticles and rotenone for 7 days. Then, the percentage of survival, geotaxis tests, open field, aversive phototaxis and food consumption were evaluated. At the end of the behaviors, the analyses of the levels of reactive species (ROS), thiobarbituric acid reactive substances (TBARS), catalase (CAT) and superoxide dismutase (SOD) activity was carried out, as well as an evaluation of the levels of dopamine and acetylcholinesterase (AChE) activity, in the head of flies. Nanoparticles loaded with β-carotene were able to improve motor function, memory, survival and also restored the oxidative stress indicators (CAT, SOD, ROS and TBARS), dopamine levels, AChE activity after exposure to rotenone. Overall, nanoparticles loaded with β-carotene showed significant neuroprotective effect against damage induced by the Parkinson-like disease model, emerging as a possible treatment. Overall, β-carotene-loaded nanoparticles presented significant neuroprotective effect against damage induced by model of Parkinson-like disease, emerging as a possible treatment.
Collapse
Affiliation(s)
- Nathalie Savedra Gomes Chaves
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Dieniffer Espinosa Janner
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Marcia Rósula Poetini
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Francielli Polet de Almeida
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Jocemara Corrêa Reginaldo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Amarilis Santos de Carvalho
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Bruna Piaia Ramborger
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil.
| |
Collapse
|
4
|
Li B, Wang B, Zaidel A. Modality-specific sensory and decisional carryover effects in duration perception. BMC Biol 2023; 21:48. [PMID: 36882836 PMCID: PMC9993637 DOI: 10.1186/s12915-023-01547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The brain uses recent history when forming perceptual decisions. This results in carryover effects in perception. Although separate sensory and decisional carryover effects have been shown in many perceptual tasks, their existence and nature in temporal processing are unclear. Here, we investigated whether and how previous stimuli and previous choices affect subsequent duration perception, in vision and audition. RESULTS In a series of three experiments, participants were asked to classify visual or auditory stimuli into "shorter" or "longer" duration categories. In experiment 1, visual and auditory stimuli were presented in separate blocks. Results showed that current duration estimates were repelled away from the previous trial's stimulus duration, but attracted towards the previous choice, in both vision and audition. In experiment 2, visual and auditory stimuli were pseudorandomly presented in one block. We found that sensory and decisional carryover effects occurred only when previous and current stimuli were from the same modality. Experiment 3 further investigated the stimulus dependence of carryover effects within each modality. In this experiment, visual stimuli with different shape topologies (or auditory stimuli with different audio frequencies) were pseudorandomly presented in one visual (or auditory) block. Results demonstrated sensory carryover (within each modality) despite task-irrelevant differences in visual shape topology or audio frequency. By contrast, decisional carryover was reduced (but still present) across different visual topologies and completely absent across different audio frequencies. CONCLUSIONS These results suggest that serial dependence in duration perception is modality-specific. Moreover, repulsive sensory carryover effects generalize within each modality, whereas attractive decisional carryover effects are contingent on contextual details.
Collapse
Affiliation(s)
- Baolin Li
- School of Psychology, Shaanxi Normal University, 199 Chang'an South Road, Yanta District, Xi'an, 710062, China.
| | - Biyao Wang
- School of Psychology, Shaanxi Normal University, 199 Chang'an South Road, Yanta District, Xi'an, 710062, China
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| |
Collapse
|
5
|
Miyawaki EK. Review: Subjective Time Perception, Dopamine Signaling, and Parkinsonian Slowness. Front Neurol 2022; 13:927160. [PMID: 35899266 PMCID: PMC9311331 DOI: 10.3389/fneur.2022.927160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
The association between idiopathic Parkinson's disease, a paradigmatic dopamine-deficiency syndrome, and problems in the estimation of time has been studied experimentally for decades. I review that literature, which raises a question about whether and if dopamine deficiency relates not only to the motor slowness that is an objective and cardinal parkinsonian sign, but also to a compromised neural substrate for time perception. Why does a clinically (motorically) significant deficiency in dopamine play a role in the subjective perception of time's passage? After a discussion of a classical conception of basal ganglionic control of movement under the influence of dopamine, I describe recent work in healthy mice using optogenetics; the methodology visualizes dopaminergic neuronal firing in very short time intervals, then allows for correlation with motor behaviors in trained tasks. Moment-to-moment neuronal activity is both highly dynamic and variable, as assessed by photometry of genetically defined dopaminergic neurons. I use those animal data as context to review a large experimental experience in humans, spanning decades, that has examined subjective time perception mainly in Parkinson's disease, but also in other movement disorders. Although the human data are mixed in their findings, I argue that loss of dynamic variability in dopaminergic neuronal activity over very short intervals may be a fundamental sensory aspect in the pathophysiology of parkinsonism. An important implication is that therapeutic response in Parkinson's disease needs to be understood in terms of short-term alterations in dynamic neuronal firing, as has already been examined in novel ways—for example, in the study of real-time changes in neuronal network oscillations across very short time intervals. A finer analysis of a treatment's network effects might aid in any effort to augment clinical response to either medications or functional neurosurgical interventions in Parkinson's disease.
Collapse
Affiliation(s)
- Edison K. Miyawaki
- Department of Neurology, Mass General Brigham, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Edison K. Miyawaki
| |
Collapse
|
6
|
Chassignolle M, Jovanovic L, Schmidt-Mutter C, Behr G, Giersch A, Coull JT. Dopamine Precursor Depletion in Healthy Volunteers Impairs Processing of Duration but Not Temporal Order. J Cogn Neurosci 2021; 33:946-963. [PMID: 33656394 DOI: 10.1162/jocn_a_01700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Studies in animals and humans have implicated the neurotransmitter dopamine in duration processing. However, very few studies have examined dopamine's involvement in other forms of temporal processing such as temporal order judgments. In a randomized within-subject placebo-controlled design, we used acute phenylalanine/tyrosine depletion (APTD) to reduce availability of the dopamine precursors tyrosine and phenylalanine in healthy human volunteers. As compared to a nutritionally balanced drink, APTD significantly impaired the ability to accurately reproduce interval duration in a temporal reproduction task. In addition, and confirming previous findings, the direction of error differed as a function of individual differences in underlying dopamine function. Specifically, APTD caused participants with low baseline dopamine precursor availability to overestimate the elapse of time, whereas those with high dopamine availability underestimated time. In contrast to these effects on duration processing, there were no significant effects of APTD on the accuracy of discriminating the temporal order of visual stimuli. This pattern of results does not simply represent an effect of APTD on motor, rather than perceptual, measures of timing because APTD had no effect on participants' ability to use temporal cues to speed RT. Our results demonstrate, for the first time in healthy volunteers, a dopaminergic dissociation in judging metrical (duration) versus ordinal (temporal order) aspects of time.
Collapse
|
7
|
Brulé S, Herlin B, Pouget P, Missal M. Ketamine reduces temporal expectation in the rhesus monkey. Psychopharmacology (Berl) 2021; 238:559-567. [PMID: 33169200 DOI: 10.1007/s00213-020-05706-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE Ketamine, a well-known general dissociative anesthetic agent that is a non-competitive antagonist of the N-methyl-D-aspartate receptor, perturbs the perception of elapsed time and the expectation of upcoming events. OBJECTIVE The objective of this study was to determine the influence of ketamine on temporal expectation in the rhesus monkey. METHODS Two rhesus monkeys were trained to make a saccade between a central warning stimulus and an eccentric visual target that served as imperative stimulus. The delay between the warning and the imperative stimulus could take one of four different values randomly with the same probability (variable foreperiod paradigm). During experimental sessions, a subanesthetic low dose of ketamine (0.25-0.35 mg/kg) was injected i.m. and the influence of the drug on movement latency was measured. RESULTS We found that in the control conditions, saccadic latencies strongly decreased with elapsed time before the appearance of the visual target showing that temporal expectation built up during the delay period between the warning and the imperative stimulus. However, after ketamine injection, temporal expectation was significantly reduced in both subjects. In addition, ketamine also increased average movement latency but this effect could be dissociated from the reduction of temporal expectation. CONCLUSION In conclusion, a subanesthetic dose of ketamine could have two independent effects: increasing reaction time and decreasing temporal expectation. This alteration of temporal expectation could explain cognitive deficits observed during ketamine use.
Collapse
Affiliation(s)
- Sophie Brulé
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - Bastien Herlin
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - Pierre Pouget
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - Marcus Missal
- Institute of Neurosciences (IONS), Cognition and System (COSY), Université catholique de Louvain, 53 av Mounier, B1.53. 4 COSY, 1200, Brussels, Belgium.
| |
Collapse
|
8
|
Hsu TY, Lee HC, Lane TJ, Missal M. Temporal Preparation, Impulsivity and Short-Term Memory in Depression. Front Behav Neurosci 2019; 13:258. [PMID: 31824272 PMCID: PMC6882746 DOI: 10.3389/fnbeh.2019.00258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
Patient suffering of major depressive disorder (MDD) often complain that subjective time seems to "drag" with respect to physical time. This may point toward a generalized dysfunction of temporal processing in MDD. In the present study, we investigated temporal preparation in MDD. "Temporal preparation" refers to an increased readiness to act before an expected event; consequently, reaction time should be reduced. MDD patients and age-matched controls were required to make a saccadic eye movement between a central and an eccentric visual target after a variable duration preparatory period. We found that MDD patients produced a larger number of premature saccades, saccades initiated prior to the appearance of the expected stimulus. These saccades were not temporally controlled; instead, they seemed to reflect reduced inhibitory control causing oculomotor impulsivity. In contrast, the latency of visually guided saccades was strongly influenced by temporal preparation in controls; significantly less so, in MDD patients. This observed reduced temporal preparation in MDD was associated with a faster decay of short-term temporal memory. Moreover, in patients producing a lot of premature responses, temporal preparation to early imperative stimuli was increased. In conclusion, reduced temporal preparation and short-term temporal memory in the oculomotor domain supports the hypothesis that temporal processing was altered in MDD patients. Moreover, oculomotor impulsivity interacted with temporal preparation. These observed deficits could reflect other underlying aspects of abnormal time experience in MDD.
Collapse
Affiliation(s)
- Tzu-Yu Hsu
- Graduate Institute of Mind, Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, New Taipei City, Taiwan
- Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Timothy Joseph Lane
- Graduate Institute of Mind, Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Graduate Institute of Medical Humanities, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan
| | - Marcus Missal
- Graduate Institute of Medical Humanities, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan
- Division of System and Cognition, Institute of Neurosciences (IONS), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|