1
|
Klinkhammer BM, Lammers T, Mottaghy FM, Kiessling F, Floege J, Boor P. Non-invasive molecular imaging of kidney diseases. Nat Rev Nephrol 2021; 17:688-703. [PMID: 34188207 PMCID: PMC7612034 DOI: 10.1038/s41581-021-00440-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
In nephrology, differential diagnosis or assessment of disease activity largely relies on the analysis of glomerular filtration rate, urinary sediment, proteinuria and tissue obtained through invasive kidney biopsies. However, currently available non-invasive functional parameters, and most serum and urine biomarkers, cannot capture intrarenal molecular disease processes specifically. Moreover, although histopathological analyses of kidney biopsy samples enable the visualization of pathological morphological and molecular alterations, they only provide information about a small part of the kidney and do not allow longitudinal monitoring. These limitations not only hinder understanding of the dynamics of specific disease processes in the kidney, but also limit the targeting of treatments to active phases of disease and the development of novel targeted therapies. Molecular imaging enables non-invasive and quantitative assessment of physiological or pathological processes by combining imaging technologies with specific molecular probes. Here, we discuss current preclinical and clinical molecular imaging approaches in nephrology. Non-invasive visualization of the kidneys through molecular imaging can be used to detect and longitudinally monitor disease activity and can therefore provide companion diagnostics to guide clinical trials, as well as the safe and effective use of drugs.
Collapse
Affiliation(s)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
- Department of Targeted Therapeutics, University of Twente, Enschede, Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jürgen Floege
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
2
|
Mettler J, Drzezga A, Dietlein M, Hucho T, Kobe C. Prostate-Specific Membrane Antigen Uptake in a Peripheral Nerve and Respective Ganglia on 68Ga-Prostate-Specific Membrane Antigen-HBED-CC PET/CT. Clin Nucl Med 2021; 46:69-70. [PMID: 33208621 DOI: 10.1097/rlu.0000000000003401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A 74-year-old man with a history of prostate cancer with proven osseous metastatic disease underwent Ga-prostate-specific membrane antigen (PSMA) PET/CT under antiandrogen therapy. The scan revealed a long segment of increased PSMA tracer uptake within the right sciatic nerve, which appeared edematous and swollen, and the respective ganglia. Clinically, the patient suffered from pain and paresis in the right leg. As infiltration of a long segment of a single nerve seems unlikely, primarily neuronal disease such as neuritis (induced by metastases or radiotherapy) was considered. The observed uptake of PSMA-targeting PET tracers may then represent a peripheral nerve disorder.
Collapse
Affiliation(s)
- Jasmin Mettler
- From the Department for Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated, Oncology Aachen Bonn Cologne Duesseldorf
| | - Alexander Drzezga
- From the Department for Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated, Oncology Aachen Bonn Cologne Duesseldorf
| | - Markus Dietlein
- From the Department for Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated, Oncology Aachen Bonn Cologne Duesseldorf
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Carsten Kobe
- From the Department for Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated, Oncology Aachen Bonn Cologne Duesseldorf
| |
Collapse
|
3
|
Oliveira D, Stegmayr C, Heinzel A, Ermert J, Neumaier B, Shah NJ, Mottaghy FM, Langen KJ, Willuweit A. High uptake of 68Ga-PSMA and 18F-DCFPyL in the peritumoral area of rat gliomas due to activated astrocytes. EJNMMI Res 2020; 10:55. [PMID: 32451793 PMCID: PMC7378136 DOI: 10.1186/s13550-020-00642-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent studies reported on high uptake of the PSMA ligands [68Ga]HBED-CC (68Ga-PSMA) and 18F-DCFPyL in cerebral gliomas. This study explores the regional uptake and cellular targets of 68Ga-PSMA and 18F-DCFPyL in three different rat glioma models. METHODS F98, 9 L, or U87 rat gliomas were implanted into the brains of 38 rats. After 13 days of tumor growth, 68Ga-PSMA (n = 21) or 18F-DCFPyL (n = 17) was injected intravenously, and animals were sacrificed 40 min later. Five animals for each tracer and tumor model were additionally investigated by micro-PET at 20-40 min post injection. Cryosections of the tumor bearing brains were analyzed by ex vivo autoradiography and immunofluorescence staining for blood vessels, microglia, astrocytes, and presence of PSMA. Blood-brain barrier (BBB) permeability was tested by coinjection of Evans blue dye (EBD). 68Ga-PSMA uptake after restoration of BBB integrity by treatment with dexamethasone (Dex) was evaluated in four animals with U87 gliomas. Competition experiments using the PSMA-receptor inhibitor 2-(phosphonomethyl)pentane-1,5-dioic acid (PMPA) were performed for both tracers in two animals each. RESULTS Autoradiography demonstrated a strong 68Ga-PSMA and 18F-DCFPyL binding in the peritumoral area and moderate binding in the center of the tumors. PMPA administration led to complete inhibition of 68Ga-PSMA and 18F-DCFPyL binding in the peritumoral region. Restoration of BBB by Dex treatment reduced EBD extravasation but 68Ga-PSMA binding remained unchanged. Expression of activated microglia (CD11b) was low in the intra- and peritumoral area but GFAP staining revealed strong activation of astrocytes in congruency to the tracer binding in the peritumoral area. All tumors were visualized in micro PET, showing a lower tumor/brain contrast with 68Ga-PSMA than with 18F-DCFPyL. CONCLUSIONS High uptake of 68Ga-PSMA and 18F-DCFPyL in the peritumoral area of all glioma models is presumably caused by activated astrocytes. This may represent a limitation for the clinical application of PSMA ligands in gliomas.
Collapse
Affiliation(s)
- Dennis Oliveira
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Alexander Heinzel
- Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany
- Jülich-Aachen Research Alliance (JARA)-Section JARA-Brain, Aachen, Germany
| | - Johannes Ermert
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
- Jülich-Aachen Research Alliance (JARA)-Section JARA-Brain, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany
- Jülich-Aachen Research Alliance (JARA)-Section JARA-Brain, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany.
- Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany.
- Jülich-Aachen Research Alliance (JARA)-Section JARA-Brain, Aachen, Germany.
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
| |
Collapse
|
4
|
Morgenroth A, Tinkir E, Vogg ATJ, Sankaranarayanan RA, Baazaoui F, Mottaghy FM. Targeting of prostate-specific membrane antigen for radio-ligand therapy of triple-negative breast cancer. Breast Cancer Res 2019; 21:116. [PMID: 31640747 PMCID: PMC6805467 DOI: 10.1186/s13058-019-1205-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Background Triple-negative breast cancer has extremely high risk of relapse due to the lack of targeted therapies, intra- and inter-tumoral heterogeneity, and the inherent and acquired resistance to therapies. In this study, we evaluate the potential of prostate-specific membrane antigen (PSMA) as target for radio-ligand therapy (RLT). Methods Tube formation was investigated after incubation of endothelial HUVEC cells in tumor-conditioned media and monitored after staining using microscopy. A binding study with 68Ga-labeled PSMA-addressing ligand was used to indicate targeting potential of PSMA on tumor-conditioned HUVEC cells. For mimicking of the therapeutic application, tube formation potential and vitality of tumor-conditioned HUVEC cells were assessed following an incubation with radiolabeled PSMA-addressing ligand [177Lu]-PSMA-617. For in vivo experiments, NUDE mice were xenografted with triple-negative breast cancer cells MDA-MB231 or estrogen receptor expressing breast cancer cells MCF-7. Biodistribution and binding behavior of [68Ga]-PSMA-11 was investigated in both tumor models at 30 min post injection using μPET. PSMA- and CD31-specific staining was conducted to visualize PSMA expression and neovascularization in tumor tissue ex vivo. Results The triple-negative breast cancer cells MDA-MB231 showed a high pro-angiogenetic potential on tube formation of endothelial HUVEC cells. The induced endothelial expression of PSMA was efficiently addressed by radiolabeled PSMA-specific ligands. 177Lu-labeled PSMA-617 strongly impaired the vitality and angiogenic potential of HUVEC cells. In vivo, as visualized by μPET, radiolabeled PSMA-ligand accumulated specifically in the triple-negative breast cancer xenograft MDA-MB231 (T/B ratio of 43.3 ± 0.9), while no [68Ga]-PSMA-11 was detected in the estrogen-sensitive MCF-7 xenograft (T/B ratio of 1.1 ± 0.1). An ex vivo immunofluorescence analysis confirmed the localization of PSMA on MDA-MB231 xenograft-associated endothelial cells and also on TNBC cells. Conclusions Here we demonstrate PSMA as promising target for two-compartment endogenous radio-ligand therapy of triple-negative breast cancer.
Collapse
Affiliation(s)
- Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Ebru Tinkir
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Andreas T J Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ramya Ambur Sankaranarayanan
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Fatima Baazaoui
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center X, Maastricht, The Netherlands
| |
Collapse
|
5
|
Endepols H, Morgenroth A, Zlatopolskiy BD, Krapf P, Zischler J, Richarz R, Muñoz Vásquez S, Neumaier B, Mottaghy FM. Peripheral ganglia in healthy rats as target structures for the evaluation of PSMA imaging agents. BMC Cancer 2019; 19:633. [PMID: 31242896 PMCID: PMC6595687 DOI: 10.1186/s12885-019-5841-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/16/2019] [Indexed: 02/08/2023] Open
Abstract
Background The recent implementation of PET with prostate specific membrane antigen (PSMA)-specific radiotracers into the clinical practice has resulted in the significant improvement of accuracy in the detection of prostate carcinoma (PCa). PSMA-expression in ganglia has been regarded as an important pitfall in prostate carcinoma-PET diagnostics but has not found any practical use for diagnosis or therapy. Methods We explored this phenomenon and demonstrated the applicability of peripheral ganglia in healthy rats as surrogates for small PSMA positive lesions for the preclinical evaluation of diagnostic PCa PET probes. Healthy rats were measured with PET/CT using the tracers [18F]DCFPyL, [Al18F]PSMA-11 and [68Ga]PSMA-11. Sections of ganglia were stained with an anti-PSMA antibody. [18F]DCFPyL uptake in ganglia was compared to that in LNCaP tumor xenografts in mice. Results Whereas [18F]DCFPyL and [68Ga]PSMA-11 were stable in vivo and accumulated in peripheral ganglia, [Al18F]PSMA-11 suffered from fast in vivo deflourination resulting in high bone uptake. Ganglionic PSMA expression was confirmed by immunohistochemistry. [18F]DCFPyL uptake and signal-to-noise ratio in the superior cervical ganglion was not significantly different from LNCaP xenografts. Conclusions Our results demonstrated the non-inferiority of the novel model compared to conventionally used tumor xenografts in immune compromised rodents with regard to reproducibility and stability of the PSMA signal. Furthermore, the model involves less expense and efforts while it is permanently available and avoids tumor-growth associated animal morbidity and distress. To the best of our knowledge, this is the first tumor-free model suitable for the in vivo evaluation of tumor imaging agents.
Collapse
Affiliation(s)
- Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Cologne, Germany.,Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Cologne, Germany.,Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital, RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Boris D Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Cologne, Germany.,Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Philipp Krapf
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Cologne, Germany.,Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Johannes Zischler
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Cologne, Germany.,Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Raphael Richarz
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Cologne, Germany
| | - Sergio Muñoz Vásquez
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Cologne, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Cologne, Germany. .,Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, Germany. .,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center X, Maastricht, the Netherlands.
| |
Collapse
|