1
|
Sato H, Inoué S, Yoshida J, Kawamura I, Koshoubu J, Yamagishi A. Microscopic vibrational circular dichroism on the forewings of a European hornet: heterogenous sequences of protein domains with different secondary structures. Phys Chem Chem Phys 2024; 26:17918-17922. [PMID: 38888259 DOI: 10.1039/d4cp01827c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We developed a microscopic scanning for vibrational circular dichroism (VCD) spectroscopy in which a quantum cascade laser is equipped with a highly focused infrared light source to attain a spatial resolution of 100 μm. This system was applied to the forewing of a European hornet to reveal how the protein domains are organised. Two-dimensional patterns were obtained from the VCD signals with steps of 100 μm. We scanned the 1500-1740 cm-1 wavenumber range, which covers amide I and II absorptions. Zone sequenced α-helical and β-sheet domains within an area of 200 μm2 in membranes close to where two veins cross. The sign of the VCD signal at 1650 cm-1 changed from positive to negative when probed along the zone axis, intermediated by the absence of VCD activity. The significance of this zone is discussed from the viewpoint of the mechanical properties required for flying motion. These features are unattainable using conventional FTIR (Fourier transform infrared) or FT-VCD methods with a spatial resolution of ∼10 mm2.
Collapse
Affiliation(s)
- Hisako Sato
- Faculty of Science, Ehime University, 1 2-5, Bunkyo-cho, Matsuyama, 790-8577, Japan.
| | - Sayako Inoué
- Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
| | - Jun Yoshida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University Yokohama, 240-8501, Japan
| | - Jun Koshoubu
- JASCO Corporation, Ishikawa 2967-5, Hachioji Tokyo, 192-8537, Japan
| | - Akihiko Yamagishi
- Faculty of Medicine, Toho University, 2 5-21-16 Oomori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
2
|
Reich MS, Kindra M, Dargent F, Hu L, Flockhart DTT, Norris DR, Kharouba H, Talavera G, Bataille CP. Metals and metal isotopes incorporation in insect wings: Implications for geolocation and pollution exposure. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1085903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Anthropogenic activities are exposing insects to elevated levels of toxic metals and are altering the bioavailability of essential metals. Metals and metal isotopes have also become promising tools for the geolocation of migratory insects. Understanding the pathways of metal incorporation in insect tissues is thus important for assessing the role of metals in insect physiology and ecology and for the development of metals and metal isotopes as geolocation tools. We conducted a diet-switching experiment on monarch butterflies [Danaus plexippus (L.)] with controlled larval and adult diets to evaluate the sources of 23 metals and metalloids, strontium isotopes, and lead isotopes to insect wing tissues over a period of 8 weeks. Concentrations of Ca, Co, Mo, and Sb differed between the sexes or with body mass. Ni and Zn bioaccumulated in the insect wing tissues over time, likely from the adult diet, while increases in Al, Cr, Cd, Cu, Fe, and Pb were, at least partially, from external sources (i.e., dust aerosols). Bioaccumulation of Pb in the monarch wings was confirmed by Pb isotopes to mainly be sourced from external anthropogenic sources, revealing the potential of Pb isotopes to become an indicator and tracer of metal pollution exposure along migratory paths. Concentrations of Ba, Cs, Mg, Na, Rb, Sr, Ti, Tl, and U appeared to be unaffected by intrinsic factors or additions of metals from adult dietary or external sources, and their potential for geolocation should be further explored. Strontium isotope ratios remained indicative of the larval diet, at least in males, supporting its potential as a geolocation tool. However, the difference in strontium isotope ratios between sexes, as well as the possibility of external contamination by wetting, requires further investigation. Our results demonstrate the complexity of metal incorporation processes in insects and the value of studying metals to develop new tools to quantify pollution exposure, metal toxicity, micronutrient uptake, and insect mobility.
Collapse
|
3
|
Gräfenstein A, Rumancev C, Pollak R, Hämisch B, Galbierz V, Schroeder WH, Garrevoet J, Falkenberg G, Vöpel T, Huber K, Ebbinghaus S, Rosenhahn A. Spatial Distribution of Intracellular Ion Concentrations in Aggregate-Forming HeLa Cells Analyzed by μ-XRF Imaging. ChemistryOpen 2022; 11:e202200024. [PMID: 35363437 PMCID: PMC8973254 DOI: 10.1002/open.202200024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Protein aggregation is a hallmark of several severe neurodegenerative disorders such as Huntington's, Parkinson's, or Alzheimer's disease. Metal ions play a profound role in protein aggregation and altered metal-ion homeostasis is associated with disease progression. Here we utilize μ-X-ray fluorescence imaging in combination with rapid freezing to resolve the elemental distribution of phosphorus, sulfur, potassium, and zinc in huntingtin exon-1-mYFP expressing HeLa cells. Using quantitative XRF analysis, we find a threefold increase in zinc and a 10-fold enrichment of potassium that can be attributed to cellular stress response. While the averaged intracellular ion areal masses are significantly different in aggregate-containing cells, a local intracellular analysis shows no different ion content at the location of intracellular inclusion bodies. The results are compared to corresponding experiments on HeLa cells forming pseudoisocyanine chloride aggregates. As those show similar results, changes in ion concentrations are not exclusively linked to huntingtin exon-1 amyloid formation.
Collapse
Affiliation(s)
- Andreas Gräfenstein
- Analytical Chemistry – BiointerfacesRuhr University Bochum44801BochumGermany
| | - Christoph Rumancev
- Analytical Chemistry – BiointerfacesRuhr University Bochum44801BochumGermany
| | - Roland Pollak
- Institute of Physical and Theoretical ChemistryTU BraunschweigRebenring 5638106BraunschweigGermany
| | | | - Vanessa Galbierz
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 85HamburgGermany
| | - Walter H. Schroeder
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 85HamburgGermany
- Nanotech ConsultingLiblarer Strasse 850321BrühlGermany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 85HamburgGermany
| | | | - Tobias Vöpel
- Physical Chemistry IIRuhr University Bochum44801BochumGermany
| | - Klaus Huber
- Physical ChemistryUniversity of Paderborn33098PaderbornGermany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical ChemistryTU BraunschweigRebenring 5638106BraunschweigGermany
| | - Axel Rosenhahn
- Analytical Chemistry – BiointerfacesRuhr University Bochum44801BochumGermany
| |
Collapse
|
4
|
Sato H, Yamagishi A, Shimizu M, Watanabe K, Koshoubu J, Yoshida J, Kawamura I. Mapping of Supramolecular Chirality in Insect Wings by Microscopic Vibrational Circular Dichroism Spectroscopy: Heterogeneity in Protein Distribution. J Phys Chem Lett 2021; 12:7733-7737. [PMID: 34355918 DOI: 10.1021/acs.jpclett.1c01949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The supramolecular chirality of the hindwing of Anomala albopilosa (male) was investigated using a microscopic vibrational circular dichroism (VCD) system, denoted as MultiD-VCD. The source of intense infrared (IR) light for the system was a quantum cascade laser. Two-dimensional maps of IR and VCD spectra were taken by scanning the surface area (ca. 2 mm × 2 mm) of the insect hindwing tissue. The spectra ranged from 1500 to 1700 cm-1, and the maps have a spatial resolution of 100 μm. The distribution of proteins, including their supramolecular structures, was analyzed from the location-dependent spectral shape of the VCD bands assigned to amides I and II. The results revealed that the hindwing consists of segregated domains of proteins with different secondary structures: an α-helix (in one part of the membrane), a hybrid of α-helix and β-sheet (in another part of the membrane), and a coil (in a vein).
Collapse
Affiliation(s)
- Hisako Sato
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-chou, Matsuyama, Ehime 790-8577, Japan
| | - Akihiko Yamagishi
- Department of Medicine, Faculty of Medicine, Toho University, Ota-ku 143-8540, Japan
| | - Masaru Shimizu
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Keisuke Watanabe
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Jun Koshoubu
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Jun Yoshida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
5
|
Jales JT, Barbosa TM, de Medeiros JR, de Lima LAS, de Lima KMG, Gama RA. Infrared spectroscopy and forensic entomology: Can this union work? A literature review. J Forensic Sci 2021; 66:2080-2091. [PMID: 34291458 DOI: 10.1111/1556-4029.14800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022]
Abstract
For more than two decades, infrared spectroscopy techniques combined with multivariate analysis have been efficiently applied in several entomological fields, such as Taxonomy and Toxicology. However, little is known about its use and applicability in Forensic entomology (FE) field, with vibrational techniques such as Near-infrared spectroscopy (NIRS) and Medium-infrared spectroscopy (MIRS) underutilized in forensic sciences. Thus, this work describes the potential of NIRS, MIRS, and other spectroscopic methodologies, for entomological analysis in FE, as well as discusses its future uses for criminal or civil investigations. After a thorough research on scientific journals database, a total of 33 publications were found in scientific journals, with direct or indirect application to FE, including experimental applications of NIRS and MIRS in taxonomic discrimination of species, larval age prediction, detection of toxic substances in insects from environments or crime scenes, and detection of internal or external infestations by live or dead insects in stored products. Besides, NIRS and MIRS combined with multivariate analysis were efficient, inexpensive, fast, and non-destructive analytical tools. However, more than 51% of the spectroscopic publications are concentrated in the stored products field, and so we discuss the need for expansion and more direct application in other FE areas. We hope the number of articles continues to increase, and as NIRS and MIRS technology progress, they advance in forensic research and routine use.
Collapse
Affiliation(s)
- Jessica T Jales
- Laboratory of Insect and Vectors, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Biochemistry and Molecular Biology post-graduation program, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Taciano M Barbosa
- Laboratory of Insect and Vectors, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Parasitic biology post-graduation program, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jucélia R de Medeiros
- Laboratory of Insect and Vectors, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Parasitic biology post-graduation program, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Leomir A S de Lima
- Laboratory of Biological Chemistry and Chemometric, Department of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Kássio M G de Lima
- Laboratory of Biological Chemistry and Chemometric, Department of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Renata A Gama
- Laboratory of Insect and Vectors, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Parasitic biology post-graduation program, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
6
|
Rumancev C, Gräfenstein A, Vöpel T, Stuhr S, von Gundlach AR, Senkbeil T, Garrevoet J, Jolmes L, König B, Falkenberg G, Ebbinghaus S, Schroeder WH, Rosenhahn A. X-ray fluorescence analysis of metal distributions in cryogenic biological samples using large-acceptance-angle SDD detection and continuous scanning at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:60-66. [PMID: 31868737 PMCID: PMC6927521 DOI: 10.1107/s1600577519014048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
A new Rococo 2 X-ray fluorescence detector was implemented into the cryogenic sample environment at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III, DESY, Hamburg, Germany. A four sensor-field cloverleaf design is optimized for the investigation of planar samples and operates in a backscattering geometry resulting in a large solid angle of up to 1.1 steradian. The detector, coupled with the Xspress 3 pulse processor, enables measurements at high count rates of up to 106 counts per second per sensor. The measured energy resolution of ∼129 eV (Mn Kα at 10000 counts s-1) is only minimally impaired at the highest count rates. The resulting high detection sensitivity allows for an accurate determination of trace element distributions such as in thin frozen hydrated biological specimens. First proof-of-principle measurements using continuous-movement 2D scans of frozen hydrated HeLa cells as a model system are reported to demonstrate the potential of the new detection system.
Collapse
Affiliation(s)
- C. Rumancev
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - A. Gräfenstein
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - T. Vöpel
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| | - S. Stuhr
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - A. R. von Gundlach
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - T. Senkbeil
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - J. Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany
| | - L. Jolmes
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - B. König
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - G. Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany
| | - S. Ebbinghaus
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - W. H. Schroeder
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany
- Nanotech Consulting, Arnoldsweilerstrasse 10, 52382 Niederzier, Germany
| | - A. Rosenhahn
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
7
|
Hasan J, Roy A, Chatterjee K, Yarlagadda PKDV. Mimicking Insect Wings: The Roadmap to Bioinspiration. ACS Biomater Sci Eng 2019; 5:3139-3160. [DOI: 10.1021/acsbiomaterials.9b00217] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jafar Hasan
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| | - Anindo Roy
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Prasad K. D. V. Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| |
Collapse
|