1
|
Borah K, Das HS, Seth S, Mallick K, Rahaman Z, Mallik S. A review on advancements in feature selection and feature extraction for high-dimensional NGS data analysis. Funct Integr Genomics 2024; 24:139. [PMID: 39158621 DOI: 10.1007/s10142-024-01415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Recent advancements in biomedical technologies and the proliferation of high-dimensional Next Generation Sequencing (NGS) datasets have led to significant growth in the bulk and density of data. The NGS high-dimensional data, characterized by a large number of genomics, transcriptomics, proteomics, and metagenomics features relative to the number of biological samples, presents significant challenges for reducing feature dimensionality. The high dimensionality of NGS data poses significant challenges for data analysis, including increased computational burden, potential overfitting, and difficulty in interpreting results. Feature selection and feature extraction are two pivotal techniques employed to address these challenges by reducing the dimensionality of the data, thereby enhancing model performance, interpretability, and computational efficiency. Feature selection and feature extraction can be categorized into statistical and machine learning methods. The present study conducts a comprehensive and comparative review of various statistical, machine learning, and deep learning-based feature selection and extraction techniques specifically tailored for NGS and microarray data interpretation of humankind. A thorough literature search was performed to gather information on these techniques, focusing on array-based and NGS data analysis. Various techniques, including deep learning architectures, machine learning algorithms, and statistical methods, have been explored for microarray, bulk RNA-Seq, and single-cell, single-cell RNA-Seq (scRNA-Seq) technology-based datasets surveyed here. The study provides an overview of these techniques, highlighting their applications, advantages, and limitations in the context of high-dimensional NGS data. This review provides better insights for readers to apply feature selection and feature extraction techniques to enhance the performance of predictive models, uncover underlying biological patterns, and gain deeper insights into massive and complex NGS and microarray data.
Collapse
Affiliation(s)
- Kasmika Borah
- Department of Computer Science and Information Technology, Cotton University, Panbazar, Guwahati, 781001, Assam, India
| | - Himanish Shekhar Das
- Department of Computer Science and Information Technology, Cotton University, Panbazar, Guwahati, 781001, Assam, India.
| | - Soumita Seth
- Department of Computer Science and Engineering, Future Institute of Engineering and Management, Narendrapur, Kolkata, 700150, West Bengal, India
| | - Koushik Mallick
- Department of Computer Science and Engineering, RCC Institute of Information Technology, Canal S Rd, Beleghata, Kolkata, 700015, West Bengal, India
| | | | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
2
|
Unsupervised attribute reduction: improving effectiveness and efficiency. INT J MACH LEARN CYB 2022. [DOI: 10.1007/s13042-022-01618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Mahendran N, Durai Raj Vincent PM, Srinivasan K, Chang CY. Machine Learning Based Computational Gene Selection Models: A Survey, Performance Evaluation, Open Issues, and Future Research Directions. Front Genet 2020; 11:603808. [PMID: 33362861 PMCID: PMC7758324 DOI: 10.3389/fgene.2020.603808] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Gene Expression is the process of determining the physical characteristics of living beings by generating the necessary proteins. Gene Expression takes place in two steps, translation and transcription. It is the flow of information from DNA to RNA with enzymes' help, and the end product is proteins and other biochemical molecules. Many technologies can capture Gene Expression from the DNA or RNA. One such technique is Microarray DNA. Other than being expensive, the main issue with Microarray DNA is that it generates high-dimensional data with minimal sample size. The issue in handling such a heavyweight dataset is that the learning model will be over-fitted. This problem should be addressed by reducing the dimension of the data source to a considerable amount. In recent years, Machine Learning has gained popularity in the field of genomic studies. In the literature, many Machine Learning-based Gene Selection approaches have been discussed, which were proposed to improve dimensionality reduction precision. This paper does an extensive review of the various works done on Machine Learning-based gene selection in recent years, along with its performance analysis. The study categorizes various feature selection algorithms under Supervised, Unsupervised, and Semi-supervised learning. The works done in recent years to reduce the features for diagnosing tumors are discussed in detail. Furthermore, the performance of several discussed methods in the literature is analyzed. This study also lists out and briefly discusses the open issues in handling the high-dimension and less sample size data.
Collapse
Affiliation(s)
- Nivedhitha Mahendran
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
| | - P. M. Durai Raj Vincent
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
| | - Kathiravan Srinivasan
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
| | - Chuan-Yu Chang
- Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Douliu, Taiwan
| |
Collapse
|
6
|
Sun L, Kong X, Xu J, Xue Z, Zhai R, Zhang S. A Hybrid Gene Selection Method Based on ReliefF and Ant Colony Optimization Algorithm for Tumor Classification. Sci Rep 2019; 9:8978. [PMID: 31222027 PMCID: PMC6586811 DOI: 10.1038/s41598-019-45223-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
For the DNA microarray datasets, tumor classification based on gene expression profiles has drawn great attention, and gene selection plays a significant role in improving the classification performance of microarray data. In this study, an effective hybrid gene selection method based on ReliefF and Ant colony optimization (ACO) algorithm for tumor classification is proposed. First, for the ReliefF algorithm, the average distance among k nearest or k non-nearest neighbor samples are introduced to estimate the difference among samples, based on which the distances between the samples in the same class or the different classes are defined, and then it can more effectively evaluate the weight values of genes for samples. To obtain the stable results in emergencies, a distance coefficient is developed to construct a new formula of updating weight coefficient of genes to further reduce the instability during calculations. When decreasing the distance between the same samples and increasing the distance between the different samples, the weight division is more obvious. Thus, the ReliefF algorithm can be improved to reduce the initial dimensionality of gene expression datasets and obtain a candidate gene subset. Second, a new pruning rule is designed to reduce dimensionality and obtain a new candidate subset with the smaller number of genes. The probability formula of the next point in the path selected by the ants is presented to highlight the closeness of the correlation relationship between the reaction variables. To increase the pheromone concentration of important genes, a new phenotype updating formula of the ACO algorithm is adopted to prevent the pheromone left by the ants that are overwhelmed with time, and then the weight coefficients of the genes are applied here to eliminate the interference of difference data as much as possible. It follows that the improved ACO algorithm has the ability of the strong positive feedback, which quickly converges to an optimal solution through the accumulation and the updating of pheromone. Finally, by combining the improved ReliefF algorithm and the improved ACO method, a hybrid filter-wrapper-based gene selection algorithm called as RFACO-GS is proposed. The experimental results under several public gene expression datasets demonstrate that the proposed method is very effective, which can significantly reduce the dimensionality of gene expression datasets, and select the most relevant genes with high classification accuracy.
Collapse
Affiliation(s)
- Lin Sun
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China.
- Post-doctoral Mobile Station of Biology, College of Life Science, Henan Normal University, Xinxiang, China.
| | - Xianglin Kong
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jiucheng Xu
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China.
- Post-doctoral Mobile Station of Biology, College of Life Science, Henan Normal University, Xinxiang, China.
| | - Zhan'ao Xue
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Ruibing Zhai
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Shiguang Zhang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China
- School of Computer Science and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|