1
|
Shimogawa MM, Jonnalagadda K, Hill KL. FAP20 is required for flagellum assembly in Trypanosoma brucei. Mol Biol Cell 2024; 35:br22. [PMID: 39382839 DOI: 10.1091/mbc.e23-12-0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Trypanosoma brucei is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form T. brucei. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, FAP20 knockdown led to a catastrophic failure in flagellum assembly and concomitant lethality. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.
Collapse
Affiliation(s)
- Michelle M Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Kent L Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
2
|
Beaver AK, Keneskhanova Z, Cosentino RO, Weiss BL, Awuoche EO, Smallenberger GM, Buenconsejo GY, Crilly NP, Smith JE, Hakim JMC, Zhang B, Bobb B, Rijo-Ferreira F, Figueiredo LM, Aksoy S, Siegel TN, Mugnier MR. Tissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei. Nature 2024:10.1038/s41586-024-08151-z. [PMID: 39478231 DOI: 10.1038/s41586-024-08151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/03/2024] [Indexed: 11/18/2024]
Abstract
The protozoan parasite Trypanosoma brucei evades clearance by the host immune system through antigenic variation of its dense variant surface glycoprotein (VSG) coat, periodically 'switching' expression of the VSG using a large genomic repertoire of VSG-encoding genes1-6. Recent studies of antigenic variation in vivo have focused near exclusively on parasites in the bloodstream6-8, but research has shown that many, if not most, parasites reside in the interstitial spaces of tissues9-13. We sought to explore the dynamics of antigenic variation in extravascular parasite populations using VSG-seq7, a high-throughput sequencing approach for profiling VSGs expressed in populations of T. brucei. Here we show that tissues, not the blood, are the primary reservoir of antigenic diversity during both needle- and tsetse bite-initiated T. brucei infections, with more than 75% of VSGs found exclusively within extravascular spaces. We found that this increased diversity is correlated with slower parasite clearance in tissue spaces. Together, these data support a model in which the slower immune response in extravascular spaces provides more time to generate the antigenic diversity needed to maintain a chronic infection. Our findings reveal the important role that extravascular spaces can have in pathogen diversification.
Collapse
Affiliation(s)
- Alexander K Beaver
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zhibek Keneskhanova
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Raúl O Cosentino
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Erick O Awuoche
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Gretchen M Smallenberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Gracyn Y Buenconsejo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nathan P Crilly
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jaclyn E Smith
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jill M C Hakim
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bailin Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bryce Bobb
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Filipa Rijo-Ferreira
- Division of Infectious Diseases and Vaccinology, Berkeley Public Health Molecular and Cell Biology Department, Berkeley, CA, USA
| | | | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Monica R Mugnier
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Shimogawa MM, Jonnalagadda K, Hill KL. FAP20 is required for flagellum assembly in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.19.576295. [PMID: 38293126 PMCID: PMC10827224 DOI: 10.1101/2024.01.19.576295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Trypanosoma brucei is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form T. brucei. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, FAP20 knockdown led to a catastrophic failure in flagellum assembly and concomitant lethal cell division defect. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.
Collapse
Affiliation(s)
- Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Zhang Z, Gaetjens TK, Ou J, Zhou Q, Yu Y, Mallory DP, Abel SM, Yu Y. Propulsive cell entry diverts pathogens from immune degradation by remodeling the phagocytic synapse. Proc Natl Acad Sci U S A 2023; 120:e2306788120. [PMID: 38032935 PMCID: PMC10710034 DOI: 10.1073/pnas.2306788120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Phagocytosis is a critical immune function for infection control and tissue homeostasis. During phagocytosis, pathogens are internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors are required to disrupt the biogenesis of phagolysosomes. In contrast, we present here that physical forces from motile pathogens during cell entry divert them away from the canonical degradative pathway. This altered fate begins with the force-induced remodeling of the phagocytic synapse formation. We used the parasite Toxoplasma gondii as a model because live Toxoplasma actively invades host cells using gliding motility. To differentiate the effects of physical forces from virulence factors in phagocytosis, we employed magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophages. Experiments and computer simulations show that large propulsive forces hinder productive activation of receptors by preventing their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites are engulfed into vacuoles that fail to mature into degradative units, similar to the live motile parasite's intracellular pathway. Using yeast cells and opsonized beads, we confirmed that this mechanism is general, not specific to the parasite used. These results reveal new aspects of immune evasion by demonstrating how physical forces during active cell entry, independent of virulence factors, enable pathogens to circumvent phagolysosomal degradation.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Thomas K. Gaetjens
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN37996
| | - Jin Ou
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Qiong Zhou
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - D. Paul Mallory
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN37996
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| |
Collapse
|
5
|
Calvo-Alvarez E, Ngoune JMT, Sharma P, Cooper A, Camara A, Travaillé C, Crouzols A, MacLeod A, Rotureau B. FLAgellum Member 8 modulates extravascular distribution of African trypanosomes. PLoS Pathog 2023; 19:e1011220. [PMID: 38127941 PMCID: PMC10769064 DOI: 10.1371/journal.ppat.1011220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 01/05/2024] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
In the mammalian host, the biology of tissue-dwelling Trypanosoma brucei parasites is not completely understood, especially the mechanisms involved in their extravascular colonization. The trypanosome flagellum is an essential organelle in multiple aspects of the parasites' development. The flagellar protein termed FLAgellar Member 8 (FLAM8) acts as a docking platform for a pool of cyclic AMP response protein 3 (CARP3) that is involved in signaling. FLAM8 exhibits a stage-specific distribution suggesting specific functions in the mammalian and vector stages of the parasite. Analyses of knockdown and knockout trypanosomes in their mammalian forms demonstrated that FLAM8 is not essential in vitro for survival, growth, motility and stumpy differentiation. Functional investigations in experimental infections showed that FLAM8-deprived trypanosomes can establish and maintain an infection in the blood circulation and differentiate into insect transmissible forms. However, quantitative bioluminescence imaging and gene expression analysis revealed that FLAM8-null parasites exhibit a significantly impaired dissemination in the extravascular compartment, that is restored by the addition of a single rescue copy of FLAM8. In vitro trans-endothelial migration assays revealed significant defects in trypanosomes lacking FLAM8. FLAM8 is the first flagellar component shown to modulate T. brucei distribution in the host tissues, possibly through sensing functions, contributing to the maintenance of extravascular parasite populations in mammalian anatomical niches, especially in the skin.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean Marc Tsagmo Ngoune
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Parul Sharma
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, ED515 Complexité du Vivant, Paris, France
| | - Anneli Cooper
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary, and Life Sciences, Henry Wellcome Building for Comparative Medical Sciences, Glasgow, Scotland, United Kingdom
| | - Aïssata Camara
- Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea
| | - Christelle Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
- Photonic BioImaging (UTechS PBI), Institut Pasteur, Université Paris Cité, Paris, France
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary, and Life Sciences, Henry Wellcome Building for Comparative Medical Sciences, Glasgow, Scotland, United Kingdom
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
- Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea
| |
Collapse
|
6
|
Shimogawa MM, Wijono AS, Wang H, Zhang J, Sha J, Szombathy N, Vadakkan S, Pelayo P, Jonnalagadda K, Wohlschlegel J, Zhou ZH, Hill KL. FAP106 is an interaction hub for assembling microtubule inner proteins at the cilium inner junction. Nat Commun 2023; 14:5225. [PMID: 37633952 PMCID: PMC10460401 DOI: 10.1038/s41467-023-40230-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/14/2023] [Indexed: 08/28/2023] Open
Abstract
Motility of pathogenic protozoa depends on flagella (synonymous with cilia) with axonemes containing nine doublet microtubules (DMTs) and two singlet microtubules. Microtubule inner proteins (MIPs) within DMTs influence axoneme stability and motility and provide lineage-specific adaptations, but individual MIP functions and assembly mechanisms are mostly unknown. Here, we show in the sleeping sickness parasite Trypanosoma brucei, that FAP106, a conserved MIP at the DMT inner junction, is required for trypanosome motility and functions as a critical interaction hub, directing assembly of several conserved and lineage-specific MIPs. We use comparative cryogenic electron tomography (cryoET) and quantitative proteomics to identify MIP candidates. Using RNAi knockdown together with fitting of AlphaFold models into cryoET maps, we demonstrate that one of these candidates, MC8, is a trypanosome-specific MIP required for parasite motility. Our work advances understanding of MIP assembly mechanisms and identifies lineage-specific motility proteins that are attractive targets to consider for therapeutic intervention.
Collapse
Affiliation(s)
- Michelle M Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Angeline S Wijono
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiayan Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Natasha Szombathy
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeeca Vadakkan
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Paula Pelayo
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Kent L Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Nascimento JF, Souza ROO, Alencar MB, Marsiccobetre S, Murillo AM, Damasceno FS, Girard RBMM, Marchese L, Luévano-Martinez LA, Achjian RW, Haanstra JR, Michels PAM, Silber AM. How much (ATP) does it cost to build a trypanosome? A theoretical study on the quantity of ATP needed to maintain and duplicate a bloodstream-form Trypanosoma brucei cell. PLoS Pathog 2023; 19:e1011522. [PMID: 37498954 PMCID: PMC10409291 DOI: 10.1371/journal.ppat.1011522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/08/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for macromolecules as well as for the assembly of the latter into cellular structures. Other cellular processes not directly related to synthesis of biomass, such as maintenance of membrane potential and cellular shape, also require ATP. The unicellular flagellated parasite Trypanosoma brucei has a complex digenetic life cycle. The primary energy source for this parasite in its bloodstream form (BSF) is glucose, which is abundant in the host's bloodstream. Here, we made a detailed estimation of the energy budget during the BSF cell cycle. As glycolysis is the source of most produced ATP, we calculated that a single parasite produces 6.0 x 1011 molecules of ATP/cell cycle. Total biomass production (which involves biomass maintenance and duplication) accounts for ~63% of the total energy budget, while the total biomass duplication accounts for the remaining ~37% of the ATP consumption, with in both cases translation being the most expensive process. These values allowed us to estimate a theoretical YATP of 10.1 (g biomass)/mole ATP and a theoretical [Formula: see text] of 28.6 (g biomass)/mole ATP. Flagellar motility, variant surface glycoprotein recycling, transport and maintenance of transmembrane potential account for less than 30% of the consumed ATP. Finally, there is still ~5.5% available in the budget that is being used for other cellular processes of as yet unknown cost. These data put a new perspective on the assumptions about the relative energetic weight of the processes a BSF trypanosome undergoes during its cell cycle.
Collapse
Affiliation(s)
- Janaina F. Nascimento
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Rodolpho O. O. Souza
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Mayke B. Alencar
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Ana M. Murillo
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Flávia S. Damasceno
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Richard B. M. M. Girard
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Letícia Marchese
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Luis A. Luévano-Martinez
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Renan W. Achjian
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Jurgen R. Haanstra
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul A. M. Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| |
Collapse
|
8
|
Zhang Z, Gaetjens TK, Yu Y, Paul Mallory D, Abel SM, Yu Y. Propulsive cell entry diverts pathogens from immune degradation by remodeling the phagocytic synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538287. [PMID: 37162866 PMCID: PMC10168248 DOI: 10.1101/2023.04.25.538287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phagocytosis is a critical immune function for infection control and tissue homeostasis. This process is typically described as non-moving pathogens being internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors that biochemically disrupt the biogenesis of phagoslysosomes are required. In contrast, here we report that physical forces exerted by pathogens during cell entry divert them away from the canonical phagolysosomal degradation pathway, and this altered intracellular fate is determined at the time of phagocytic synapse formation. We used the eukaryotic parasite Toxoplasma gondii as a model because live Toxoplasma uses gliding motility to actively invade into host cells. To differentiate the effect of physical forces from that of virulence factors in phagocytosis, we developed a strategy that used magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophage cells. Experiments and computer simulations collectively reveal that large propulsive forces suppress productive activation of receptors by hindering their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites, instead of being degraded in phagolysosomes, are engulfed into vacuoles that fail to mature into degradative units, following an intracellular pathway strikingly similar to that of the live motile parasite. Using opsonized beads, we further confirmed that this mechanism is general, not specific to the parasite used. These results reveal previously unknown aspects of immune evasion by demonstrating how physical forces exerted during active cell entry, independent of virulence factors, can help pathogens circumvent phagolysosomal degradation.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Thomas K. Gaetjens
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - D. Paul Mallory
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| |
Collapse
|
9
|
Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol 2023; 8:533-547. [PMID: 36804636 PMCID: PMC9981465 DOI: 10.1038/s41564-022-01295-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/21/2022] [Indexed: 02/22/2023]
Abstract
Trypanosoma brucei is a model trypanosomatid, an important group of human, animal and plant unicellular parasites. Understanding their complex cell architecture and life cycle is challenging because, as with most eukaryotic microbes, ~50% of genome-encoded proteins have completely unknown functions. Here, using fluorescence microscopy and cell lines expressing endogenously tagged proteins, we mapped the subcellular localization of 89% of the T. brucei proteome, a resource we call TrypTag. We provide clues to function and define lineage-specific organelle adaptations for parasitism, mapping the ultraconserved cellular architecture of eukaryotes, including the first comprehensive 'cartographic' analysis of the eukaryotic flagellum, which is vital for morphogenesis and pathology. To demonstrate the power of this resource, we identify novel organelle subdomains and changes in molecular composition through the cell cycle. TrypTag is a transformative resource, important for hypothesis generation for both eukaryotic evolutionary molecular cell biology and fundamental parasite cell biology.
Collapse
|
10
|
Godar S, Oristian J, Hinsch V, Wentworth K, Lopez E, Amlashi P, Enverso G, Markley S, Alper JD. Light chain 2 is a Tctex-type related axonemal dynein light chain that regulates directional ciliary motility in Trypanosoma brucei. PLoS Pathog 2022; 18:e1009984. [PMID: 36155669 PMCID: PMC9536576 DOI: 10.1371/journal.ppat.1009984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/06/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Flagellar motility is essential for the cell morphology, viability, and virulence of pathogenic kinetoplastids. Trypanosoma brucei flagella beat with a bending wave that propagates from the flagellum's tip to its base, rather than base-to-tip as in other eukaryotes. Thousands of dynein motor proteins coordinate their activity to drive ciliary bending wave propagation. Dynein-associated light and intermediate chains regulate the biophysical mechanisms of axonemal dynein. Tctex-type outer arm dynein light chain 2 (LC2) regulates flagellar bending wave propagation direction, amplitude, and frequency in Chlamydomonas reinhardtii. However, the role of Tctex-type light chains in regulating T. brucei motility is unknown. Here, we used a combination of bioinformatics, in-situ molecular tagging, and immunofluorescence microscopy to identify a Tctex-type light chain in the procyclic form of T. brucei (TbLC2). We knocked down TbLC2 expression using RNAi in both wild-type and FLAM3, a flagellar attachment zone protein, knockdown cells and quantified TbLC2's effects on trypanosome cell biology and biophysics. We found that TbLC2 knockdown reduced the directional persistence of trypanosome cell swimming, induced an asymmetric ciliary bending waveform, modulated the bias between the base-to-tip and tip-to-base beating modes, and increased the beating frequency. Together, our findings are consistent with a model of TbLC2 as a down-regulator of axonemal dynein activity that stabilizes the forward tip-to-base beating ciliary waveform characteristic of trypanosome cells. Our work sheds light on axonemal dynein regulation mechanisms that contribute to pathogenic kinetoplastids' unique tip-to-base ciliary beating nature and how those mechanisms underlie dynein-driven ciliary motility more generally.
Collapse
Affiliation(s)
- Subash Godar
- Department of Physics and Astronomy, College of Science, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - James Oristian
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Valerie Hinsch
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Katherine Wentworth
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Ethan Lopez
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Parastoo Amlashi
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Gerald Enverso
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Samantha Markley
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Joshua Daniel Alper
- Department of Physics and Astronomy, College of Science, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
11
|
Sáez Conde J, Dean S. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol 2022; 237:2654-2667. [PMID: 35616248 PMCID: PMC9323424 DOI: 10.1002/jcp.30778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
African trypanosomes are early branching protists that cause human and animal diseases, termed trypanosomiases. They have been under intensive study for more than 100 years and have contributed significantly to our understanding of eukaryotic biology. The combination of conserved and parasite-specific features mean that their flagellum has gained particular attention. Here, we discuss the different structural features of the flagellum and their role in transmission and virulence. We highlight the possibilities of targeting flagellar function to cure trypanosome infections and help in the fight to eliminate trypanosomiases.
Collapse
Affiliation(s)
- Julia Sáez Conde
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
12
|
Speidel A, Theile M, Pfeiffer L, Herrmann A, Figarella K, Ishikawa H, Schwerk C, Schroten H, Duszenko M, Mogk S. Transmigration of Trypanosoma brucei across an in vitro blood-cerebrospinal fluid barrier. iScience 2022; 25:104014. [PMID: 35313698 PMCID: PMC8933718 DOI: 10.1016/j.isci.2022.104014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Trypanosoma brucei is the causative agent of human African trypanosomiasis. The parasite transmigrates from blood vessels across the choroid plexus epithelium to enter the central nervous system, a process that leads to the manifestation of second stage sleeping sickness. Using an in vitro model of the blood-cerebrospinal fluid barrier, we investigated the mechanism of the transmigration process. For this, a monolayer of human choroid plexus papilloma cells was cultivated on a permeable membrane that mimics the basal lamina underlying the choroid plexus epithelial cells. Plexus cells polarize and interconnect forming tight junctions. Deploying different T. brucei brucei strains, we observed that geometry and motility are important for tissue invasion. Using fluorescent microscopy, the parasite's moving was visualized between plexus epithelial cells. The presented model provides a simple tool to screen trypanosome libraries for their ability to infect cerebrospinal fluid or to test the impact of chemical substances on transmigration.
Collapse
Affiliation(s)
- Annika Speidel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Marianne Theile
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Lena Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Alexander Herrmann
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Duszenko
- Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Saenz-Garcia JL, Borges BS, Souza-Melo N, Machado LV, Miranda JS, Pacheco-Lugo LA, Moretti NS, Wheleer R, Soares Medeiros LC, DaRocha WD. Trypanin Disruption Affects the Motility and Infectivity of the Protozoan Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 11:807236. [PMID: 35071054 PMCID: PMC8777028 DOI: 10.3389/fcimb.2021.807236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
The flagellum of Trypanosomatids is an organelle that contributes to multiple functions, including motility, cell division, and host–pathogen interaction. Trypanin was first described in Trypanosoma brucei and is part of the dynein regulatory complex. TbTrypanin knockdown parasites showed motility defects in procyclic forms; however, silencing in bloodstream forms was lethal. Since TbTrypanin mutants show drastic phenotypic changes in mammalian stages, we decided to evaluate if the Trypanosoma cruzi ortholog plays a similar role by using the CRISPR-Cas9 system to generate null mutants. A ribonucleoprotein complex of SaCas9 and sgRNA plus donor oligonucleotide were used to edit both alleles of TcTrypanin without any selectable marker. TcTrypanin −/− epimastigotes showed a lower growth rate, partially detached flagella, normal numbers of nuclei and kinetoplasts, and motility defects such as reduced displacement and speed and increased tumbling propensity. The epimastigote mutant also showed decreased efficiency of in-vitro metacyclogenesis. Mutant parasites were able to complete the entire life cycle in vitro; however, they showed a reduction in their infection capacity compared with WT and addback cultures. Our data show that T. cruzi life cycle stages have differing sensitivities to TcTrypanin deletion. In conclusion, additional work is needed to dissect the motility components of T. cruzi and to identify essential molecules for mammalian stages.
Collapse
Affiliation(s)
- Jose L Saenz-Garcia
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Beatriz S Borges
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Normanda Souza-Melo
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Laboratório de Ultraestrutura Hertha Mayer, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luiz V Machado
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Juliana S Miranda
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | | | - Nilmar S Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard Wheleer
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lia C Soares Medeiros
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| |
Collapse
|
14
|
Coceres VM, Iriarte LS, Miranda-Magalhães A, Santos de Andrade TA, de Miguel N, Pereira-Neves A. Ultrastructural and Functional Analysis of a Novel Extra-Axonemal Structure in Parasitic Trichomonads. Front Cell Infect Microbiol 2021; 11:757185. [PMID: 34858875 PMCID: PMC8630684 DOI: 10.3389/fcimb.2021.757185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Trichomonas vaginalis and Tritrichomonas foetus are extracellular flagellated parasites that inhabit humans and other mammals, respectively. In addition to motility, flagella act in a variety of biological processes in different cell types, and extra-axonemal structures (EASs) have been described as fibrillar structures that provide mechanical support and act as metabolic, homeostatic, and sensory platforms in many organisms. It has been assumed that T. vaginalis and T. foetus do not have EASs. However, here, we used complementary electron microscopy techniques to reveal the ultrastructure of EASs in both parasites. Such EASs are thin filaments (3-5 nm diameter) running longitudinally along the axonemes and surrounded by the flagellar membrane, forming prominent flagellar swellings. We observed that the formation of EAS increases after parasite adhesion on the host cells, fibronectin, and precationized surfaces. A high number of rosettes, clusters of intramembrane particles that have been proposed as sensorial structures, and microvesicles protruding from the membrane were observed in the EASs. Our observations demonstrate that T. vaginalis and T. foetus can connect to themselves by EASs present in flagella. The protein VPS32, a member of the ESCRT-III complex crucial for diverse membrane remodeling events, the pinching off and release of microvesicles, was found in the surface as well as in microvesicles protruding from EASs. Moreover, we demonstrated that the formation of EAS also increases in parasites overexpressing VPS32 and that T. vaginalis-VPS32 parasites showed greater motility in semisolid agar. These results provide valuable data about the role of the flagellar EASs in the cell-to-cell communication and pathogenesis of these extracellular parasites.
Collapse
Affiliation(s)
- Veronica M. Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Lucrecia S. Iriarte
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | | | | | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | | |
Collapse
|
15
|
Sudhakar A, Kamanna S, Bojja M, Tatu U. Proteomic analysis of Giardia lamblia and Trichomonas vaginalis flagella reveal unique post-translational modifications in tubulin that provide clues to regulation of their motilities. Proteomics 2021; 21:e2100004. [PMID: 34558204 DOI: 10.1002/pmic.202100004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022]
Abstract
All eukaryotic flagella are made of microtubules and driven by dynein motor proteins. However, every organism is unique in terms of its flagellar waveform, beat frequency, and its general motility pattern. With recent research, it is becoming clear that despite overall conservation in flagellar structure, the pattern of tubulin post-translational modifications within the flagella are diverse and may contribute to variations in their patterns of motility. In this study, we have analyzed the tubulin post-translational modification in the protozoan parasites Giardia lamblia and Trichomonas vaginalis using global, untargeted mass spectrometry. We show that tubulin monoglycylation is a modification localized to the flagella present in G. lamblia but absent in T. vaginalis. We also show the presence of glutamylated tubulin in both G. lamblia and T. vaginalis. Using MS/MS, we were also able to identify the previously unknown sites of monoglycylation in β-tubulin at E438 and E439 in G. lamblia. Using isolated flagella, we also characterized the flagellar proteome in G. lamblia and T. vaginalis and identified 475 proteins in G. lamblia and 386 proteins in T. vaginalis flagella. Altogether, the flagellar proteomes as well as the sites of tubulin PTMs in these organisms, reveal potential mechanisms in regulating flagellar motilities in these neglected protozoan parasites.
Collapse
Affiliation(s)
- Aparna Sudhakar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Sathisha Kamanna
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Mallikarjun Bojja
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
16
|
Structure of the trypanosome paraflagellar rod and insights into non-planar motility of eukaryotic cells. Cell Discov 2021; 7:51. [PMID: 34257277 PMCID: PMC8277818 DOI: 10.1038/s41421-021-00281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic flagella (synonymous with cilia) rely on a microtubule-based axoneme, together with accessory filaments to carryout motility and signaling functions. While axoneme structures are well characterized, 3D ultrastructure of accessory filaments and their axoneme interface are mostly unknown, presenting a critical gap in understanding structural foundations of eukaryotic flagella. In the flagellum of the protozoan parasite Trypanosoma brucei (T. brucei), the axoneme is accompanied by a paraflagellar rod (PFR) that supports non-planar motility and signaling necessary for disease transmission and pathogenesis. Here, we employed cryogenic electron tomography (cryoET) with sub-tomographic averaging, to obtain structures of the PFR, PFR-axoneme connectors (PACs), and the axonemal central pair complex (CPC). The structures resolve how the 8 nm repeat of the axonemal tubulin dimer interfaces with the 54 nm repeat of the PFR, which consist of proximal, intermediate, and distal zones. In the distal zone, stacked "density scissors" connect with one another to form a "scissors stack network (SSN)" plane oriented 45° to the axoneme axis; and ~370 parallel SSN planes are connected by helix-rich wires into a paracrystalline array with ~90% empty space. Connections from these wires to the intermediate zone, then to overlapping layers of the proximal zone and to the PACs, and ultimately to the CPC, point to a contiguous pathway for signal transmission. Together, our findings provide insights into flagellum-driven, non-planar helical motility of T. brucei and have broad implications ranging from cell motility and tensegrity in biology, to engineering principles in bionics.
Collapse
|
17
|
Dave N, Cetiner U, Arroyo D, Fonbuena J, Tiwari M, Barrera P, Lander N, Anishkin A, Sukharev S, Jimenez V. A novel mechanosensitive channel controls osmoregulation, differentiation, and infectivity in Trypanosoma cruzi. eLife 2021; 10:67449. [PMID: 34212856 PMCID: PMC8282336 DOI: 10.7554/elife.67449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
The causative agent of Chagas disease undergoes drastic morphological and biochemical modifications as it passes between hosts and transitions from extracellular to intracellular stages. The osmotic and mechanical aspects of these cellular transformations are not understood. Here we identify and characterize a novel mechanosensitive channel in Trypanosoma cruzi (TcMscS) belonging to the superfamily of small-conductance mechanosensitive channels (MscS). TcMscS is activated by membrane tension and forms a large pore permeable to anions, cations, and small osmolytes. The channel changes its location from the contractile vacuole complex in epimastigotes to the plasma membrane as the parasites develop into intracellular amastigotes. TcMscS knockout parasites show significant fitness defects, including increased cell volume, calcium dysregulation, impaired differentiation, and a dramatic decrease in infectivity. Our work provides mechanistic insights into components supporting pathogen adaptation inside the host, thus opening the exploration of mechanosensation as a prerequisite for protozoan infectivity.
Collapse
Affiliation(s)
- Noopur Dave
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Ugur Cetiner
- Department of Biology, University of Maryland, College Park, United States
| | - Daniel Arroyo
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Joshua Fonbuena
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Megna Tiwari
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Patricia Barrera
- Departmento de Biología, Facultad de Ciencias Exactas y Naturales, Instituto de Histologia y Embriologia IHEM-CONICET, Facultad de Medicina, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Noelia Lander
- Department of Biological Sciences, University of Cincinnati, Cincinnati, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, United States
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, United States
| | - Veronica Jimenez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| |
Collapse
|
18
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
19
|
Calvo-Álvarez E, Bonnefoy S, Salles A, Benson FE, McKean PG, Bastin P, Rotureau B. Redistribution of FLAgellar Member 8 during the trypanosome life cycle: Consequences for cell fate prediction. Cell Microbiol 2021; 23:e13347. [PMID: 33896083 PMCID: PMC8459223 DOI: 10.1111/cmi.13347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
The single flagellum of African trypanosomes is essential in multiple aspects of the parasites' development. The FLAgellar Member 8 protein (FLAM8), localised to the tip of the flagellum in cultured insect forms of Trypanosoma brucei, was identified as a marker of the locking event that controls flagellum length. Here, we investigated whether FLAM8 could also reflect the flagellum maturation state in other parasite cycle stages. We observed that FLAM8 distribution extended along the entire flagellar cytoskeleton in mammalian‐infective forms. Then, a rapid FLAM8 concentration to the distal tip occurs during differentiation into early insect forms, illustrating the remodelling of an existing flagellum. In the tsetse cardia, FLAM8 further localises to the entire length of the new flagellum during an asymmetric division. Strikingly, in parasites dividing in the tsetse midgut and in the salivary glands, the amount and distribution of FLAM8 in the new flagellum were seen to predict the daughter cell fate. We propose and discuss how FLAM8 could be considered a meta‐marker of the flagellum stage and maturation state in trypanosomes.
Collapse
Affiliation(s)
- Estefanía Calvo-Álvarez
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.,Trypanosome Transmission Group, Institut Pasteur, Paris, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Audrey Salles
- Unit of Technology and Service Photonic BioImaging (UTechS PBI), C2RT, Institut Pasteur, Paris, France
| | - Fiona E Benson
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Paul G McKean
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.,Trypanosome Transmission Group, Institut Pasteur, Paris, France
| |
Collapse
|
20
|
Pays E, Nolan DP. Genetic and immunological basis of human African trypanosomiasis. Curr Opin Immunol 2021; 72:13-20. [PMID: 33721725 PMCID: PMC8589022 DOI: 10.1016/j.coi.2021.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Human African trypanosomiasis, or sleeping sickness, results from infection by two subspecies of the protozoan flagellate parasite Trypanosoma brucei, termed Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, prevalent in western and eastern Africa respectively. These subspecies escape the trypanolytic potential of human serum, which efficiently acts against the prototype species Trypanosoma brucei brucei, responsible for the Nagana disease in cattle. We review the various strategies and components used by trypanosomes to counteract the immune defences of their host, highlighting the adaptive genomic evolution that occurred in both parasite and host to take the lead in this battle. The main parasite surface antigen, named Variant Surface Glycoprotein or VSG, appears to play a key role in different processes involved in the dialogue with the host.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium.
| | - Derek P Nolan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
21
|
APEX2 Proximity Proteomics Resolves Flagellum Subdomains and Identifies Flagellum Tip-Specific Proteins in Trypanosoma brucei. mSphere 2021; 6:6/1/e01090-20. [PMID: 33568455 PMCID: PMC8141408 DOI: 10.1128/msphere.01090-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Trypanosoma brucei is the protozoan parasite responsible for sleeping sickness, a lethal vector-borne disease. T. brucei has a single flagellum (cilium) that plays critical roles in transmission and pathogenesis. An emerging concept is that the flagellum is organized into subdomains, each having specialized composition and function. The overall flagellum proteome has been well studied, but a critical knowledge gap is the protein composition of individual subdomains. We have tested whether APEX-based proximity proteomics could be used to examine the protein composition of T. brucei flagellum subdomains. As APEX-based labeling has not previously been described in T. brucei, we first fused APEX2 to the DRC1 subunit of the nexin-dynein regulatory complex, a well-characterized axonemal complex. We found that DRC1-APEX2 directs flagellum-specific biotinylation, and purification of biotinylated proteins yields a DRC1 “proximity proteome” having good overlap with published proteomes obtained from purified axonemes. Having validated the use of APEX2 in T. brucei, we next attempted to distinguish flagellar subdomains by fusing APEX2 to a flagellar membrane protein that is restricted to the flagellum tip, AC1, and another one that is excluded from the tip, FS179. Fluorescence microscopy demonstrated subdomain-specific biotinylation, and principal-component analysis showed distinct profiles between AC1-APEX2 and FS179-APEX2. Comparing these two profiles allowed us to identify an AC1 proximity proteome that is enriched for tip proteins, including proteins involved in signaling. Our results demonstrate that APEX2-based proximity proteomics is effective in T. brucei and can be used to resolve the proteome composition of flagellum subdomains that cannot themselves be readily purified. IMPORTANCE Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Given the essential and multifunctional role of the T. brucei flagellum, there is need for approaches that enable proteomic analysis of individual subdomains. Our work establishes that APEX2 proximity labeling can, indeed, be implemented in the biochemical environment of T. brucei and has allowed identification of proximity proteomes for different flagellar subdomains that cannot be purified. This capacity opens the possibility to study the composition and function of other compartments. We expect this approach may be extended to other eukaryotic pathogens and will enhance the utility of T. brucei as a model organism to study ciliopathies, heritable human diseases in which cilium function is impaired.
Collapse
|
22
|
Lecordier L, Uzureau S, Vanwalleghem G, Deleu M, Crowet JM, Barry P, Moran B, Voorheis P, Dumitru AC, Yamaryo-Botté Y, Dieu M, Tebabi P, Vanhollebeke B, Lins L, Botté CY, Alsteens D, Dufrêne Y, Pérez-Morga D, Nolan DP, Pays E. The Trypanosoma Brucei KIFC1 Kinesin Ensures the Fast Antibody Clearance Required for Parasite Infectivity. iScience 2020; 23:101476. [PMID: 32889430 PMCID: PMC7479354 DOI: 10.1016/j.isci.2020.101476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Human innate immunity to Trypanosoma brucei involves the trypanosome C-terminal kinesin TbKIFC1, which transports internalized trypanolytic factor apolipoprotein L1 (APOL1) within the parasite. We show that TbKIFC1 preferentially associates with cholesterol-containing membranes and is indispensable for mammalian infectivity. Knockdown of TbKIFC1 did not affect trypanosome growth in vitro but rendered the parasites unable to infect mice unless antibody synthesis was compromised. Surface clearance of Variant Surface Glycoprotein (VSG)-antibody complexes was far slower in these cells, which were more susceptible to capture by macrophages. This phenotype was not due to defects in VSG expression or trafficking but to decreased VSG mobility in a less fluid, stiffer surface membrane. This change can be attributed to increased cholesterol level in the surface membrane in TbKIFC1 knockdown cells. Clearance of surface-bound antibodies by T. brucei is therefore essential for infectivity and depends on high membrane fluidity maintained by the cholesterol-trafficking activity of TbKIFC1.
Collapse
Affiliation(s)
- Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Sophie Uzureau
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Gilles Vanwalleghem
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interface (LBMI), University of Liège-Gembloux Agro Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium
| | - Jean-Marc Crowet
- Laboratory of Molecular Biophysics at Interface (LBMI), University of Liège-Gembloux Agro Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium
| | - Paul Barry
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Paul Voorheis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Andra-Cristina Dumitru
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Yoshiki Yamaryo-Botté
- Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, 38700 La Tronche, France
| | - Marc Dieu
- MaSUN, Mass Spectrometry Facility, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Patricia Tebabi
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Université Libre de Bruxelles, 12, Rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Laurence Lins
- Laboratory of Molecular Biophysics at Interface (LBMI), University of Liège-Gembloux Agro Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium
| | - Cyrille Y. Botté
- Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, 38700 La Tronche, France
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Yves Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 12, Rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Derek P. Nolan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| |
Collapse
|
23
|
Abstract
Almost all living things need to be able to move, whether it is toward desirable environments or away from danger. For vector-borne parasites, successful transmission and infection require that these organisms be able to sense where they are and use signals from their environment to direct where they go next, a process known as chemotaxis. Here, we show that Trypanosoma brucei, the deadly protozoan parasite that causes African sleeping sickness, can sense and move toward an attractive cue. To our knowledge, this is the first report of positive chemotaxis in these organisms. In addition to describing a new behavior in T. brucei, our findings enable future studies of how chemotaxis works in these pathogens, which will lead to deeper understanding of how they move through their hosts and may lead to new therapeutic or transmission-blocking strategies. To complete its infectious cycle, the protozoan parasite Trypanosoma brucei must navigate through diverse tissue environments in both its tsetse fly and mammalian hosts. This is hypothesized to be driven by yet unidentified chemotactic cues. Prior work has shown that parasites engaging in social motility in vitro alter their trajectory to avoid other groups of parasites, an example of negative chemotaxis. However, movement of T. brucei toward a stimulus, positive chemotaxis, has so far not been reported. Here, we show that upon encountering Escherichia coli, socially behaving T. brucei parasites exhibit positive chemotaxis, redirecting group movement toward the neighboring bacterial colony. This response occurs at a distance from the bacteria and involves active changes in parasite motility. By developing a quantitative chemotaxis assay, we show that the attractant is a soluble, diffusible signal dependent on actively growing E. coli. Time-lapse and live video microscopy revealed that T. brucei chemotaxis involves changes in both group and single cell motility. Groups of parasites change direction of group movement and accelerate as they approach the source of attractant, and this correlates with increasingly constrained movement of individual cells within the group. Identification of positive chemotaxis in T. brucei opens new opportunities to study mechanisms of chemotaxis in these medically and economically important pathogens. This will lead to deeper insights into how these parasites interact with and navigate through their host environments. IMPORTANCE Almost all living things need to be able to move, whether it is toward desirable environments or away from danger. For vector-borne parasites, successful transmission and infection require that these organisms be able to sense where they are and use signals from their environment to direct where they go next, a process known as chemotaxis. Here, we show that Trypanosoma brucei, the deadly protozoan parasite that causes African sleeping sickness, can sense and move toward an attractive cue. To our knowledge, this is the first report of positive chemotaxis in these organisms. In addition to describing a new behavior in T. brucei, our findings enable future studies of how chemotaxis works in these pathogens, which will lead to deeper understanding of how they move through their hosts and may lead to new therapeutic or transmission-blocking strategies.
Collapse
|
24
|
Douglas RL, Haltiwanger BM, Albisetti A, Wu H, Jeng RL, Mancuso J, Cande WZ, Welch MD. Trypanosomes have divergent kinesin-2 proteins that function differentially in flagellum biosynthesis and cell viability. J Cell Sci 2020; 133:jcs129213. [PMID: 32503938 DOI: 10.1242/jcs.129213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, has a flagellum that is crucial for motility, pathogenicity, and viability. In most eukaryotes, the intraflagellar transport (IFT) machinery drives flagellum biogenesis, and anterograde IFT requires kinesin-2 motor proteins. In this study, we investigated the function of the two T. brucei kinesin-2 proteins, TbKin2a and TbKin2b, in bloodstream form trypanosomes. We found that, compared to kinesin-2 proteins across other phyla, TbKin2a and TbKin2b show greater variation in neck, stalk and tail domain sequences. Both kinesins contributed additively to flagellar lengthening. Silencing TbKin2a inhibited cell proliferation, cytokinesis and motility, whereas silencing TbKin2b did not. TbKin2a was localized on the flagellum and colocalized with IFT components near the basal body, consistent with it performing a role in IFT. TbKin2a was also detected on the flagellar attachment zone, a specialized structure that connects the flagellum to the cell body. Our results indicate that kinesin-2 proteins in trypanosomes play conserved roles in flagellar biosynthesis and exhibit a specialized localization, emphasizing the evolutionary flexibility of motor protein function in an organism with a large complement of kinesins.
Collapse
Affiliation(s)
- Robert L Douglas
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Brett M Haltiwanger
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Anna Albisetti
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Haiming Wu
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Robert L Jeng
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Joel Mancuso
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - W Zacheus Cande
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Inflammation following trypanosome infection and persistence in the skin. Curr Opin Immunol 2020; 66:65-73. [PMID: 32446136 DOI: 10.1016/j.coi.2020.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Human African trypanosomes rely for their transmission on tsetse flies (Glossina sp.) that inoculate parasites into the skin during blood feeding. The absence of a protective vaccine, limited knowledge about the infection immunology, and the existence of asymptomatic carriers sustaining transmission are major outstanding challenges towards elimination. All these relate to the skin where (i) parasites persist and transmit to tsetse flies and (ii) a successful vaccination strategy should ideally be effective. Host immune processes and parasite strategies that underlie early infection and skin tropism are essential aspects to comprehend the transmission-success of trypanosomes and the failure in vaccine development. Recent insights into the early infection establishment may pave the way to novel strategies aimed at blocking transmission.
Collapse
|
26
|
Abstract
Parasitic diseases, such as sleeping sickness, Chagas disease and malaria, remain a major cause of morbidity and mortality worldwide, but particularly in tropical, developing countries. Controlling these diseases requires a better understanding of host-parasite interactions, including a deep appreciation of parasite distribution in the host. The preferred accumulation of parasites in some tissues of the host has been known for many years, but recent technical advances have allowed a more systematic analysis and quantifications of such tissue tropisms. The functional consequences of tissue tropism remain poorly studied, although it has been associated with important aspects of disease, including transmission enhancement, treatment failure, relapse and clinical outcome. Here, we discuss current knowledge of tissue tropism in Trypanosoma infections in mammals, describe potential mechanisms of tissue entry, comparatively discuss relevant findings from other parasitology fields where tissue tropism has been extensively investigated, and reflect on new questions raised by recent discoveries and their potential impact on clinical treatment and disease control strategies.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Sandra Trindade
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
27
|
Touching the Surface: Diverse Roles for the Flagellar Membrane in Kinetoplastid Parasites. Microbiol Mol Biol Rev 2020; 84:84/2/e00079-19. [PMID: 32238446 DOI: 10.1128/mmbr.00079-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While flagella have been studied extensively as motility organelles, with a focus on internal structures such as the axoneme, more recent research has illuminated the roles of the flagellar surface in a variety of biological processes. Parasitic protists of the order Kinetoplastida, which include trypanosomes and Leishmania species, provide a paradigm for probing the role of flagella in host-microbe interactions and illustrate that this interface between the flagellar surface and the host is of paramount importance. An increasing body of knowledge indicates that the flagellar membrane serves a multitude of functions at this interface: attachment of parasites to tissues within insect vectors, close interactions with intracellular organelles of vertebrate cells, transactions between flagella from different parasites, junctions between the flagella and the parasite cell body, emergence of nanotubes and exosomes from the parasite directed to either host or microbial targets, immune evasion, and sensing of the extracellular milieu. Recent whole-organelle or genome-wide studies have begun to identify protein components of the flagellar surface that must mediate these diverse host-parasite interactions. The increasing corpus of knowledge on kinetoplastid flagella will likely prove illuminating for other flagellated or ciliated pathogens as well.
Collapse
|
28
|
Imhof S, Zhang J, Wang H, Bui KH, Nguyen H, Atanasov I, Hui WH, Yang SK, Zhou ZH, Hill KL. Cryo electron tomography with volta phase plate reveals novel structural foundations of the 96-nm axonemal repeat in the pathogen Trypanosoma brucei. eLife 2019; 8:e52058. [PMID: 31710293 PMCID: PMC6974359 DOI: 10.7554/elife.52058] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
The 96-nm axonemal repeat includes dynein motors and accessory structures as the foundation for motility of eukaryotic flagella and cilia. However, high-resolution 3D axoneme structures are unavailable for organisms among the Excavates, which include pathogens of medical and economic importance. Here we report cryo electron tomography structures of the 96-nm repeat from Trypanosoma brucei, a protozoan parasite in the Excavate lineage that causes African trypanosomiasis. We examined bloodstream and procyclic life cycle stages, and a knockdown lacking DRC11/CMF22 of the nexin dynein regulatory complex (NDRC). Sub-tomogram averaging yields a resolution of 21.8 Å for the 96-nm repeat. We discovered several lineage-specific structures, including novel inter-doublet linkages and microtubule inner proteins (MIPs). We establish that DRC11/CMF22 is required for the NDRC proximal lobe that binds the adjacent doublet microtubule. We propose that lineage-specific elaboration of axoneme structure in T. brucei reflects adaptations to support unique motility needs in diverse host environments.
Collapse
Affiliation(s)
- Simon Imhof
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Jiayan Zhang
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesUnited States
| | - Khanh Huy Bui
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealUnited States
| | - Hoangkim Nguyen
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Ivo Atanasov
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Wong H Hui
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Shun Kai Yang
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealUnited States
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesUnited States
| | - Kent L Hill
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
29
|
Dóró É, Jacobs SH, Hammond FR, Schipper H, Pieters RP, Carrington M, Wiegertjes GF, Forlenza M. Visualizing trypanosomes in a vertebrate host reveals novel swimming behaviours, adaptations and attachment mechanisms. eLife 2019; 8:48388. [PMID: 31547905 PMCID: PMC6759355 DOI: 10.7554/elife.48388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
Trypanosomes are important disease agents of humans, livestock and cold-blooded species, including fish. The cellular morphology of trypanosomes is central to their motility, adaptation to the host’s environments and pathogenesis. However, visualizing the behaviour of trypanosomes resident in a live vertebrate host has remained unexplored. In this study, we describe an infection model of zebrafish (Danio rerio) with Trypanosoma carassii. By combining high spatio-temporal resolution microscopy with the transparency of live zebrafish, we describe in detail the swimming behaviour of trypanosomes in blood and tissues of a vertebrate host. Besides the conventional tumbling and directional swimming, T. carassii can change direction through a ‘whip-like’ motion or by swimming backward. Further, the posterior end can act as an anchoring site in vivo. To our knowledge, this is the first report of a vertebrate infection model that allows detailed imaging of trypanosome swimming behaviour in vivo in a natural host environment. Trypanosomes are one-celled parasites that cause the disease trypanosomiasis, which is also known as sleeping sickness. Trypanosomiasis is transmitted to humans and animals by a type of fly, known as tse-tse, which is commonly found in sub-Saharan Africa. A bite from the tse-tse fly transfers the trypanosome cells into the host’s bloodstream, where they spread from the blood to the internal organs and brain. This leads to a long-term illness, which can sometimes result in a coma and eventually death. Once in the blood trypanosomes move around using a structure similar to an underwater propeller called the flagellum. How the trypanosomes move and behave in the blood determines how the infection will progress. Until now it has only been possible to observe trypanosomes in plastic dishes or in blood drawn from infected patients. However, neither of these settings mimic the conditions of the bloodstream, and it is currently impossible to look inside human hosts to watch how trypanosomes move. To overcome this hurdle, Doro et al. infected zebrafish with Trypanosoma carassii, a close relative of the sub-Saharan trypanosomes that specifically infects fish. Zebrafish are transparent when young, making it possible to observe the parasite in the blood and tissues of live fish using a microscope. Doro et al. noticed that Trypanosoma carassii cells adapt to different environments in the host by using different swimming techniques. For example, in small capillaries trypanosomes were dragged along with the blood flow, whilst in larger vessels, when blood flow was slow or there were fewer red blood cells, trypanosomes actively swam against the current. The parasites were also able to change direction by using their flagella in a ‘whip-like’ motion. Lastly, it was discovered that Trypanosoma carassii could rapidly attach to blood vessel walls using one end of its cell body, even when blood flow was strong. This behaviour may help the parasites escape from the bloodstream into the surrounding tissues, making the infection more dangerous. Studying how trypanosomes infect zebrafish at this high level of detail provides new insights into how these parasites move and behave inside a host. An important question that remains to be answered, is how exactly the trypanosomes leave the bloodstream. A better understanding of the whole infection process may hint at new ways of fighting these deadly infections in future.
Collapse
Affiliation(s)
- Éva Dóró
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Sem H Jacobs
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Henk Schipper
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Remco Pm Pieters
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Geert F Wiegertjes
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,Department of Animal Sciences, Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
30
|
Walker BJ, Wheeler RJ. High-speed multifocal plane fluorescence microscopy for three-dimensional visualisation of beating flagella. J Cell Sci 2019; 132:jcs231795. [PMID: 31371486 PMCID: PMC6737910 DOI: 10.1242/jcs.231795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023] Open
Abstract
Analysis of flagellum and cilium beating in three dimensions (3D) is important for understanding cell motility, and using fluorescence microscopy to do so would be extremely powerful. Here, high-speed multifocal plane fluorescence microscopy, where the light path is split to visualise multiple focal planes simultaneously, was used to reconstruct Trypanosoma brucei and Leishmania mexicana movement in 3D. These species are uniflagellate unicellular parasites for which motility is vital. It was possible to use either a fluorescent stain or a genetically-encoded fluorescent protein to visualise flagellum and cell movement at 200 Hz frame rates. This addressed two open questions regarding Trypanosoma and Leishmania flagellum beating, which contributes to their swimming behaviours: 1) how planar is the L. mexicana flagellum beat, and 2) what is the nature of flagellum beating during T. brucei 'tumbling'? We showed that L. mexicana has notable deviations from a planar flagellum beat, and that during tumbling the T. brucei flagellum bends the cell and beats only in the distal portion to achieve cell reorientation. This demonstrates high-speed multifocal plane fluorescence microscopy as a powerful tool for the analysis of beating flagella.
Collapse
Affiliation(s)
- Benjamin J Walker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
31
|
Shaw S, DeMarco SF, Rehmann R, Wenzler T, Florini F, Roditi I, Hill KL. Flagellar cAMP signaling controls trypanosome progression through host tissues. Nat Commun 2019; 10:803. [PMID: 30778051 PMCID: PMC6379439 DOI: 10.1038/s41467-019-08696-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
The unicellular parasite Trypanosoma brucei is transmitted between mammals by tsetse flies. Following the discovery that flagellar phosphodiesterase PDEB1 is required for trypanosomes to move in response to signals in vitro (social motility), we investigated its role in tsetse flies. Here we show that PDEB1 knockout parasites exhibit subtle changes in movement, reminiscent of bacterial chemotaxis mutants. Infecting flies with the knockout, followed by live confocal microscopy of fluorescent parasites within dual-labelled insect tissues, shows that PDEB1 is important for traversal of the peritrophic matrix, which separates the midgut lumen from the ectoperitrophic space. Without PDEB1, parasites are trapped in the lumen and cannot progress through the cycle. This demonstrates that the peritrophic matrix is a barrier that must be actively overcome and that the parasite’s flagellar cAMP signaling pathway facilitates this. Migration may depend on perception of chemotactic cues, which could stem from co-infecting parasites and/or the insect host. Trypanosoma brucei probably relies on chemotactic signals for movement through tsetse fly tissues, but the molecular basis is unknown. Here, the authors show that flagellar cAMP signaling is required for traversal of the peritrophic matrix and that, without it, parasites are trapped in the midgut lumen.
Collapse
Affiliation(s)
- Sebastian Shaw
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012, Bern, Switzerland
| | - Stephanie F DeMarco
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | - Tanja Wenzler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | - Francesca Florini
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.
| | - Kent L Hill
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
32
|
Zhang Y, Ceylan Koydemir H, Shimogawa MM, Yalcin S, Guziak A, Liu T, Oguz I, Huang Y, Bai B, Luo Y, Luo Y, Wei Z, Wang H, Bianco V, Zhang B, Nadkarni R, Hill K, Ozcan A. Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning. LIGHT, SCIENCE & APPLICATIONS 2018; 7:108. [PMID: 30564314 PMCID: PMC6290798 DOI: 10.1038/s41377-018-0110-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/25/2018] [Accepted: 11/25/2018] [Indexed: 05/08/2023]
Abstract
Parasitic infections constitute a major global public health issue. Existing screening methods that are based on manual microscopic examination often struggle to provide sufficient volumetric throughput and sensitivity to facilitate early diagnosis. Here, we demonstrate a motility-based label-free computational imaging platform to rapidly detect motile parasites in optically dense bodily fluids by utilizing the locomotion of the parasites as a specific biomarker and endogenous contrast mechanism. Based on this principle, a cost-effective and mobile instrument, which rapidly screens ~3.2 mL of fluid sample in three dimensions, was built to automatically detect and count motile microorganisms using their holographic time-lapse speckle patterns. We demonstrate the capabilities of our platform by detecting trypanosomes, which are motile protozoan parasites, with various species that cause deadly diseases affecting millions of people worldwide. Using a holographic speckle analysis algorithm combined with deep learning-based classification, we demonstrate sensitive and label-free detection of trypanosomes within spiked whole blood and artificial cerebrospinal fluid (CSF) samples, achieving a limit of detection of ten trypanosomes per mL of whole blood (~five-fold better than the current state-of-the-art parasitological method) and three trypanosomes per mL of CSF. We further demonstrate that this platform can be applied to detect other motile parasites by imaging Trichomonas vaginalis, the causative agent of trichomoniasis, which affects 275 million people worldwide. With its cost-effective, portable design and rapid screening time, this unique platform has the potential to be applied for sensitive and timely diagnosis of neglected tropical diseases caused by motile parasites and other parasitic infections in resource-limited regions.
Collapse
Affiliation(s)
- Yibo Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Hatice Ceylan Koydemir
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Michelle M. Shimogawa
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095 USA
| | - Sener Yalcin
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Alexander Guziak
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Ilker Oguz
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Yujia Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Yilin Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Yi Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Zhensong Wei
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Hongda Wang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Vittorio Bianco
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Bohan Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Rohan Nadkarni
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
| | - Kent Hill
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095 USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
33
|
Bentivoglio M, Kristensson K, Rottenberg ME. Circumventricular Organs and Parasite Neurotropism: Neglected Gates to the Brain? Front Immunol 2018; 9:2877. [PMID: 30619260 PMCID: PMC6302769 DOI: 10.3389/fimmu.2018.02877] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Circumventricular organs (CVOs), neural structures located around the third and fourth ventricles, harbor, similarly to the choroid plexus, vessels devoid of a blood-brain barrier (BBB). This enables them to sense immune-stimulatory molecules in the blood circulation, but may also increase chances of exposure to microbes. In spite of this, attacks to CVOs by microbes are rarely described. It is here highlighted that CVOs and choroid plexus can be infected by pathogens circulating in the bloodstream, providing a route for brain penetration, as shown by infections with the parasites Trypanosoma brucei. Immune responses elicited by pathogens or systemic infections in the choroid plexus and CVOs are briefly outlined. From the choroid plexus trypanosomes can seed into the ventricles and initiate accelerated infiltration of T cells and parasites in periventricular areas. The highly motile trypanosomes may also enter the brain parenchyma from the median eminence, a CVO located at the base of the third ventricle, by crossing the border into the BBB-protected hypothalamic arcuate nuclei. A gate may, thus, be provided for trypanosomes to move into brain areas connected to networks of regulation of circadian rhythms and sleep-wakefulness, to which other CVOs are also connected. Functional imbalances in these networks characterize human African trypanosomiasis, also called sleeping sickness. They are distinct from the sickness response to bacterial infections, but can occur in common neuropsychiatric diseases. Altogether the findings lead to the question: does the neglect in reporting microbe attacks to CVOs reflect lack of awareness in investigations or of gate-opening capability by microbes?
Collapse
Affiliation(s)
- Marina Bentivoglio
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Martin E. Rottenberg
- Department Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|