1
|
Gebreselase HB, Nigussie H, Wang C, Luo C. Genetic Diversity, Population Structure and Selection Signature in Begait Goats Revealed by Whole-Genome Sequencing. Animals (Basel) 2024; 14:307. [PMID: 38254476 PMCID: PMC10812714 DOI: 10.3390/ani14020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Goats belong to a group of animals called small ruminants and are critical sources of livelihood for rural people. Genomic sequencing can provide information ranging from basic knowledge about goat diversity and evolutionary processes that shape genomes to functional information about genes/genomic regions. In this study, we exploited a whole-genome sequencing data set to analyze the genetic diversity, population structure and selection signatures of 44 individuals belonging to 5 Ethiopian goat populations: 12 Aberegalle (AB), 5 Afar (AF), 11 Begait (BG), 12 Central highlands (CH) and 5 Meafure (MR) goats. Our results revealed the highest genetic diversity in the BG goat population compared to the other goat populations. The pairwise genetic differentiation (FST) among the populations varied and ranged from 0.011 to 0.182, with the closest pairwise value (0.003) observed between the AB and CH goats and a distant correlation (FST = 0.182) between the BG and AB goats, indicating low to moderate genetic differentiation. Phylogenetic tree, ADMIXTURE and principal component analyses revealed a classification of the five Ethiopian goat breeds in accordance with their geographic distribution. We also found three top genomic regions that were detected under selection on chromosomes 2, 5 and 13. Moreover, this study identified different candidate genes related to milk characteristics (GLYCAM1 and SRC), carcass (ZNF385B, BMP-7, PDE1B, PPP1R1A, FTO and MYOT) and adaptive and immune response genes (MAPK13, MAPK14, SCN7A, IL12A, EST1 DEFB116 and DEFB119). In conclusion, this information could be helpful for understanding the genetic diversity and population structure and selection scanning of these important indigenous goats for future genetic improvement and/or as an intervention mechanism.
Collapse
Affiliation(s)
- Haile Berihulay Gebreselase
- State Key Laboratory of Swine and Poultry Breeding Industry Guangdong Key Laboratory of Animal Breeding and Nutrition Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Department of Biotechnology, College of Natural and Computational Science, Aksum University, Aksum 1010, Tigray, Ethiopia
| | | | - Changfa Wang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China;
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry Guangdong Key Laboratory of Animal Breeding and Nutrition Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
2
|
Machová K, Marina H, Arranz JJ, Pelayo R, Rychtářová J, Milerski M, Vostrý L, Suárez-Vega A. Genetic diversity of two native sheep breeds by genome-wide analysis of single nucleotide polymorphisms. Animal 2023; 17:100690. [PMID: 36566708 DOI: 10.1016/j.animal.2022.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Wallachian and Sumava sheep are autochthonous breeds that have undergone a significant bottleneck effect and subsequent restoration efforts. The first objective of this study was to evaluate the degree of genetic variability of both breeds and, therefore, the current management of the breeding. The second was to determine whether these two breeds still retain their genetic uniqueness in relation to each other and other breeds, despite regenerative interventions. Our data consisted of 48 individuals of Sumava and 37 individuals of Wallachian sheep. The comparison data contained 25 other breeds (primarily European) from the HapMap dataset generated by the International Sheep Genomics Consortium. When comparing all 27 breeds, the Czech breeds clustered with 15 other breeds and formed a single branch with them according to Nei's distances. At the same time, however, the clusters of both breeds were integral and easily distinguishable from the others when displayed with principal component analysis (PCA). Population substructure analysis did not show any common genetic ancestry of the Czech national breeds and breeds used for regeneration or, eventually, breeds whose ancestral population was used for regeneration. The average values of FST were higher in Wallachian sheep (FST = 0.14) than in Sumava sheep (FST = 0.08). The linkage disequilibrium (LD) extension per autosome was higher in Wallachian than in Sumava sheep. Consequently, the Ne estimates five generations ago were 68 for Sumava versus 34 for Wallachian sheep. Both native Czech breeds exhibit a wide range of inbreeding based on the excess of homozygosity (FHOM) among individuals, from -0.04 to 0.16 in Sumava and from -0.13 to 0.12 in Wallachian. Average inbreeding based on runs of homozygosity was 0.21 in Sumava and 0.27 in Wallachian. Most detected runs of homozygosity (ROH) were less than 5 Mb long for both breeds. ROH segments longer than 15 Mb were absent in Wallachian sheep. Concerning putative selection signatures, a total of 471 candidate genes in Wallachian sheep within 11 hotspots and 653 genes within 13 hotspots in Sumava sheep were identified. Czech breeds appear to be well differentiated from each other and other European breeds. Their genetic diversity is low, especially in the case of the Wallachian breed. Sumava is not so threatened by low diversity but has a larger share of the non-native gene pool.
Collapse
Affiliation(s)
- Karolína Machová
- Department of Genetics and Breeding, Czech University of Life Sciences (CZU), Prague, Czech Republic, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, 165 00 Praha, Suchdol, Czech Republic.
| | - Héctor Marina
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Juan Jose Arranz
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Rocío Pelayo
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Jana Rychtářová
- Institute of Animal Science, Prague, Czech republic, Přátelství 815, 104 00 Praha, Uhříněves, Czech Republic
| | - Michal Milerski
- Institute of Animal Science, Prague, Czech republic, Přátelství 815, 104 00 Praha, Uhříněves, Czech Republic
| | - Luboš Vostrý
- Department of Genetics and Breeding, Czech University of Life Sciences (CZU), Prague, Czech Republic, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, 165 00 Praha, Suchdol, Czech Republic
| | - Aroa Suárez-Vega
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| |
Collapse
|
3
|
Carracelas B, Navajas EA, Vera B, Ciappesoni G. Genome-Wide Association Study of Parasite Resistance to Gastrointestinal Nematodes in Corriedale Sheep. Genes (Basel) 2022; 13:genes13091548. [PMID: 36140716 PMCID: PMC9498675 DOI: 10.3390/genes13091548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Selection of genetically resistant animals is one alternative to reduce the negative impact of gastrointestinal nematodes (GIN) on sheep production. The aim of this study was to identify genomic regions associated with GIN resistance in Corriedale sheep by single-step genome-wide association studies (ssGWAS) using 170, 507 and 50K single nucleotide polymorphisms (SNPs). Analysis included 19,547 lambs with faecal egg counts (FEC) records, a pedigree file of 40,056 animals and 454, 711 and 383 genotypes from 170, 507 and 50K SNPs, respectively. Genomic estimated breeding values (GEBV) were obtained with single-step genomic BLUP methodology (ssGBLUP), using a univariate animal model, which included contemporary group, type of birth and age of dam as class fixed effects and age at FEC recording as covariate. The SNP effects as wells as p-values were estimated with POSTGSF90 program. Significance level was defined by a chromosome-wise False Discovery Rate of 5%. Significant genomic regions were identified in chromosomes 1, 3, 12 and 19 with the 170 SNP set, in chromosomes 7, 12 and 24 using the 507 SNP chip and only in chromosome 7 with the 50K SNP chip. Candidate genes located in these regions, using Oar_v4.0 as reference genome, were TIMP3, TLR5, LEPR and TLR9 (170 SNPs), SYNDIG1L and MGRN1 (507 SNP chip) and INO80, TLN2, TSHR and EIF2AK4 (50K SNP chip). These results validate genomic regions associated with FEC previously identified in Corriedale and other breeds and report new candidate regions for further investigation.
Collapse
Affiliation(s)
- Beatriz Carracelas
- Department of Animal Breeding, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
| | - Elly A. Navajas
- Department of Animal Breeding, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
| | - Brenda Vera
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
| | - Gabriel Ciappesoni
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
- Correspondence: ; Tel.: +598-98-816-004
| |
Collapse
|
4
|
Chokoe TC, Hadebe K, Muchadeyi FC, Nephawe KA, Dzomba EF, Mphahlele TD, Matelele TC, Mtileni BJ. Conservation status and historical relatedness of South African communal indigenous goat populations using a genome-wide single-nucleotide polymorphism marker. Front Genet 2022; 13:909472. [PMID: 36017496 PMCID: PMC9395594 DOI: 10.3389/fgene.2022.909472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Indigenous goats form the majority of populations in smallholder, low input, low output production systems and are considered an important genetic resource due to their adaptability to different production environments and support of communal farming. Effective population size (Ne), inbreeding levels, and the runs of homozygosity (ROHs) are effective tools for exploring the genetic diversity and understanding the demographic history in efforts to support breeding strategies to use and conserve genetic resources. Across populations, the current Ne of Gauteng was the lowest at 371 animals, while the historical Ne across populations suggests that the ancestor Ne has decreased by 53.86%, 44.58%, 42.16%, and 41.16% in Free State (FS), North West (NW), Limpopo (LP), and Gauteng (GP), respectively, over the last 971 generations. Genomic inbreeding levels related to ancient kinship (FROH > 5 Mb) were highest in FS (0.08 ± 0.09) and lowest in the Eastern Cape (EC) (0.02 ± 0.02). A total of 871 ROH island regions which include important environmental adaptation and hermo-tolerance genes such as IL10RB, IL23A, FGF9, IGF1, EGR1, MTOR, and MAPK3 were identified (occurring in over 20% of the samples) in FS (n = 37), GP (n = 42), and NW (n = 2) populations only. The mean length of ROH across populations was 7.76 Mb and ranged from 1.61 Mb in KwaZulu-Natal (KZN) to 98.05 Mb (GP and NW). The distribution of ROH according to their size showed that the majority (n = 1949) of the detected ROH were > 5 Mb in length compared to the other categories. Assuming two hypothetical ancestral populations, the populations from KZN and LP are revealed, supporting PC 1. The genomes of KZN and LP share a common origin but have substantial admixture from the EC and NW populations. The findings revealed that the occurrence of high Ne and autozygosity varied largely across breeds in communal indigenous goat populations at recent and ancient events when a genome-wide single-nucleotide polymorphism (SNP) marker was used. The use of Illumina goat SNP50K BeadChip shows that there was a migration route of communal indigenous goat populations from the northern part (LP) of South Africa to the eastern areas of the KZN that confirmed their historical relatedness and coincides with the migration periods of the Bantu nation.
Collapse
Affiliation(s)
- T. C. Chokoe
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
- School of Agriculture & Environmental Sciences, University of Limpopo, Polokwane, South Africa
- *Correspondence: T. C. Chokoe,
| | - K. Hadebe
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - F. C. Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - K. A. Nephawe
- Department of Animal Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - E. F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of Kwazulu-Natal, Scottsville, South African
| | - T. D. Mphahlele
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - T. C. Matelele
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - B. J. Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
5
|
Ladeira GC, Pilonetto F, Fernandes AC, Bóscollo PP, Dauria BD, Titto CG, Coutinho LL, E Silva FF, Pinto LFB, Mourão GB. CNV detection and their association with growth, efficiency and carcass traits in Santa Inês sheep. J Anim Breed Genet 2022; 139:476-487. [PMID: 35218589 DOI: 10.1111/jbg.12671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/04/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Copy number variations (CNV) are an important source of genetic variation. CNV has been increasingly studied and frequently associated with diseases and productive traits in livestock animals. However, CNV-based genome-wide association studies (GWAS) in Santa Inês sheep, one of the principal sheep breeds in Brazil, have not yet been reported. Thus, the aim of this study was to investigate the association between CNV and growth, efficiency and carcass traits in sheep. The Illumina OvineSNP50 BeadChip array was used to detect CNV in 491 Santa Inês individuals. Then, CNV-based GWAS was performed with a linear mixed model approach considering a genomic relationship matrix, for ten traits: (1) growth: body weight at three (W3) and six (W6) months of age; (2) efficiency: residual feed intake (RFI) and feed efficiency (FE) and (3) carcass: external carcass length (ECL), leg length (LL), carcass yield (CY), commercial cuts weight (CCW), loin eye area (LEA) and subcutaneous fat thickness (SFT). We identified 1,167 autosomal CNV in 438 sheep, with 294 non-redundant CNV, ranging from 21.8 to 861.9 kb, merged into 216 distinct copy number variation regions (CNVRs). One significant CNV segment (pFDR -value<0.05) in OAR3 was associated with CY, while another significant CNV in OAR6 was associated with RFI. Additionally, another 5 CNV segments were considered relevant for investigation in the future studies. The significant segments overlapped 4 QTLs and spanned 8 genes, including the SPAST, TGFA and ADGRL3 genes, involved in cell differentiation and energy metabolism. Therefore, the results of the present study increase knowledge about CNV in sheep, their possible impacts on productive traits, and provide information for future investigations, being especially useful for those interested in structural variations in the sheep genome.
Collapse
Affiliation(s)
- Giovanni Coelho Ladeira
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Fabrício Pilonetto
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Anna Carolina Fernandes
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Paola Pérez Bóscollo
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Brayan Dias Dauria
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Cristiane Gonçalves Titto
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo (FZEA/USP), Pirassununga, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | | | - Luís Fernando Batista Pinto
- Department of Animal Science, College of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Gerson Barreto Mourão
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| |
Collapse
|
6
|
van Deventer R, Rhode C, Marx M, Roodt-Wilding R. Elucidation of coat colour genetics in blue wildebeest. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Peters SO, Kızılkaya K, Ibeagha-Awemu EM, Sinecen M, Zhao X. Comparative accuracies of genetic values predicted for economically important milk traits, genome-wide association, and linkage disequilibrium patterns of Canadian Holstein cows. J Dairy Sci 2020; 104:1900-1916. [PMID: 33358789 DOI: 10.3168/jds.2020-18489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022]
Abstract
Genomic selection methodologies and genome-wide association studies use powerful statistical procedures that correlate large amounts of high-density SNP genotypes and phenotypic data. Actual 305-d milk (MY), fat (FY), and protein (PY) yield data on 695 cows and 76,355 genotyping-by-sequencing-generated SNP marker genotypes from Canadian Holstein dairy cows were used to characterize linkage disequilibrium (LD) structure of Canadian Holstein cows. Also, the comparison of pedigree-based BLUP, genomic BLUP (GBLUP), and Bayesian (BayesB) statistical methods in the genomic selection methodologies and the comparison of Bayesian ridge regression and BayesB statistical methods in the genome-wide association studies were carried out for MY, FY, and PY. Results from LD analysis revealed that as marker distance decreases, LD increases through chromosomes. However, unexpected high peaks in LD were observed between marker pairs with larger marker distances on all chromosomes. The GBLUP and BayesB models resulted in similar heritability estimates through 10-fold cross-validation for MY and PY; however, the GBLUP model resulted in higher heritability estimates than BayesB model for FY. The predictive ability of GBLUP model was significantly lower than that of BayesB for MY, FY, and PY. Association analyses indicated that 28 high-effect markers and markers on Bos taurus autosome 14 located within 6 genes (DOP1B, TONSL, CPSF1, ADCK5, PARP10, and GRINA) associated significantly with FY.
Collapse
Affiliation(s)
- Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149; Department of Animal and Dairy Science, University of Georgia, Athens 30602.
| | - Kadir Kızılkaya
- Department of Animal Science, Faculty of Agriculture, Aydin Adnan Menderes University, Aydin, 09100, Turkey
| | - Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 Rue College, Sherbrooke, QC, J1M 0C8 Canada
| | - Mahmut Sinecen
- Department of Computer Engineering, Faculty of Engineering, Aydin Adnan Menderes University, Aydin, 09100, Turkey
| | - Xin Zhao
- Department of Animal Science, McGill University, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, QC, H9S 3V9 Canada
| |
Collapse
|
8
|
Genome-Wide Analysis Revealed Homozygosity and Demographic History of Five Chinese Sheep Breeds Adapted to Different Environments. Genes (Basel) 2020; 11:genes11121480. [PMID: 33317115 PMCID: PMC7764688 DOI: 10.3390/genes11121480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023] Open
Abstract
Homozygosity of long sequence genotypes are a result of parents transmitting identical haplotypes, which can be used to estimate their auto-zygosity. Therefore, we used high-density SNP Chip data to characterize the auto-zygosity of each breed according to the occurrence and distribution of runs of homozygosity (ROH). Subsequently, we identified the genomic regions with high runs of homozygosity frequencies within individuals of each breed. We selected 96 sheep samples from five local Chinese sheep breeds belonging to different geographical locations. We identified 3046 ROHs within the study breed individuals, among which the longer segments (>1–5 Mb) were dominant. On average, ROH segments covered about 12% of the genomes; the coverage rate of OAR20 was the lowest and that of OAR2 was the highest. The distribution analysis of runs of homozygosity showed that the detected ROH mainly distributed between >26 and 28 Mb. The Hetian and Hu sheep showed the lowest ROH distribution. The estimation of homozygosity level reflects the history of modern and ancient inbreeding, which may affect the genomes of Chinese indigenous sheep breeds and indicate that some animals have experienced recent self-pollination events (Yabuyi, Karakul and Wadi). In these sheep breeds, the genomic regions were assumed to be under selection signatures frequently in line with long ROH. These regions included candidate genes associated with disease resistance traits (5S_rRNA), the innate and adaptive immune response (HERC2 and CYFIP1), digestion and metabolism (CENPJ), growth (SPP1), body size and developments (GJB2 and GJA3). This study highlighted new insights into the ROH patterns and provides a basis for future breeding and conservation strategies of Chinese sheep breeds.
Collapse
|
9
|
Michailidou S, Tsangaris GT, Tzora A, Skoufos I, Banos G, Argiriou A, Arsenos G. Analysis of genome-wide DNA arrays reveals the genomic population structure and diversity in autochthonous Greek goat breeds. PLoS One 2019; 14:e0226179. [PMID: 31830089 PMCID: PMC6907847 DOI: 10.1371/journal.pone.0226179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
Goats play an important role in the livestock sector in Greece. The national herd consists mainly of two indigenous breeds, the Eghoria and Skopelos. Here, we report the population structure and genomic profiles of these two native goat breeds using Illumina’s Goat SNP50 BeadChip. Moreover, we present a panel of candidate markers acquired using different genetic models for breed discrimination. Quality control on the initial dataset resulted in 48,841 SNPs kept for downstream analysis. Principal component and admixture analyses were applied to assess population structure. The rate of inbreeding within breed was evaluated based on the distribution of runs of homozygosity in the genome and respective coefficients, the genomic relationship matrix, the patterns of linkage disequilibrium, and the historic effective population size. Results showed that both breeds exhibit high levels of genetic diversity. Level of inbreeding between the two breeds estimated by the Wright’s fixation index FST was low (Fst = 0.04362), indicating the existence of a weak genetic differentiation between them. In addition, grouping of farms according to their geographical locations was observed. This study presents for the first time a genome-based analysis on the genetic structure of the two indigenous Greek goat breeds and identifies markers that can be potentially exploited in future selective breeding programs for traceability purposes, targeted genetic improvement schemes and conservation strategies.
Collapse
Affiliation(s)
- S. Michailidou
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
- * E-mail:
| | - G. Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - A. Tzora
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - I. Skoufos
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - G. Banos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland's Rural College and The Roslin Institute University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - A. Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
| | - G. Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Yoshida GM, Barria A, Correa K, Cáceres G, Jedlicki A, Cadiz MI, Lhorente JP, Yáñez JM. Genome-Wide Patterns of Population Structure and Linkage Disequilibrium in Farmed Nile Tilapia ( Oreochromis niloticus). Front Genet 2019; 10:745. [PMID: 31552083 PMCID: PMC6737105 DOI: 10.3389/fgene.2019.00745] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/16/2019] [Indexed: 01/29/2023] Open
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most produced farmed fish in the world and represents an important source of protein for human consumption. Farmed Nile tilapia populations are increasingly based on genetically improved stocks, which have been established from admixed populations. To date, there is scarce information about the population genomics of farmed Nile tilapia, assessed by dense single nucleotide polymorphism (SNP) panels. The patterns of linkage disequilibrium (LD) may affect the success of genome-wide association studies (GWAS) and genomic selection (GS), and also provide key information about demographic history of farmed Nile tilapia populations. The objectives of this study were to provide further knowledge about the population structure and LD patterns, as well as, estimate the effective population size (N e ) for three farmed Nile tilapia populations, one from Brazil (POP A) and two from Costa Rica (POP B and POP C). A total of 55 individuals from each population, were genotyped using a 50K SNP panel selected from a whole-genome sequencing (WGS) experiment. The first two principal components explained about 20% of the total variation and clearly differentiated between the three populations. Population genetic structure analysis showed evidence of admixture, especially for POP C. The contemporary N e estimated, based on LD values, ranged from 78 to 159. No differences were observed in the LD decay among populations, with a rapid decrease of r 2 with increasing inter-marker distance. Average r 2 between adjacent SNP pairs ranged from 0.19 to 0.03 for both POP A and C, and 0.20 to 0.03 f or POP B. Based on the number of independent chromosome segments in the Nile tilapia genome, at least 9.4, 7.6, and 4.6K SNPs for POP A, POP B, and POP C respectively, are required for the implementation of GS in the present farmed Nile tilapia populations.
Collapse
Affiliation(s)
- Grazyella M. Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Agustín Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | | | - Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María I. Cadiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | | | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
- Nucleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
11
|
Berihulay H, Islam R, Jiang L, Ma Y. Genome-Wide Linkage Disequilibrium and the Extent of Effective Population Sizes in Six Chinese Goat Populations Using a 50K Single Nucleotide Polymorphism Panel. Animals (Basel) 2019; 9:ani9060350. [PMID: 31200540 PMCID: PMC6617254 DOI: 10.3390/ani9060350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Information on linkage disequilibrium (LD) and the extent of effective population size (Ne) has important implications for exploring the degree of biological diversity, for predicting underlying selection pressure, and for designing animal breeding programs. In this study, we assessed LD, Ne, and the distribution of minor allele frequency in six goat populations. Accordingly, the results of LD and Ne using a single nucleotide polymorphism (SNP) panel (Caprine SNP 50K BeadChip, Lincoln, NE, USA) are helpful for the sustainable conservation, proper management, and utilization of Chinese goat populations. Abstract Genome-wide linkage disequilibrium is a useful parameter to study quantitative trait locus (QTL) mapping and genetic selection. In many genomic methodologies, effective population size is an important genetic parameter because of its relationship to the loss of genetic variation, increases in inbreeding, the accumulation of mutations, and the effectiveness of selection. In this study, a total of 193 individuals were genotyped to assess the extent of LD and Ne in six Chinese goat populations using the SNP 50K BeadChip. Across the determined autosomal chromosomes, we found an average of 0.02 and 0.23 for r2 and D’ values, respectively. The average r2 between all the populations varied little and ranged from 0.055 r2 for the Jining Grey to 0.128 r2 for the Guangfeng, with an overall mean of 0.083. Across the 29 autosomal chromosomes, minor allele frequency (MAF) was highest on chromosome 1 (0.321) and lowest on chromosome 25 (0.309), with an average MAF of 0.317, and showing the lowest (25.5% for Louping) and highest (28.8% for Qingeda) SNP proportions at MAF values > 0.3. The inbreeding coefficient ranged from 0.064 to 0.085, with a mean of 0.075 for all the autosomes. The Jining Grey and Qingeda populations showed higher Ne estimates, highlighting that these animals could have been influenced by artificial selection. Furthermore, a declining recent Ne was distinguished for the Arbas Cashmere and Guangfeng populations, and their estimated values were closer to 64 and 95, respectively, 13 generations ago, which indicates that these breeds were exposed to strong selection. This study provides an insight into valuable genetic information and will open up the opportunity for further genomic selection analysis of Chinese goat populations.
Collapse
Affiliation(s)
- Haile Berihulay
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Rabiul Islam
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
12
|
Barria A, López ME, Yoshida G, Carvalheiro R, Lhorente JP, Yáñez JM. Population Genomic Structure and Genome-Wide Linkage Disequilibrium in Farmed Atlantic Salmon ( Salmo salar L.) Using Dense SNP Genotypes. Front Genet 2018; 9:649. [PMID: 30619473 PMCID: PMC6302115 DOI: 10.3389/fgene.2018.00649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/30/2018] [Indexed: 01/15/2023] Open
Abstract
Chilean Farmed Atlantic salmon (Salmo salar) populations were established with individuals of both European and North American origins. These populations are expected to be highly genetically differentiated due to evolutionary history and poor gene flow between ancestral populations from different continents. The extent and decay of linkage disequilibrium (LD) among single nucleotide polymorphism (SNP) impacts the implementation of genome-wide association studies and genomic selection and provides relevant information about demographic processes of fish populations. We assessed the population structure and characterized the extent and decay of LD in three Chilean commercial populations of Atlantic salmon with North American (NAM), Scottish (SCO), and Norwegian (NOR) origin. A total of 123 animals were genotyped using a 159 K SNP Axiom® myDesignTM Genotyping Array. A total of 32 K SNP markers, representing the common SNPs along the three populations after quality control were used. The principal component analysis explained 78.9% of the genetic diversity between populations, clearly discriminating between populations of North American and European origin, and also between European populations. NAM had the lowest effective population size, followed by SCO and NOR. Large differences in the LD decay were observed between populations of North American and European origin. An r 2 threshold of 0.2 was estimated for marker pairs separated by 7,800, 64, and 50 kb in the NAM, SCO, and NOR populations, respectively. In this study we show that this SNP panel can be used to detect association between markers and traits of interests and also to capture high-resolution information for genome-enabled predictions. Also, we suggest the feasibility to achieve similar prediction accuracies using a smaller SNP data set for the NAM population, compared with samples with European origin which would need a higher density SNP array.
Collapse
Affiliation(s)
- Agustin Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Maria E. López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Grazyella Yoshida
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | - Roberto Carvalheiro
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | | | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
- Benchmark Genetic S.A., Puerto Montt, Chile
- Nucleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|