1
|
Yang S, Xu B, Zhuang Y, Zhang Q, Li J, Fu X. Current research status and clinical applications of noninvasive preimplantation genetic testing: A review. Medicine (Baltimore) 2024; 103:e39964. [PMID: 39465745 PMCID: PMC11460858 DOI: 10.1097/md.0000000000039964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Indexed: 10/29/2024] Open
Abstract
Noninvasive preimplantation genetic testing (ni-PGT) is conducted by obtaining genetic information from embryos through the analysis of free DNA released by embryos in spent embryo culture medium or blastocoel fluid. Compared to conventional preimplantation genetic testing relying on trophectoderm biopsy, ni-PGT is characterized by its noninvasiveness. It has demonstrated early advancements in the detection of embryonic chromosomal aneuploidies and the diagnosis of monogenic diseases, showcasing considerable potential for clinical application. However, there are substantial controversies in the literature concerning the reliability of ni-PGT, the source of cell-free DNA, and maternal contamination. This paper elaborates on the principles, research advancements, effectiveness, and limitations of ni-PGT to provide a basis for clinical applications.
Collapse
Affiliation(s)
- Shaozhe Yang
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, People’s Republic of China
- Luohe Reproductive Medicine and Genetics Center, Luohe Central Hospital, Luohe, People’s Republic of China
| | - Bo Xu
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, People’s Republic of China
- Luohe Reproductive Medicine and Genetics Center, Luohe Central Hospital, Luohe, People’s Republic of China
| | - Yuan Zhuang
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, People’s Republic of China
- Luohe Reproductive Medicine and Genetics Center, Luohe Central Hospital, Luohe, People’s Republic of China
| | - Qingwei Zhang
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, People’s Republic of China
- Luohe Reproductive Medicine and Genetics Center, Luohe Central Hospital, Luohe, People’s Republic of China
| | - Junfeng Li
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, People’s Republic of China
- Luohe Reproductive Medicine and Genetics Center, Luohe Central Hospital, Luohe, People’s Republic of China
| | - Xiuhong Fu
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, People’s Republic of China
- Luohe Reproductive Medicine and Genetics Center, Luohe Central Hospital, Luohe, People’s Republic of China
| |
Collapse
|
2
|
Handayani N, Aubry D, Boediono A, Bowolaksono A, Sini I, Haq NMD, Sirait B, Periastiningrum G, Mutia K, Wiweko B. Non-invasive pre-implantation genetic testing's reliability for aneuploidy using Cell-free DNA in embryo culture media. J Gynecol Obstet Hum Reprod 2024; 53:102808. [PMID: 38825167 DOI: 10.1016/j.jogoh.2024.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
OBJECTIVE The presence of embryonic cell-free DNA (cfDNA) in spent embryo culture media (SECM) may offer valuable advantages for non-invasive testing of embryo ploidy or genetic characteristics compared to trophectoderm (TE) biopsy. This study aimed to assess the diagnostic potential of SECM cfDNA as a non-invasive sample for chromosomal copy number testing in blastocysts within the clinical setting of in-vitro fertilization. METHOD This prospective observational study collected 28 SECM cfDNA samples matched with TE biopsy samples from 21 infertile couples who underwent IVF-PGT-A cycles. SECM samples were obtained from blastocysts that were cultured for approximately 5/6 days in an uninterrupted time-lapse incubator. Both sets of samples were collected during the biopsy procedure. The Variseq Illumina platform was utilized for ploidy measurement. The study evaluated the informativity and interpretability of SECM cfDNA, concordance of general ploidy status, and sex chromosome agreement between the two sample types. RESULTS SECM cfDNA had a high informativity rate (100 %) after double amplification procedure, with a result interpretability of 93 %. Two out of the 28 SECM cfDNA samples were uninterpretable and regarded as overall noise samples. The diagnostic potential of SECM cfDNA, when compared to TE biopsy the standard reference, was relatively low at 50 %. Maternal DNA contamination remains the major obstacle that hinders the widespread clinical adoption of SECM cfDNA in the routine practice of pre-implantation genetic testing for aneuploidy within IVF settings. CONCLUSION A significant modification must be implemented in the IVF laboratory to minimize DNA contamination and this necessitates suggesting adjustments to oocyte denudation, embryo culture media preparation, and sample collection procedures.
Collapse
Affiliation(s)
- Nining Handayani
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; IRSI Research and Training Centre, Jakarta, Indonesia
| | - Daniel Aubry
- Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Arief Boediono
- IRSI Research and Training Centre, Jakarta, Indonesia; Department of Anatomy, Physiology and Pharmacology, IPB University, Bogor, Indonesia; Morula IVF Jakarta Clinic, Jakarta, Indonesia
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Ivan Sini
- IRSI Research and Training Centre, Jakarta, Indonesia; Morula IVF Jakarta Clinic, Jakarta, Indonesia
| | | | - Batara Sirait
- Indonesia International Institute for Life Sciences, Jakarta, Indonesia; Morula IVF Jakarta Clinic, Jakarta, Indonesia; Department of Obstetrics and Gynecology, Faculty of Medicine Universitas Kristen Indonesia, Jakarta, Indonesia
| | | | - Kresna Mutia
- Human Reproduction, Infertility and Family Planning Cluster, Indonesia Reproductive Medicine Research and Training Center, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Budi Wiweko
- Human Reproduction, Infertility and Family Planning Cluster, Indonesia Reproductive Medicine Research and Training Center, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| |
Collapse
|
3
|
Brouillet S, Gala A, Barry F, Anav M, Ferrieres-Hoa A, Andreeva A, Molinari N, Gaspari L, Loup V, Anahory T, Hamamah S. Artificial shrinkage before fresh blastocyst transfer and IVF outcomes: a pilot randomized controlled study. Reprod Biomed Online 2024; 49:103941. [PMID: 38824764 DOI: 10.1016/j.rbmo.2024.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 06/04/2024]
Abstract
RESEARCH QUESTION Does artificial shrinkage before fresh blastocyst transfer improve clinical pregnancy rates in IVF? DESIGN In this monocentric prospective, randomized, double-blind, controlled pilot study, 150 couples undergoing fresh single-blastocyst transfer were randomized between 20 May 2018 and 22 February 2022. In the artificial shrinkage group (AS group), a single laser pulse was directed to the cellular junction of the trophectoderm on the opposite side of the inner cell mass in each blastocyst. IVF outcomes were clinical pregnancy, multiple pregnancy and live birth rates. Cell-free DNA (cfDNA) concentration was also measured by quantitative real-time PCR in the blastocyst culture medium. RESULTS In total, 142 couples underwent fresh single-blastocyst transfer: control group, no artificial shrinkage, n = 47; and AS group, artificial shrinkage, n = 95; An intention-to-treat (ITT) analysis was employed. After a reassessment and the exclusion of patients with major protocol deviations, 139 couples underwent fresh single-blastocyst transfer under optimal conditions: control group, n = 47; and AS group, n = 92; a per-protocol analysis was used here. The clinical and laboratory characteristics were not significantly different between the groups. The clinical pregnancy rate was similar in the control and AS groups (ITT: 48.9% versus 49.5%, P = 0.97; per protocol: 48.94% versus 51.1%, P = 0.89). The multiple pregnancy rate and the live birth rate were also similar between the groups. No significant differences in gestational age, birthweight or proportion of male/female newborns were observed. The concentration of cfDNA in the blastocyst culture medium was not associated with IVF outcome. CONCLUSIONS Large-scale randomized controlled trials are required to confirm these preliminary results.
Collapse
Affiliation(s)
- Sophie Brouillet
- Department of Reproductive Biology-CECOS, CHU and University of Montpellier, Montpellier, France; Developpement Embryonnaire Fertilite et Environnement, University of Montpellier, INSERM 1203, Montpellier, France
| | - Anna Gala
- Department of Reproductive Biology-CECOS, CHU and University of Montpellier, Montpellier, France; Developpement Embryonnaire Fertilite et Environnement, University of Montpellier, INSERM 1203, Montpellier, France
| | - Fatima Barry
- Department of Reproductive Biology-CECOS, CHU and University of Montpellier, Montpellier, France; Developpement Embryonnaire Fertilite et Environnement, University of Montpellier, INSERM 1203, Montpellier, France
| | - Margaux Anav
- Department of Reproductive Biology-CECOS, CHU and University of Montpellier, Montpellier, France; Developpement Embryonnaire Fertilite et Environnement, University of Montpellier, INSERM 1203, Montpellier, France
| | - Alice Ferrieres-Hoa
- Department of Reproductive Biology-CECOS, CHU and University of Montpellier, Montpellier, France; Developpement Embryonnaire Fertilite et Environnement, University of Montpellier, INSERM 1203, Montpellier, France
| | - Aneta Andreeva
- Department of Reproductive Biology-CECOS, CHU and University of Montpellier, Montpellier, France; Developpement Embryonnaire Fertilite et Environnement, University of Montpellier, INSERM 1203, Montpellier, France
| | - Nicolas Molinari
- Institut Desbrest d'Epidémiologie et de Santé Publique, University of Montpellier, INSERM, PreMEdical, INRIA, CHU Montpellier, Montpellier, France
| | - Laura Gaspari
- Developpement Embryonnaire Fertilite et Environnement, University of Montpellier, INSERM 1203, Montpellier, France
| | - Vanessa Loup
- Department of Reproductive Biology-CECOS, CHU and University of Montpellier, Montpellier, France; Developpement Embryonnaire Fertilite et Environnement, University of Montpellier, INSERM 1203, Montpellier, France
| | - Tal Anahory
- Department of Reproductive Medicine, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Samir Hamamah
- Department of Reproductive Biology-CECOS, CHU and University of Montpellier, Montpellier, France; Developpement Embryonnaire Fertilite et Environnement, University of Montpellier, INSERM 1203, Montpellier, France.
| |
Collapse
|
4
|
Moustakli E, Zikopoulos A, Skentou C, Bouba I, Dafopoulos K, Georgiou I. Evolution of Minimally Invasive and Non-Invasive Preimplantation Genetic Testing: An Overview. J Clin Med 2024; 13:2160. [PMID: 38673433 PMCID: PMC11050362 DOI: 10.3390/jcm13082160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Preimplantation genetic testing (PGT) has become a common supplementary diagnοstic/testing tοol for in vitro fertilization (ΙVF) cycles due to a significant increase in cases of PGT fοr mοnogenic cοnditions (ΡGT-M) and de novο aneuplοidies (ΡGT-A) over the last ten years. This tendency is mostly attributable to the advancement and application of novel cytogenetic and molecular techniques in clinical practice that are capable of providing an efficient evaluation of the embryonic chromosomal complement and leading to better IVF/ICSI results. Although PGT is widely used, it requires invasive biopsy of the blastocyst, which may harm the embryo. Non-invasive approaches, like cell-free DNA (cfDNA) testing, have lower risks but have drawbacks in consistency and sensitivity. This review discusses new developments and opportunities in the field of preimplantation genetic testing, enhancing the overall effectiveness and accessibility of preimplantation testing in the framework of developments in genomic sequencing, bioinformatics, and the integration of artificial intelligence in the interpretation of genetic data.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (I.B.)
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital Barrack Rd, Exeter EX2 5DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Ioanna Bouba
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (I.B.)
| | - Konstantinos Dafopoulos
- IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences University of Thessaly, 41500 Larissa, Greece;
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (I.B.)
| |
Collapse
|
5
|
Hu Z, Li Y, Chen K, Li M, Tian M, Xiang L, Wu X, Zeng P, Li M, Shao J, Li L, Lin N, Tang L, Deng L, Gao M, Li Y, Zhong L, Wang M, Yan J, Wu Z. The Comparison of Two Whole-Genome Amplification Approaches for Noninvasive Preimplantation Genetic Testing (ni-PGT) and the Application Scenario of ni-PGT during the Fresh Cycle. J Mol Diagn 2023; 25:945-956. [PMID: 37806432 DOI: 10.1016/j.jmoldx.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Recently, noninvasive preimplantation genetic testing (ni-PGT) using degenerate oligonucleotide primer PCR (DOP-PCR) and multiple annealing and looping-based amplification cycle (MALBAC)-based whole-genome amplification (WGA) methods has demonstrated predictable results in embryo testing. However, a considerable heterogeneity of results has been reported in numerous studies on these two WGA methods. Our aim was to evaluate the current WGA method for ni-PGT while further clarifying the applicable scenarios of ni-PGT in the fresh cycle. A total of 173 embryos were tested with trophectoderm biopsy and ni-PGT. In the whole preimplantation genetic testing, the clinical concordance rates of the detection results of DOP-PCR and MALBAC with the corresponding trophectoderm biopsy results were 64.12% (84/131) and 68.99% (89/129), respectively (P = 0.405). However, in the detection of abnormal embryos, the detection efficiency of ni-PGT is significantly improved [MALBAC: 96.55% versus 68.99% (P < 0.001); and DOP-PCR: 89.09% versus 64.12% (P < 0.001)]. In addition, the diagnostic efficiency of ni-PGT in low-quality blastocysts was significantly higher than that in high-quality blastocysts [MALBAC: 95.24% versus 51.85% (P = 0.001); and DOP-PCR: 91.30% versus 48.15% (P = 0.001)]. These results contribute to further understanding ni-PGT and to clarifying its application scenario in the fresh cycle.
Collapse
Affiliation(s)
- Zhixin Hu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Yonggang Li
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Kexin Chen
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Mingying Li
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Mei Tian
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Lifeng Xiang
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Xiaorong Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Peng Zeng
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Minyao Li
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Jingyi Shao
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Lei Li
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Na Lin
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Lu Tang
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Lian Deng
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Mengying Gao
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Yunxiu Li
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Li Zhong
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Mei Wang
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China
| | - Jiacong Yan
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China.
| | - Ze Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, China.
| |
Collapse
|
6
|
Huang B, Luo X, Wu R, Qiu L, Lin S, Huang X, Wu J. Evaluation of non-invasive gene detection in preimplantation embryos: a systematic review and meta-analysis. J Assist Reprod Genet 2023; 40:1243-1253. [PMID: 36952146 PMCID: PMC10310611 DOI: 10.1007/s10815-023-02760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/19/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Genetic abnormalities in embryos are responsible for most miscarriages and repeated embryo implantation failures, so a reliable preimplantation genetic screening method is urgently needed. Non-invasive preimplantation genetic testing (niPGT) is a potential method for embryo genetic diagnosis. However, the value of its application is controversial. This meta-analysis aimed to investigate and validate the diagnostic value of niPGT in patients undergoing in vitro fertilization (IVF). METHODS This review used the "Preferred Reporting Items" as a systematic review and meta-analysis of the diagnostic test accuracy (PRISMA-DTA) statement. We searched PubMed, Embase, Web of Science Core Collection, and Cochrane Library up to May 2022 to retrieve non-invasive preimplantation gene detection studies. The eligible research quality was evaluated following the quality assessment study-2 system for diagnostic accuracy. The pooled receiver operator characteristic curve (SROC) and the area under SROC (AUC) were used to evaluate diagnostic performance quantitatively. Threshold effect, subgroup analysis, and meta-regression analysis were used to explore the source of heterogeneity. Deeks' funnel plots and sensitivity analyses were used to test the publication bias and stability of the meta-analysis, respectively. FINDINGS Twenty studies met the inclusion criteria. The pooled sensitivity, specificity, and AUC were 0.84 (95% CI 0.72-0.91), 0.85 (95% CI 0.74-0.92), and 0.91 (95% CI 0.88-0.93), respectively. Subgroup analysis showed that the spent culture medium (SCM) subgroup had higher sensitivity and lower specificity than the SCM combined with the blastocoel fluid (BF) subgroup. Subgroup analysis showed that the study sensitivity and specificity of < 100 cases were higher than those of ≥ 100. Heterogeneity (chi-square) analysis revealed that sample size might be a potential source of heterogeneity. Sensitivity analysis and Deeks' funnel plots indicated that our results were relatively robust and free from publication bias. INTERPRETATION The present meta-analysis indicated that the pooled sensitivity, specificity, and AUC of niPGT in preimplantation genetic testing were 0.84, 0.85, and 0.91, respectively. niPGT may have high detection accuracy and may serve as an alternative model for embryonic analysis. Additionally, by subgroup analysis, we found that BF did not improve the accuracy of niPGT in embryos. In the future, large-scale studies are needed to determine the detection value of niPGT.
Collapse
Affiliation(s)
- Bingbing Huang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiangmin Luo
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Ruiyun Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Lingling Qiu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia
| | - Xiaolan Huang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Jinxiang Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
7
|
Sun BL, Wang Y, Sixi-Wen, Zhou L, Zhang CH, Wu ZX, Qiao J, Sun QY, Yao YX, Wang J, Yi ZY, Qian WP. Effectiveness of non-invasive chromosomal screening for normal karyotype and chromosomal rearrangements. Front Genet 2023; 14:1036467. [PMID: 36992701 PMCID: PMC10040604 DOI: 10.3389/fgene.2023.1036467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Purpose: To study the accuracy of non-invasive chromosomal screening (NICS) results, in normal chromosomes and chromosomal rearrangement groups and to investigate whether using trophoblast cell biopsy along with NICS, to choose embryos for transfer can improve the clinical outcomes of assisted pregnancy.Methods: We retrospectively analyzed 101 couples who underwent preimplantation genetic testing at our center from January 2019 to June 2021 and collected 492 blastocysts for trophocyte (TE) biopsy. D3-5 blastocyst culture fluid and blastocyst cavity fluid were collected for the NICS. Amongst them, 278 blastocysts (58 couples) and 214 blastocysts (43 couples) were included in the normal chromosomes and chromosomal rearrangement groups, respectively. Couples undergoing embryo transfer were divided into group A, in which both the NICS and TE biopsy results were euploid (52 embryos), and group B, in which the TE biopsy results were euploid and the NICS results were aneuploid (33 embryos).Results: In the normal karyotype group, concordance for embryo ploidy was 78.1%, sensitivity was 94.9%, specificity was 51.4%, the positive predictive value (PPV) was 75.7%, and the negative predictive value (NPV) was 86.4%. In the chromosomal rearrangement group, concordance for embryo ploidy was 73.1%, sensitivity was 93.3%, specificity was 53.3%, the PPV was 66.3%, and the NPV was 89%. In euploid TE/euploid NICS group, 52 embryos were transferred; the clinical pregnancy rate was 71.2%, miscarriage rate was 5.4%, and ongoing pregnancy rate was 67.3%. In euploid TE/aneuploid NICS group, 33 embryos were transferred; the clinic pregnancy rate was 54.5%, miscarriage rate was 5.6%, and ongoingpregnancy rate was 51.5%. The clinical pregnancy and ongoing pregnancy rates were higher in the TE and NICS euploid group.Conclusion: NICS was similarly effective in assessing both normal and abnormal populations. Identification of euploidy and aneuploidy alone may lead to the wastage of embryos due to high false positives. More suitable reporting methods for NICS and countermeasures for a high number of false positives in NICS are needed. In summary, our results suggest that combining biopsy and NICS results could improve the outcomes of assisted pregnancy.
Collapse
|
8
|
Kim J, Lee J, Jun JH. Non-invasive evaluation of embryo quality for the selection of transferable embryos in human in vitro fertilization-embryo transfer. Clin Exp Reprod Med 2022; 49:225-238. [PMID: 36482497 PMCID: PMC9732075 DOI: 10.5653/cerm.2022.05575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 07/28/2023] Open
Abstract
The ultimate goal of human assisted reproductive technology is to achieve a healthy pregnancy and birth, ideally from the selection and transfer of a single competent embryo. Recently, techniques for efficiently evaluating the state and quality of preimplantation embryos using time-lapse imaging systems have been applied. Artificial intelligence programs based on deep learning technology and big data analysis of time-lapse monitoring system during in vitro culture of preimplantation embryos have also been rapidly developed. In addition, several molecular markers of the secretome have been successfully analyzed in spent embryo culture media, which could easily be obtained during in vitro embryo culture. It is also possible to analyze small amounts of cell-free nucleic acids, mitochondrial nucleic acids, miRNA, and long non-coding RNA derived from embryos using real-time polymerase chain reaction (PCR) or digital PCR, as well as next-generation sequencing. Various efforts are being made to use non-invasive evaluation of embryo quality (NiEEQ) to select the embryo with the best developmental competence. However, each NiEEQ method has some limitations that should be evaluated case by case. Therefore, an integrated analysis strategy fusing several NiEEQ methods should be urgently developed and confirmed by proper clinical trials.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Obstetrics and Gynaecology, Seoul Medical Center, Seoul, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Republic of Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Republic of Korea
- Department of Senior Healthcare, Graduate School, Eulji University, Seongnam, Republic of Korea
| |
Collapse
|
9
|
Kakourou G, Mamas T, Vrettou C, Traeger-Synodinos J. An Update on Non-invasive Approaches for Genetic Testing of the Preimplantation Embryo. Curr Genomics 2022; 23:337-352. [PMID: 36778192 PMCID: PMC9878856 DOI: 10.2174/1389202923666220927111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
Preimplantation Genetic Testing (PGT) aims to reduce the chance of an affected pregnancy or improve success in an assisted reproduction cycle. Since the first established pregnancies in 1990, methodological approaches have greatly evolved, combined with significant advances in the embryological laboratory. The application of preimplantation testing has expanded, while the accuracy and reliability of monogenic and chromosomal analysis have improved. The procedure traditionally employs an invasive approach to assess the nucleic acid content of embryos. All biopsy procedures require high technical skill, and costly equipment, and may impact both the accuracy of genetic testing and embryo viability. To overcome these limitations, many researchers have focused on the analysis of cell-free DNA (cfDNA) at the preimplantation stage, sampled either from the blastocoel or embryo culture media, to determine the genetic status of the embryo non-invasively. Studies have assessed the origin of cfDNA and its application in non-invasive testing for monogenic disease and chromosomal aneuploidies. Herein, we discuss the state-of-the-art for modern non-invasive embryonic genetic material assessment in the context of PGT. The results are difficult to integrate due to numerous methodological differences between the studies, while further work is required to assess the suitability of cfDNA analysis for clinical application.
Collapse
Affiliation(s)
- Georgia Kakourou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece,Address correspondence to this author at the Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece; Tel/Fax: +302107467467; E-mail:
| | - Thalia Mamas
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece
| | - Christina Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece
| |
Collapse
|
10
|
Cai L, Zeng Q, Gao C, Wu W, Shen J, Wu BL, Wang DW, Cui Y, Liu J. Majority of transferred mosaic embryos developed healthy live births revealed by a preclinical study using embryonic morphology assessment and noninvasive PGT-A on cell-free DNA in blastocoel fluid. J Assist Reprod Genet 2022; 39:2483-2504. [PMID: 36422765 PMCID: PMC9723046 DOI: 10.1007/s10815-022-02651-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE This preclinical study aimed to evaluate whether using transferred mosaic embryos (primarily selected by embryonic morphology assessment (EMA) and compared by the noninvasive preimplantation genetic testing for aneuploidy (niPGT-A) on cell-free DNA in blastocoel fluid (BF)) increases the rates of clinical pregnancies (CPs) and healthy live births (HLBs) and to investigate whether niPGT-A could provide valuable genetic information for the EMA-selected transferred mosaic embryos. METHODS This study collected 215 blastocyst culture samples and 182 BF samples. Cell-free DNA from the BF was amplified and examined by next-generation sequencing-based niPGT-A. All 182 patients underwent EMA. However, only 147 underwent in vitro fertilization and embryo transfer, and only 113 clinical outcomes were followed up. Comprehensive chromosome screening for the chorionic villus sampling of spontaneous miscarriages and noninvasive prenatal testing for ongoing pregnancies were also performed. RESULTS The implantation rate was 77.55% in 147 transferred high-quality embryos selected by EMA. Among 113 CPs, 16 led to spontaneous miscarriage (14.16%), and 97 resulted in HLBs (85.84%). According to the niPGT-A results for 113 patients with clinical outcomes, 80.4% had CP (euploid, 20.54%; single aneuploid, 1.79%; mosaic chromosome aneuploid and/or segmental aneuploid, 58.04%). Of all the mosaic aneuploids, 90.76% were false positive, transforming to euploid. CONCLUSIONS Transferred EMA-selected embryos showed higher implantation rates. The niPGT-A of BF provided valuable genetic status ("-ploid") information, which helped reduce aneuploid-induced implantation failure and miscarriage, thereby increasing the CP and HLB rates. Additionally, majority of the transferred embryos with complex/chaotic mosaic aneuploid would likely develop HLBs.
Collapse
Affiliation(s)
- Lingbo Cai
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Qiao Zeng
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Jiandong Shen
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Bai-Lin Wu
- Institute of Biomedical Science, Fudan University, Children's Hospital and Shanghai Medical College, Fudan University, Shanghai, 2100032, China
- Departments of Pathology and Laboratory Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dao Wu Wang
- State Key Laboratory of Reproductive Medicine, Genetic Laboratory, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
11
|
Tsai NC, Chang YC, Su YR, Lin YC, Weng PL, Cheng YH, Li YL, Lan KC. Validation of Non-Invasive Preimplantation Genetic Screening Using a Routine IVF Laboratory Workflow. Biomedicines 2022; 10:biomedicines10061386. [PMID: 35740408 PMCID: PMC9219764 DOI: 10.3390/biomedicines10061386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Embryo selection is needed to optimize the chances of pregnancy in assisted reproduction technology. This study aimed to validate non-invasive preimplantation genetic testing for aneuploidy (niPGT-A) using a routine IVF laboratory workflow. Can niPGT-A combined with time-lapse morphokinetics provide a better embryo-selection strategy? A total of 118 spent culture mediums (SCMs) from 32 couples were collected. A total of 40 SCMs and 40 corresponding trophectoderm (TE) biopsy samples (n = 29) or arrested embryos (n = 11) were assessed for concordance. All embryos were cultured to the blastocyst stage (day 5 or 6) in a single-embryo culture time-lapse incubator. The modified multiple annealing and looping-based amplification cycle (MALBAC) single-cell whole genome amplification method was used to amplify cell-free DNA (cfDNA) from the SCM, which was then sequenced on the Illumina MiSeq system. The majority of insemination methods were conventional IVF. Low cfDNA concentrations were noted in this study. The amplification niPGT-A and conventional PGT-A was 67.7%. Based on this study, performing niPGT-A without altering the daily laboratory procedures cannot provide a precise diagnosis. However, niPGT-A can be applied in clinical IVF, enabling the addition of blastocysts with a better prediction of euploidy for transfer.
Collapse
Affiliation(s)
- Ni-Chin Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Obstetrics and Gynecology, Pingtung Christian Hospital, Pingtung 90053, Taiwan
| | - Yun-Chiao Chang
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-L.W.); (Y.-H.C.)
| | - Yi-Ru Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-R.S.); (Y.-C.L.); (Y.-L.L.)
| | - Yi-Chi Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-R.S.); (Y.-C.L.); (Y.-L.L.)
| | - Pei-Ling Weng
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-L.W.); (Y.-H.C.)
| | - Yin-Hua Cheng
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-L.W.); (Y.-H.C.)
| | - Yi-Ling Li
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-R.S.); (Y.-C.L.); (Y.-L.L.)
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung 41257, Taiwan
| | - Kuo-Chung Lan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-R.S.); (Y.-C.L.); (Y.-L.L.)
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung 41257, Taiwan
- Correspondence: ; Tel.: +886-7-7317123-8654
| |
Collapse
|
12
|
Non-invasive chromosome screening for embryo preimplantation using cell-free DNA. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Chen L, Li W, Liu Y, Peng Z, Cai L, Zhang N, Xu J, Wang L, Teng X, Yao Y, Zou Y, Ma M, Liu J, Lu S, Sun H, Yao B. Non-invasive embryo selection strategy for clinical in vitro fertilization to avoid wastage of potentially competent embryos. Reprod Biomed Online 2022; 45:26-34. [DOI: 10.1016/j.rbmo.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 12/09/2022]
|
14
|
Navarro-Sánchez L, García-Pascual C, Rubio C, Simón C. Non-invasive PGT-A: An update. Reprod Biomed Online 2022; 44:817-828. [DOI: 10.1016/j.rbmo.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/09/2022]
|
15
|
Sonehara H, Matsumoto R, Nakayama N, Kobanawa M, Numata K, Kawasaki A, Shozu M. Aneuploidy and sex concordance rate between cell-free DNA analysis from spent culture media of preimplantation embryo and DNA from whole embryo with respect to different morphological grading. Reprod Med Biol 2022; 21:e12493. [PMID: 36545270 PMCID: PMC9756929 DOI: 10.1002/rmb2.12493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose The aneuploidy and sex concordance between cell-free DNA in spent culture media (SCM) and DNA from whole embryo with respect to different morphological grading were examined to evaluate the feasibility of non-invasive preimplantation genetic testing for aneuploidy (niPGT-A). Methods A total of 46 pairs of embryos and corresponding SCM were divided into two groups based on the morphological grade. DNA was extracted from 22 and 24 pairs of low- and high-grade embryos, respectively, and respective SCM followed by chromosomal analysis using next-generation sequencing. Aneuploidy study and sex determination were conducted for both groups, and concordance rates were calculated. Results For low-grade embryos, 63.6% (14/22) were determined as aneuploidy by whole embryo analysis, and concordance rates were 54.5% (12/22) using niPGT-A. On the contrary, for high-grade embryos 41.7% (10/24) were determined as aneuploidy by whole embryo analysis, and concordance rates were 62.5% (15/24) using niPGT-A. The concordance rates were not statistically different between the low-grade and high-grade embryo groups (p = 0.804). For sex determination, concordance rates between whole embryo and SCM were 81.8% (18/22) and 87.5% (21/24) in low- and high-grade groups, respectively. Conclusion Aneuploidy and sex evaluation by niPGT-A may be feasible for both morphologically low- and high-grade embryos.
Collapse
Affiliation(s)
- Hiroki Sonehara
- Kashiwanoha Genome ClinicKashiwaJapan
- Hara Medical ClinicTokyoJapan
- Department of Reproductive Medicine, Graduate School of MedicineChiba UniversityChibaJapan
| | | | | | | | - Koki Numata
- Hara Medical ClinicTokyoJapan
- Department of Obstetrics and Gynecology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Akiko Kawasaki
- Department of Obstetrics and Gynecology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Makio Shozu
- Department of Reproductive Medicine, Graduate School of MedicineChiba UniversityChibaJapan
- Evolution and Reproductive Biology, Medical Mycology Research CenterChiba UniversityChibaJapan
| |
Collapse
|
16
|
Schneider L, Tripathi A. Progress and Challenges in Laboratory-Based Diagnostic and Screening Approaches for Aneuploidy Detection during Pregnancy. SLAS Technol 2021; 26:425-440. [PMID: 34148381 DOI: 10.1177/24726303211021787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aneuploidy is caused by problems during cellular division and segregation errors during meiosis that lead to an abnormal number of chromosomes and initiate significant genetic abnormalities during pregnancy or the loss of a fetus due to miscarriage. Screening and diagnostic technologies have been developed to detect this genetic condition and provide parents with critical information about their unborn child. In this review, we highlight the complexities of aneuploidy as a disease as well as multiple technological advancements in testing that help to identify aneuploidy at various time points throughout pregnancy. We focus on aneuploidy diagnosis during preimplantation genetic testing that is performed during in vitro fertilization as well as prenatal screening and diagnosis during pregnancy. This review focuses on DNA-based analysis and laboratory techniques for aneuploidy detection through reviewing molecular- and engineering-based technical advancements. We also present key challenges in aneuploidy detection during pregnancy, including sample collection, mosaic embryos, economic factors, and the social implications of this testing. The goal of this review is to synthesize broad information about aneuploidy screening and diagnostic sample collection and analysis during pregnancy and discuss major challenges the field is still facing despite decades of advancements.
Collapse
Affiliation(s)
- Lindsay Schneider
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
17
|
Bouba I, Hatzi E, Ladias P, Sakaloglou P, Kostoulas C, Georgiou I. Biological and Clinical Significance of Mosaicism in Human Preimplantation Embryos. J Dev Biol 2021; 9:18. [PMID: 34066950 PMCID: PMC8162329 DOI: 10.3390/jdb9020018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
Applications and indications of assisted reproduction technology are expanding, but every new approach is under scrutiny and thorough consideration. Recently, groups of assisted reproduction experts have presented data that support the clinical use of mosaic preimplantation embryos at the blastocyst stage, previously excluded from transfer. In the light of published contemporary studies, with or without clinical outcomes, there is growing evidence that mosaic embryos have the capacity for further in utero development and live birth. Our in-depth discussion will enable readers to better comprehend current developments. This expansion into the spectrum of ART practices requires further evidence and further theoretical documentation, basic research, and ethical support. Therefore, if strict criteria for selecting competent mosaic preimplantation embryos for further transfer, implantation, fetal growth, and healthy birth are applied, fewer embryos will be excluded, and more live births will be achieved. Our review aims to discuss the recent literature on the transfer of mosaic preimplantation embryos. It also highlights controversies as far as the clinical utilization of preimplantation embryos concerns. Finally, it provides the appropriate background to elucidate and highlight cellular and genetic aspects of this novel direction.
Collapse
Affiliation(s)
- Ioanna Bouba
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (P.L.); (P.S.); (C.K.)
| | - Elissavet Hatzi
- IVF and Genetics Unit, Dept of Obstetrics and Gynecology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Paris Ladias
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (P.L.); (P.S.); (C.K.)
| | - Prodromos Sakaloglou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (P.L.); (P.S.); (C.K.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (P.L.); (P.S.); (C.K.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (P.L.); (P.S.); (C.K.)
- IVF and Genetics Unit, Dept of Obstetrics and Gynecology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| |
Collapse
|
18
|
Chen HF, Chen M, Ho HN. An overview of the current and emerging platforms for preimplantation genetic testing for aneuploidies (PGT-A) in in vitro fertilization programs. Taiwan J Obstet Gynecol 2021; 59:489-495. [PMID: 32653118 DOI: 10.1016/j.tjog.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 01/16/2023] Open
Abstract
Preimplantation genetic testing for aneuploidies (PGT-A) and PGT for monogenic disorders (PGT-M) have currently been used widely, aiming to improve IVF outcomes. Although with many years of unsatisfactory results, PGT-A has been revived because new technologies have been adopted, such as platforms to examine all 24 types of chromosomes in blastocysts. This report compiles current knowledge regarding the available PGT platforms, including quantitative PCR, array CGH, and next-generation sequencing. The diagnostic capabilities of are compared and respective advantages/disadvantages outlined. We also address the limitations of current technologies, such as assignment of embryos with balanced translocation. We also discuss the emerging novel PGT technologies that likely will change our future practice, such as non-invasive PGT examining spent culture medium. Current literature suggest that most platforms can effectively reach concordant results regarding whole-chromosome ploidy status of all 24 types of chromosomes. However, different platforms have different resolutions and experimental complexities; leading to different turnaround time, throughput and differential capabilities of detecting mosaicism, segmental mutations, unbalanced translocations, concurrent PGT-A and PGT-M etc. Based on these information, IVF staff can more appropriately interpret PGT data and counsel patients, and select suitable platforms to meet personalized needs. The present report also concisely discusses some crucial clinical outcomes by PGT, which can clarify the role of applying PGT in daily IVF programs. Finally the up-to-date information about the novel use of current technologies and the newly emerging technologies will also help identify the focus areas for the design of new platforms for PGT in the future.
Collapse
Affiliation(s)
- Hsin-Fu Chen
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Ming Chen
- Department of Medical Genetics, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan; Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan; Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan.
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taiwan.
| |
Collapse
|
19
|
de Oliveira Fernandes G, de Faria OAC, Sifuentes DN, Franco MM, Dode MAN. Electrospray mass spectrometry analysis of blastocoel fluid as a potential tool for bovine embryo selection. J Assist Reprod Genet 2021; 38:2209-2217. [PMID: 33866497 DOI: 10.1007/s10815-021-02189-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The aim of this study was to analyze the metabolic profiles of blastocoel fluid (BF) obtained from bovine embryos produced in vivo and in vitro. METHODS Expanded blastocysts (20/group) that were in vitro and in vivo derived at day 7 were used. BF was collected and analyzed under direct infusion conditions using a microTOF-Q® mass spectrometer with electrospray ionization and a mass range of 50-650 m/z. RESULTS The spectrometry showed an evident difference in the metabolic profiles of BF from in vivo and in vitro produced embryos. These differences were very consistent between the samples of each group suggesting that embryo fluids can be used to identify the origin of the embryo. Ions 453.15 m/z, 437.18 m/z, and 398.06 m/z were identified as biomarkers for the embryo's origin with 100% sensitivity and specificity. Although it was not possible to unveil the molecular identity of the differential ions, the resulting spectrometric profiles provide a phenotype capable of differentiating embryos and hence constitute a potential parameter for embryo selection. CONCLUSION To the best of our knowledge, our results showed, for the first time, an evident difference between the spectrometric profiles of the BF from bovine embryos produced in vivo and in vitro.
Collapse
Affiliation(s)
| | | | | | - Maurício Machaim Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Margot Alves Nunes Dode
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, Brazil. .,Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil.
| |
Collapse
|
20
|
Rubio C, Racowsky C, Barad DH, Scott RT, Simon C. Noninvasive preimplantation genetic testing for aneuploidy in spent culture medium as a substitute for trophectoderm biopsy. Fertil Steril 2021; 115:841-849. [PMID: 33741125 DOI: 10.1016/j.fertnstert.2021.02.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Carmen Rubio
- Igenomix, Research and Development, Valencia, Spain; Igenomix Foundation/INCLIVA, Reproductive Genetics, Valencia, Spain
| | - Catherine Racowsky
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hôpital Foch, Suresnes, France
| | - David H Barad
- The Center for Human Reproduction, New York, New York; The Foundation for Reproductive Medicine, New York, New York
| | - Richard T Scott
- IVIRMA New Jersey, Basking Ridge, New Jersey; Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carlos Simon
- Department of Obstetrics and Gynecology, Valencia University and INCLIVA, Valencia, Spain; Department of Obstetrics and Gynecology, BIDMC Harvard University, Boston, Massachusetts.
| |
Collapse
|
21
|
Qasemi M, Mahdian R, Amidi F. Cell-free DNA discoveries in human reproductive medicine: providing a new tool for biomarker and genetic assays in ART. J Assist Reprod Genet 2021; 38:277-288. [PMID: 33421023 PMCID: PMC7884523 DOI: 10.1007/s10815-020-02038-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/13/2020] [Indexed: 02/02/2023] Open
Abstract
Cell-free DNAs (cfDNAs) are fragmented forms of DNA that are released into extracellular environments. Analyzing them, regarding either concentration or genetic/epigenetic status can provide helpful information about disorders, response to treatments, estimation of success rates, etc. Moreover, since they are presented in body fluids, evaluation of the aforementioned items would be achieved by less/non-invasive methods. In human reproduction field, it is required to have biomarkers for prediction of assisted reproduction techniques (ART) outcome, as well as some non-invasive procedures for genetic/epigenetic assessments. cfDNA is an appropriate candidate for providing the both approaches in ART. Recently, scientists attempted to investigate its application in distinct fields of reproductive medicine that resulted in discovering its applicability for biomarker and genetic/epigenetic analyses. However, due to some limitations, it has not reached to clinical administration yet. In this article, we have reviewed the current reported data with respect to advantages and limitations of cfDNA utilization in three fields of ART, reproduction of male and female, as well as in vitro developed embryos.
Collapse
Affiliation(s)
- Maryam Qasemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mahdian
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Cimadomo D, Rienzi L, Capalbo A, Rubio C, Innocenti F, García-Pascual CM, Ubaldi FM, Handyside A. The dawn of the future: 30 years from the first biopsy of a human embryo. The detailed history of an ongoing revolution. Hum Reprod Update 2020; 26:453-473. [PMID: 32441746 DOI: 10.1093/humupd/dmaa019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/25/2020] [Indexed: 01/20/2023] Open
Abstract
Following early studies showing no adverse effects, cleavage stage biopsy by zona drilling using acid Tyrode's solution, and removal of single blastomeres for preimplantation genetic testing (PGT) and identification of sex in couples at risk of X-linked disease, was performed by Handyside and colleagues in late 1989, and pregnancies reported in 1990. This method was later used for specific diagnosis of monogenic conditions, and a few years later also for chromosomal structural and/or numerical impairments, thereby establishing a valuable alternative option to prenatal diagnosis. This revolutionary approach in clinical embryology spread worldwide, and several other embryo biopsy strategies developed over three decades in a process that is still ongoing. The rationale of this narrative review is to outline the different biopsy approaches implemented across the years in the workflow of the IVF clinics that provided PGT: their establishment, the first clinical experiences, their downsides, evolution, improvement and standardization. The history ends with a glimpse of the future: minimally/non-invasive PGT and experimental embryo micromanipulation protocols. This grand theme review outlines a timeline of the evolution of embryo biopsy protocols, whose implementation is increasing worldwide together with the increasing application of PGT techniques in IVF. It represents a vade mecum especially for the past, present and upcoming operators and experts in this field to (re)live this history from its dawn to its most likely future.
Collapse
Affiliation(s)
- Danilo Cimadomo
- Clinica Valle Giulia, Genera Center for Reproductive Medicine, Rome, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, Genera Center for Reproductive Medicine, Rome, Italy
| | - Antonio Capalbo
- Igenomix Italy, Marostica, Italy.,Dipartimento di Scienze Anatomiche, Istologiche, Medico Legali e dell'Apparato Locomotore, Sezione Istologia ed Embriologia Medica, University of Rome 'Sapienza', Rome, Italy
| | - Carmen Rubio
- R&D Department, Igenomix and Incliva, Valencia, Spain
| | - Federica Innocenti
- Clinica Valle Giulia, Genera Center for Reproductive Medicine, Rome, Italy
| | | | | | - Alan Handyside
- School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
23
|
Hawke DC, Watson AJ, Betts DH. Extracellular vesicles, microRNA and the preimplantation embryo: non-invasive clues of embryo well-being. Reprod Biomed Online 2020; 42:39-54. [PMID: 33303367 DOI: 10.1016/j.rbmo.2020.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
Elective single embryo transfer is rapidly becoming the standard of care in assisted reproductive technology for patients under the age of 35 years with a good prognosis. Clinical pregnancy rates have become increasingly dependent on the selection of a single viable embryo for transfer, and diagnostic techniques facilitating this selection continue to develop. Current progress in elucidating the extracellular vesicle and microRNA components of the embryonic secretome is reviewed, and the potential for these findings to improve clinical embryo selection discussed. Key results have shown that extracellular vesicles and microRNAs are rapidly detectable constituents of the embryonic secretome. Evidence suggests that the vesicular population is largely exosomal in nature, secreted at all stages of preimplantation development and capable of traversing the zona pellucida. Both extracellular vesicle and microRNA concentrations within the secretome are elevated for blastocysts with diminished developmental competence, as indicated either by degeneracy or implantation failure, whereas studies have yet to firmly correlate individual microRNA sequences with pregnancy outcome. These emerging correlations support the viability of extracellular vesicles and microRNAs as the basis for a new diagnostic test to supplement or replace morphokinetic assessment.
Collapse
Affiliation(s)
- David Connor Hawke
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada
| | - Andrew John Watson
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada
| | - Dean Harvey Betts
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada.
| |
Collapse
|
24
|
Rubio C, Navarro-Sánchez L, García-Pascual CM, Ocali O, Cimadomo D, Venier W, Barroso G, Kopcow L, Bahçeci M, Kulmann MIR, López L, De la Fuente E, Navarro R, Valbuena D, Sakkas D, Rienzi L, Simón C. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am J Obstet Gynecol 2020; 223:751.e1-751.e13. [PMID: 32470458 DOI: 10.1016/j.ajog.2020.04.035] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The recent identification of embryonic cell-free DNA in spent blastocyst media has opened a new era of possibilities for noninvasive embryo aneuploidy testing in assisted reproductive technologies. Yet, previous studies assessing a limited number of embryos reported variable concordance between embryonic cell-free DNA and trophectoderm biopsies, thus questioning the validity of this approach. OBJECTIVE This study aimed to evaluate the concordance and reproducibility of testing embryonic cell-free DNA vs trophectoderm DNA obtained from the same embryo in a large sample of human blastocysts and to assess the contribution of the inner cell mass and trophectoderm to embryonic cell-free DNA released to the culture media. STUDY DESIGN This is an interim analysis of a prospective, observational study among 8 in vitro fertilization centers in 4 continents to assess consistency between noninvasive embryo aneuploidy testing of embryonic cell-free DNA and conventional trophectoderm biopsy. The analysis included 1301 day-6/7 blastocysts obtained in 406 in vitro fertilization cycles from 371 patients aged 20-44 years undergoing preimplantation genetic testing for aneuploidy. Fresh oocytes underwent intracytoplasmic sperm injection or in vitro fertilization. No previous assisted hatching or vitrification was allowed before media collection. Individual spent blastocyst medium was collected from embryos cultured at least 40 hours from day 4. After media collection, conventional preimplantation genetic testing for aneuploidy, comprising trophectoderm biopsy and blastocyst vitrification, was performed. Embryonic cell-free DNA was analyzed blindly after embryo transfer. Inner cell mass and trophectoderm biopsies were also performed in a subset of 81 aneuploid blastocysts donated for research. RESULTS Embryonic cell-free DNA analyses were 78.2% (866/1108) concordant with the corresponding trophectoderm biopsies. No significant differences were detected among centers ranging from 72.5% to 86.3%. Concordance rates exceeded 86% when all defined steps in the culture laboratory were controlled to minimize the impact of maternal and operator contamination. Sensitivity per center ranged from 76.5% to 91.3% and specificity from 64.7% to 93.3%. The false-negative rate was 8.3% (92/1108), and false-positive rate was 12.4% (137/1108). The 2 fertilization techniques provided similar sensitivity (80.9% vs 87.9%) and specificity (78.6% vs 69.9%). Multivariate analysis did not reveal any bias from patient clinical background, ovarian stimulation protocols, culture conditions, or embryo quality on testing accuracy of concordance. Moreover, concordances of embryonic cell-free DNA with trophectoderm and inner cell mass suggest that the embryonic cell-free DNA originates from both compartments of the human embryo. CONCLUSION Noninvasive analysis of embryonic cell-free DNA in spent blastocyst culture media demonstrates high concordance with trophectoderm biopsy results in this large multicenter series. A noninvasive approach for prioritizing embryo euploidy offers important advantages such as avoiding invasive embryo biopsy and decreased cost, potentially increasing accessibility for a wider patient population.
Collapse
Affiliation(s)
| | | | | | - Olcay Ocali
- IVF Laboratory, Boston IVF Fertility Clinic, Boston, MA
| | - Danilo Cimadomo
- GENERA Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - William Venier
- IVF Laboratory, San Diego Fertility Center, San Diego, CA
| | - Gerardo Barroso
- IVF Clinical Department, Escuela Superior de Medicina Instituto Politécnico Nacional y Centro de Reproducción Arcos S.C. NASCERE, CDMX, Mexico
| | - Laura Kopcow
- Department of Reproductive Genetics, Pregna Medicina Reproductiva, Buenos Aires, Argentina
| | | | | | - Lourdes López
- IVF Laboratory, ProcreaTec International Fertility Clinic, Madrid, Spain
| | | | - Roser Navarro
- Bioinformatics Department, Igenomix, Valencia, Spain
| | | | - Denny Sakkas
- IVF Laboratory, Boston IVF Fertility Clinic, Boston, MA
| | - Laura Rienzi
- GENERA Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Carlos Simón
- Igenomix Foundation/Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA) and Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, Valencia, Spain, and Department of Obstetrics and Gynecology, BIDMC, Harvard University, Cambridge, MA
| |
Collapse
|
25
|
Chen J, Jia L, Li T, Guo Y, He S, Zhang Z, Su W, Zhang S, Fang C. Diagnostic efficiency of blastocyst culture medium in noninvasive preimplantation genetic testing. F S Rep 2020; 2:88-94. [PMID: 34223278 PMCID: PMC8244311 DOI: 10.1016/j.xfre.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/09/2022] Open
Abstract
Objective To evaluate the diagnostic efficiency of spent blastocyst culture medium (BCM) in noninvasive preimplantation genetic testing (niPGT) by comparing the karyotype concordance with corresponding inner cell mass (ICM) among initial trophectoderm (TE) biopsy, TE re-biopsy, and BCM sampling. Design Re-analysis aneuploid/mosaic blastocysts donated for research by couples. Setting Institutional in vitro fertilization center. Patient(s) A total of 12 couples donated their blastocysts, which had previously been diagnosed as aneuploid or mosaic by initial TE-biopsy preimplantation genetic testing for aneuploidy (PGT-A) for research. Intervention(s) A total of 26 frozen−thawed blastocysts were re-analyzed by TE re-biopsy, ICM biopsy, and the collection of spent BCM. Main Outcome Measure(s) Karyotype concordance rates. Result(s) For 23 embryos diagnosed as aneuploid by initial TE biopsy, 78.3% of initial TE samples, 87.0% of TE re-biopsies samples, and 78.3% of BCM samples were concordant with corresponding ICM samples, and for three mosaic embryos, the concordance rates with ICM of these three groups were 0%, 100%, and 100%, respectively. With the corresponding ICM result as the true result, sensitivity of both niPGT-A and initial TE were 100%; however, the false-positive rate (FPR) of initial TE was higher than that of niPGT-A (100% vs. 0). Conclusion(s) niPGT-A using BCM had diagnostic efficiency similar to that of TE-biopsy PGT-A. In the case of mosaic embryos, niPGT-A using BCM may be more reliable for predicting karyotypes of ICM than initial TE biopsy.
Collapse
Affiliation(s)
- Jingbo Chen
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lei Jia
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tingting Li
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yingchun Guo
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shujing He
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhiqiang Zhang
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenlong Su
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shihui Zhang
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Cong Fang
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
26
|
Preimplantation Genetic Testing for Chromosomal Abnormalities: Aneuploidy, Mosaicism, and Structural Rearrangements. Genes (Basel) 2020; 11:genes11060602. [PMID: 32485954 PMCID: PMC7349251 DOI: 10.3390/genes11060602] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
There is a high incidence of chromosomal abnormalities in early human embryos, whether they are generated by natural conception or by assisted reproductive technologies (ART). Cells with chromosomal copy number deviations or chromosome structural rearrangements can compromise the viability of embryos; much of the naturally low human fecundity as well as low success rates of ART can be ascribed to these cytogenetic defects. Chromosomal anomalies are also responsible for a large proportion of miscarriages and congenital disorders. There is therefore tremendous value in methods that identify embryos containing chromosomal abnormalities before intrauterine transfer to a patient being treated for infertility—the goal being the exclusion of affected embryos in order to improve clinical outcomes. This is the rationale behind preimplantation genetic testing for aneuploidy (PGT-A) and structural rearrangements (-SR). Contemporary methods are capable of much more than detecting whole chromosome abnormalities (e.g., monosomy/trisomy). Technical enhancements and increased resolution and sensitivity permit the identification of chromosomal mosaicism (embryos containing a mix of normal and abnormal cells), as well as the detection of sub-chromosomal abnormalities such as segmental deletions and duplications. Earlier approaches to screening for chromosomal abnormalities yielded a binary result of normal versus abnormal, but the new refinements in the system call for new categories, each with specific clinical outcomes and nuances for clinical management. This review intends to give an overview of PGT-A and -SR, emphasizing recent advances and areas of active development.
Collapse
|
27
|
Kuznyetsov V, Madjunkova S, Abramov R, Antes R, Ibarrientos Z, Motamedi G, Zaman A, Kuznyetsova I, Librach CL. Minimally Invasive Cell-Free Human Embryo Aneuploidy Testing (miPGT-A) Utilizing Combined Spent Embryo Culture Medium and Blastocoel Fluid -Towards Development of a Clinical Assay. Sci Rep 2020; 10:7244. [PMID: 32350403 PMCID: PMC7190856 DOI: 10.1038/s41598-020-64335-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/14/2020] [Indexed: 01/08/2023] Open
Abstract
Preimplantation genetic testing for aneuploidies (PGT-A) using trophectoderm (TE) biopsy samples is labour intensive, invasive, and subject to sampling bias. In this study, we report on the efficacy and factors affecting accuracy of a technique we pioneered for minimally invasive preimplantation genetic testing for aneuploidy (miPGT-A). Our technique uses cell-free embryonic DNA (cfeDNA) in spent embryo culture medium (SEM) combined with blastocoel fluid (BF) to increase the amount of assayable cfeDNA. We compared miPGT-A results (n = 145 embryos) with standard PGT-A analysis of the corresponding trophectoderm biopsy. We found that accuracy of miPGT was not related to blastocyst morphological grade. The overall concordance rate per sample for euploidy/aneuploidy status between miPGT-A and TE biopsy samples was 88/90 (97.8%), and was not different between good 47/48 (97.9%) and moderate/low quality blastocysts 41/42 (97.9%) (p > 0.05). Importantly, we also discovered that for cfeDNA analysis, the SurePlex whole genome amplification (WGA) kit can be utilized without an additional cell lysis/extraction DNA step; this efficiency likely reduces the risk of maternal contamination. Regarding origin of embryonic cfeDNA, the average amount of miPGT-A WGA-DNA we obtained from blastocysts with different morphological grades, as well as the size miPGT-A WGA-DNA fragments, suggest that it is unlikely that apoptosis and necrosis are only mechanisms of DNA release from the inner cell mass (ICM) and TE into BF and SEM.
Collapse
Affiliation(s)
| | | | | | - Ran Antes
- CReATe Fertility Centre, Toronto, Canada
| | | | | | | | | | - Clifford L Librach
- CReATe Fertility Centre, Toronto, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.,Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Gynecology, Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
28
|
Brouillet S, Martinez G, Coutton C, Hamamah S. Is cell-free DNA in spent embryo culture medium an alternative to embryo biopsy for preimplantation genetic testing? A systematic review. Reprod Biomed Online 2020; 40:779-796. [PMID: 32417199 DOI: 10.1016/j.rbmo.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
Abstract
Preimplantation genetic testing (PGT) is increasingly used worldwide. It currently entails the use of invasive techniques, i.e. polar body, blastomere, trophectoderm biopsy or blastocentesis, to obtain embryonic DNA, with major technical limitations and ethical issues. Evidence suggests that invasive PGT can lead to genetic misdiagnosis in the case of embryo mosaicism, and, consequently, to the selection of affected embryos for implantation or to the destruction of healthy embryos. Recently, spent culture medium (SCM) has been proposed as an alternative source of embryonic DNA. An increasing number of studies have reported the detection of cell-free DNA in SCM and highlighted the diagnostic potential of non-invasive SCM-based PGT for assessing the genetic status of preimplantation human embryos obtained by IVF. The reliability of this approach for clinical applications, however, needs to be determined. In this systematic review, published evidence on non-invasive SCM-based PGT is presented, and its current benefits and limitations compared with invasive PGT. Then, ways of optimizing and standardizing procedures for non-invasive SCM-based PGT to prevent technical biases and to improve performance in future studies are discussed. Finally, clinical perspectives of non-invasive PGT are presented and its future applications in reproductive medicine highlighted.
Collapse
Affiliation(s)
- Sophie Brouillet
- Université Grenoble-Alpes, Inserm 1036, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biosciences et Biotechnologies de Grenoble (BIG), Laboratoire Biologie du Cancer et de l'Infection (BCI), Grenoble 38000, France; Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), La Tronche 38700, France; INSERM U1203, Equipe "Développement Embryonnaire Précoce Humain et Pluripotence", Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi, Montpellier 34295, France
| | - Guillaume Martinez
- Université Grenoble-Alpes, Inserm, Institute for Advanced Biosciences (IAB), équipe Génétique Epigénétique et Thérapie de l'Infertilité (GETI), Grenoble 38000, France; Centre Hospitalier Universitaire de Grenoble, Hôpital Couple Enfant, Département de Génétique et Procréation, Laboratoire de Génétique Chromosomique, La Tronche 38700, France
| | - Charles Coutton
- Université Grenoble-Alpes, Inserm, Institute for Advanced Biosciences (IAB), équipe Génétique Epigénétique et Thérapie de l'Infertilité (GETI), Grenoble 38000, France; Centre Hospitalier Universitaire de Grenoble, Hôpital Couple Enfant, Département de Génétique et Procréation, Laboratoire de Génétique Chromosomique, La Tronche 38700, France
| | - Samir Hamamah
- INSERM U1203, Equipe "Développement Embryonnaire Précoce Humain et Pluripotence", Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi, Montpellier 34295, France; CHU Montpellier, ART/PGD Division, Hôpital Arnaud de Villeneuve, Montpellier, Cedex 5, Montpellier 34295, France.
| |
Collapse
|
29
|
Lal A, Roudebush WE, Chosed RJ. Embryo Biopsy Can Offer More Information Than Just Ploidy Status. Front Cell Dev Biol 2020; 8:78. [PMID: 32117998 PMCID: PMC7028688 DOI: 10.3389/fcell.2020.00078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/29/2020] [Indexed: 11/13/2022] Open
Abstract
As a byproduct of increasing infertility cases, the use of medically assisted reproduction (MAR) has increased. As such, the need to gain information regarding the implantation potential of specific MAR preimplantation embryos prior to transfer has become increasingly critical. One potential source of this information is contained in the blastocoel fluid from day 5/6 embryos. This fluid contains cell-free DNA, proteins, RNA, metabolites, exosomes, etc., and analysis of these contents provides clinicians with an opportunity to gain more data regarding potential of each embryo. While application of preimplantation genetic testing for aneuploidies (PGT-A) may be limited to women of advanced maternal age or with recurrent pregnancy loss, the fluid taken at the time of embryo biopsy can be analyzed for any frozen embryo as well as PGT-A embryos. In both cases, blastocoel fluid analysis provides information regarding a preimplantation embryo's potential for implantation. Moreover, as remnants of apoptosis, embryonic cell-free DNA (cfDNA) and mRNA may lead clinicians to better understand and predict the extent of self-correction occurring within the preimplantation embryo. While analysis of blastocoel components are not yet viable replacements for PGT-A, their study may still reveal critical clinical information about the implantation potential for any given embryo.
Collapse
Affiliation(s)
| | | | - Renee J. Chosed
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, United States
| |
Collapse
|
30
|
The mechanisms and clinical application of mosaicism in preimplantation embryos. J Assist Reprod Genet 2019; 37:497-508. [PMID: 31838629 DOI: 10.1007/s10815-019-01656-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
Embryos containing distinct cell lines are referred to as mosaic embryos, which are considered to be caused by mitotic errors in chromosome segregation during preimplantation development. As the accuracy and resolution of detection techniques improve, more and more mosaic embryos were identified recently. The impacts of mosaic embryos on survival and potential pregnancy outcome have been reported to be diverse in different studies. Because of the universality and clinical significance of mosaicism, it is essential to unravel the mechanisms and consequences with regard to this phenomenon in human pre- and post-implantation embryos. The purpose of this review is to explore the mechanisms, causes of mosaicism, and the development of pre- and post-implantation mosaic embryos in the light of recent emerging data, with the aim of providing new references for clinical applications.
Collapse
|
31
|
Babariya D, Leaver M, Wells D. Divining the genetic status of embryos: consult the medium? Fertil Steril 2019; 112:471-473. [DOI: 10.1016/j.fertnstert.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022]
|
32
|
Jiao J, Shi B, Sagnelli M, Yang D, Yao Y, Li W, Shao L, Lu S, Li D, Wang X. Minimally invasive preimplantation genetic testing using blastocyst culture medium. Hum Reprod 2019; 34:1369-1379. [PMID: 31251795 DOI: 10.1093/humrep/dez075] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/09/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
STUDY QUESTION
Is minimally invasive chromosome screening (MICS) using blastocyst culture medium (BCM) sufficiently fast and accurate for preimplantation genetic testing (PGT)
SUMMARY ANSWER
A new assay for MICS, named MICS-Inst achieved high-resolution, comprehensive chromosome ploidy detection using BCM.
WHAT IS KNOWN ALREADY
BCM is a viable source of genomic DNA for use in PGT.
STUDY DESIGN, SIZE, DURATION
Forty-one vitrified blastocysts donated by 22 couples known to carry a chromosome rearrangement and 21 vitrified blastocysts donated from 8 couples with normal karyotypes were used in this study. Good-quality blastocysts, defined as Day 5 and Day 6 embryos ≥ BB (AA, AB, BA, BB) based on the Gardner system were used for analysis. Recruitment took place from May 2018 to August 2018. We performed PGT for structural rearrangements (PGT-SR) on 41 BCM, trophectoderm (TE) biopsy and blastocyst-stage embryo (BE) samples as well as PGT for aneuploidies (PGT-A) on 21 BCM, TE biopsy and BE samples.
PARTICIPANTS/MATERIALS, SETTING, METHODS
We made several significant modifications to the BCM composition (mixing blastocoel fluid and spent blastocyst medium) as well as the pre-existing multiple annealing and looping-based amplification cycles (MALBAC) techniques and library generation procedures. The design of a quasilinear preamplification (Pre-AMP) primer and AMP primers 1 and 2 enables the preparation of a next-generation sequencing library after the exponential amplification stage by introducing the Illumina P5 and P7 primers into the final products, which are then ready for sequencing. Sequencing was performed on the Illumina Hiseq 2500 platform with 2.0 Mb raw reads generated for each sample.
MAIN RESULTS AND THE ROLE OF CHANCE
For PGT-A, BCM and TE biopsy samples showed 90% and 86% clinical concordance with the corresponding BE samples, respectively. In addition, both BCM and TE biopsy samples showed 76% karyotype concordance with the corresponding BE samples. For PGT-SR, we successfully obtained ploidy information for all 23 chromosomes with the exception of any rearrangements involving the Y chromosome. Both BCM and TE biopsy samples showed 100% clinical concordance with the corresponding BE samples in detecting chromosomal rearrangements. BCM and TE biopsy samples showed 90% and 100% karyotype concordance with the corresponding BE samples, respectively. Additionally, no statistically significant differences were detected in the aforementioned values of the BCM and TE biopsy samples in either PGT-A or PGT-SR (P > 0.05). Moreover, we achieved accurate quantification of segmental abnormalities using BCM samples. In addition, MICS-Inst reduced the number of steps required for library preparation through the use of new primer designs, resulting in an overall time reduction of 7.5 h. This time reduction allows for the performance of fresh blastocyst transfers.
LIMITATIONS, REASONS FOR CAUTION
The main limitation is that BE, rather the inner cell mass, was used as the standard to evaluate the chromosome screening results.
WIDER IMPLICATIONS OF THE FINDINGS
These results show that MICS-Inst is effective in procedure and precision for PGT, and that it is possible to achieve fresh blastocyst transfer following PGT. The implications are significant, as these findings may lead to minimally invasive PGT methods in the future.
STUDY FUNDING/COMPETING INTEREST(S)
This work was supported by the National Natural Science Foundation of China (No. 81671423 and No. 81402130), the National Key Research and Development Program of China (No. 2018YFC1003100), Liaoning Provincial Key Research and Development Program (No. 2018225090), the Fok Ying Tung Education Foundation (No. 151039) and Distinguished Talent Program of Shengjing Hospital (No. ME76). No competing interests declared.
Collapse
Affiliation(s)
- Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Huaxiang Road, Shenyang, China
| | - Bei Shi
- Department of Physiology, College of Life Science, Puhe Road, China Medical University, Shenyang, China
| | - Matthew Sagnelli
- University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Dalei Yang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Huaxiang Road, Shenyang, China
| | - Yaxin Yao
- Department of Clinical Research, Yikon Genomics Company, Ltd., Xinghu Street Suzhou, , China
| | - Wenlu Li
- Department of Clinical Research, Yikon Genomics Company, Ltd., Xinghu Street Suzhou, , China
| | - Lin Shao
- Department of Clinical Research, Yikon Genomics Company, Ltd., Xinghu Street Suzhou, , China
| | - Sijia Lu
- Department of Clinical Research, Yikon Genomics Company, Ltd., Xinghu Street Suzhou, , China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Huaxiang Road, Shenyang, China
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Huaxiang Road, Shenyang, China
| |
Collapse
|
33
|
Farra C, Choucair F, Awwad J. Non-invasive pre-implantation genetic testing of human embryos: an emerging concept. Hum Reprod 2019; 33:2162-2167. [PMID: 30357338 DOI: 10.1093/humrep/dey314] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
The accurate genetic screening of pre-implantation embryos currently entails the use of technically challenging and biologically invasive biopsies of the human embryos. Investigating a more conservative sampling approach has emerged as a timely and desired alternative. Circulating cell-free embryonic DNA is present in the blastocoel fluid and spent culture media of blastocysts, and this has lately been sought as an attractive source of genetic information. The genetic analysis of cell-free embryonic DNA has been reported, to be useful in evaluating the genetic constitution of embryos; thus, providing a potential alternative to conventional biopsy-derived pre-implantation genetic testing (PGT). In this review, we have summarized these non-invasive alternative applications of PGT and discussed their current limitations and future clinical implications.
Collapse
Affiliation(s)
- C Farra
- Department of Pathology and Laboratory Medicine, Medical Genetics Unit, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - F Choucair
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - J Awwad
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| |
Collapse
|
34
|
Rubio C, Rienzi L, Navarro-Sánchez L, Cimadomo D, García-Pascual CM, Albricci L, Soscia D, Valbuena D, Capalbo A, Ubaldi F, Simón C. Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications. Fertil Steril 2019; 112:510-519. [PMID: 31200971 DOI: 10.1016/j.fertnstert.2019.04.038] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To study whether embryonic cell-free DNA (cfDNA) in spent blastocyst media is representative of the chromosomal constitution of a blastocyst. DESIGN Pilot prospective blinded study. SETTING In vitro fertilization center and genetics laboratory. PATIENT(S) A total of 115 trophectoderm (TE) biopsies and spent blastocyst media (SBM) from 46 patients with ages ranging from 32 to 46 years, whose indications for preimplantation genetic testing of aneuploidy (PGT-A) were advanced maternal age, recurrent miscarriage, or recurrent implantation failure. INTERVENTIONS(S) Spent blastocyst media collection and TE biopsy. MAIN OUTCOME MEASURE(S) Concordance rates, sensitivity, and specificity between TE biopsies and SBM. Clinical outcomes in cases with euploid TE biopsies and euploid SBM compared with cases with euploid TE and aneuploid SBM. RESULT(S) In general, the total concordance rate for ploidy and sex was 78.7%, and sensitivity and specificity were 94.5% and 71.7%, respectively. A significant increase for all parameters was observed for day 6/7 samples compared with day 5 samples, with day 6/7 samples showing total concordance for ploidy and sex of 84%, and sensitivity and specificity of 95.2% and 82.1%, respectively. Ongoing implantation rates in euploid TE/euploid SBM showed a threefold increase compared with euploid TE/aneuploid SBM (52.9% vs. 16.7%, respectively), without reaching significant differences. Interestingly, no miscarriages were observed when TE and SBM were euploidy concordant. CONCLUSION(S) These results offer a better understanding of the dynamics of cfDNA during embryo development and despite more basic research being needed, they are reassuring to consider in the future this noninvasive approach as an alternative to TE biopsy for PGT-A.
Collapse
Affiliation(s)
- Carmen Rubio
- R&D Department, Igenomix and Incliva, Valencia, Spain.
| | - Laura Rienzi
- Genera, Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | | | - Danilo Cimadomo
- Genera, Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | | | - Laura Albricci
- Genera, Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Daria Soscia
- Genera, Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | | | | | - Filippo Ubaldi
- Genera, Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Carlos Simón
- R&D Department, Igenomix and Incliva, Valencia, Spain; Igenomix, Valencia, Spain; Department of Obstetrics and Gynecology, Valencia University, Valencia, Spain; Incliva, Valencia, Spain; Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, California
| |
Collapse
|
35
|
Comparison of neonatal outcomes of very low birth weight infants by mode of conception: in vitro fertilization versus natural pregnancy. Fertil Steril 2019; 111:962-970. [PMID: 30922644 DOI: 10.1016/j.fertnstert.2019.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/15/2018] [Accepted: 01/08/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the neonatal outcomes of very low birth weight (VLBW) infants born after IVF with those of VLBW infants born after natural pregnancy (NP). DESIGN Prospective cohort study. SETTING Not applicable. PATIENT(S) A total of 6,871 VLBW infants born from January 2014 to December 2016. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Neonatal mortality and morbidities. RESULT(S) Of the 6,871 VLBW infants enrolled, 4,438 infants were born as singletons (IVF = 271; NP = 4,167), and 2,433 infants were born as multiplets (IVF = 1,301; NP = 1,132). After adjustment for maternal and neonatal baseline characteristics, infants born as singletons earlier than 28 weeks after IVF more frequently had high-stage retinopathy of prematurity than those born after NP, whereas infants born as multiplets between 28 and 31 weeks after IVF had fewer major congenital anomalies, high-grade intraventricular hemorrhage, and periventricular leukomalacia than those born after NP. Otherwise, no differences in mortality and neonatal outcomes were found. CONCLUSION(S) Very low birth weight infants born as singletons after IVF had comparable neonatal outcomes to those born after NP, except for an increased risk of high-stage retinopathy of prematurity. Very low birth weight infants born as multiplets after IVF had fewer neurologic morbidities than those born after NP.
Collapse
|
36
|
Alteri A, Corti L, Sanchez AM, Rabellotti E, Papaleo E, Viganò P. Assessment of pre-implantation genetic testing for embryo aneuploidies: A SWOT analysis. Clin Genet 2019; 95:479-487. [DOI: 10.1111/cge.13510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Alessandra Alteri
- Obstetrics and Gynaecology Department; IRCCS San Raffaele Scientific Institute; Milan Italy
| | - Laura Corti
- Obstetrics and Gynaecology Department; IRCCS San Raffaele Scientific Institute; Milan Italy
| | - Ana M. Sanchez
- Reproductive Sciences Laboratory; Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute; Milan Italy
| | - Elisa Rabellotti
- Obstetrics and Gynaecology Department; IRCCS San Raffaele Scientific Institute; Milan Italy
| | - Enrico Papaleo
- Obstetrics and Gynaecology Department; IRCCS San Raffaele Scientific Institute; Milan Italy
- Reproductive Sciences Laboratory; Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute; Milan Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory; Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute; Milan Italy
| |
Collapse
|