1
|
Gupta OP, Deshmukh R, Kumar A, Singh SK, Sharma P, Ram S, Singh GP. From gene to biomolecular networks: a review of evidences for understanding complex biological function in plants. Curr Opin Biotechnol 2021; 74:66-74. [PMID: 34800849 DOI: 10.1016/j.copbio.2021.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/10/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
Although at the infancy stage, biomolecular network biology is a comprehensive approach to understand complex biological function in plants. Recent advancements in the accumulation of multi-omics data coupled with computational approach have accelerated our current understanding of the complexities of gene function at the system level. Biomolecular networks such as protein-protein interaction, co-expression and gene regulatory networks have extensively been used to decipher the intricacies of transcriptional reprogramming of hundreds of genes and their regulatory interaction in response to various environmental perturbations mainly in the model plant Arabidopsis. This review describes recent applications of network-based approaches to understand the biological functions in plants and focuses on the challenges and opportunities to harness the full potential of the approach.
Collapse
Affiliation(s)
- Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132 001, India.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160 055, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute (ICAR-NRRI), Cuttack, Odisha, 753 006, India
| | - Sanjay Kumar Singh
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132 001, India
| | - Pradeep Sharma
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132 001, India
| | - Sewa Ram
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132 001, India
| | - Gyanendra Pratap Singh
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132 001, India
| |
Collapse
|
2
|
Zhang X, Li J, Pan BZ, Chen W, Chen M, Tang M, Xu ZF, Liu C. Extended mining of the oil biosynthesis pathway in biofuel plant Jatropha curcas by combined analysis of transcriptome and gene interactome data. BMC Bioinformatics 2021; 22:409. [PMID: 34407772 PMCID: PMC8375076 DOI: 10.1186/s12859-021-04319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Jatropha curcas L. is an important non-edible oilseed crop with a promising future in biodiesel production. However, little is known about the molecular biology of oil biosynthesis in this plant when compared with other established oilseed crops, resulting in the absence of agronomically improved varieties of Jatropha. To extensively discover the potentially novel genes and pathways associated with the oil biosynthesis in J. curcas, new strategy other than homology alignment is on the demand. RESULTS In this study, we proposed a multi-step computational framework that integrates transcriptome and gene interactome data to predict functional pathways in non-model organisms in an extended process, and applied it to study oil biosynthesis pathway in J. curcas. Using homologous mapping against Arabidopsis and transcriptome profile analysis, we first constructed protein-protein interaction (PPI) and co-expression networks in J. curcas. Then, using the homologs of Arabidopsis oil-biosynthesis-related genes as seeds, we respectively applied two algorithm models, random walk with restart (RWR) in PPI network and negative binomial distribution (NBD) in co-expression network, to further extend oil-biosynthesis-related pathways and genes in J. curcas. At last, using k-nearest neighbors (KNN) algorithm, the predicted genes were further classified into different sub-pathways according to their possible functional roles. CONCLUSIONS Our method exhibited a highly efficient way of mining the extended oil biosynthesis pathway of J. curcas. Overall, 27 novel oil-biosynthesis-related gene candidates were predicted and further assigned to 5 sub-pathways. These findings can help better understanding of the oil biosynthesis pathway of J. curcas, as well as paving the way for the following J. curcas breeding application.
Collapse
Affiliation(s)
- Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Bang-Zhen Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wen Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Maosheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Mingyong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China. .,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China. .,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
3
|
Zhao ML, Chen MS, Ni J, Xu CJ, Yang Q, Xu ZF. Comparative transcriptome analysis of gynoecious and monoecious inflorescences reveals regulators involved in male flower development in the woody perennial plant Jatropha curcas. PLANT REPRODUCTION 2020; 33:191-204. [PMID: 32997187 DOI: 10.1007/s00497-020-00396-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ABCE model genes along with genes related to GA biosynthesis and auxin signalling may play significant roles in male flower development in Jatropha curcas. Flowering plants exhibit extreme reproductive diversity. Jatropha curcas, a woody plant that is promising for biofuel production, is monoecious. Here, two gynoecious Jatropha mutants (bearing only female flowers) were used to identify key genes involved in male flower development. Using comparative transcriptome analysis, we identified 17 differentially expressed genes (DEGs) involved in floral organ development between monoecious plants and the two gynoecious mutants. Among these DEGs, five floral organ identity genes, Jatropha AGAMOUS, PISTILLATA, SEPALLATA 2-1 (JcSEP2-1), JcSEP2-2, and JcSEP3, were downregulated in ch mutant inflorescences; two gibberellin (GA) biosynthesis genes, Jatropha GA REQUIRING 1 and GIBBERELLIN 3-OXIDASE 1, were downregulated in both the ch and g mutants; and two genes involved in the auxin signalling pathway, Jatropha NGATHA1 and STYLISH1, were downregulated in the ch mutant. Furthermore, four hub genes involved in male flower development, namely Jatropha SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1, CRYPTOCHROME 2, SUPPRESSOR OF OVEREXPRESSION OF CO 1 and JAGGED, were identified using weighted gene correlation network analysis. These results suggest that floral organ identity genes and genes involved in GA biosynthesis and auxin signalling may participate in male flower development in Jatropha. This study will contribute to understanding sex differentiation in woody perennial plants.
Collapse
Affiliation(s)
- Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovation Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovation Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| | - Jun Ni
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovation Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Chuan-Jia Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovation Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovation Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovation Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| |
Collapse
|