1
|
Niezen S, Goyes D, Vipani A, Yang JD, Ayoub WS, Kuo A, Long MT, Trivedi HD. Food Insecurity in Hispanic Populations Is Associated with an Increased Risk of Hepatic Steatosis: A Nationally Representative Study. J Clin Med 2024; 13:3206. [PMID: 38892917 PMCID: PMC11173297 DOI: 10.3390/jcm13113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction: The Hispanic population in the US faces a higher risk of nonalcoholic fatty liver disease (NAFLD). Multiple factors influence this risk, including genetics, environmental factors, and socioeconomic statuses. Inadequate access to nutritious foods, or food insecurity, is prevalent among Hispanic individuals and poses a metabolic risk for both the onset and development of NAFLD. Materials and Methods: We utilized the National Health and Nutrition Examination Survey (NHANES) 2017-2020 pre-pandemic data to analyze the association between Hispanic ethnicity, hepatic steatosis, fibrosis, and food insecurity. Vibration-controlled transient elastography (VCTE) was employed to assess liver stiffness (LSM) and controlled attenuation parameter (CAP) scores to determine fibrosis and steatosis, respectively. Linear and ordinal logistic regression models were applied to their continuous, log-transformed, and categorical forms, adjusting for demographics, metabolic comorbidities, and socioeconomic factors. Models were subsequently stratified based on food security statuses. Results: A total of 7396 Hispanic participants were included in the study. Under multivariable analysis, Hispanic individuals had higher CAP scores (Beta-coefficient: 10.2 dB/m, 95% CI: 6.1-14.4 dB/m, p = 0.001)) vs. non-Hispanic individuals, without statistically significant differences in fibrosis. Food-insecure participants exhibited higher CAP scores than their food-secure counterparts. After stratification, a stronger association between Hispanic ethnicity and CAP scores was evident in the food-insecure group (Beta-coefficient: 11.8 dB/m, 95% CI: 4.4-19.3 dB/m, p = 0.003). Discussion: This study demonstrates the heightened risk of hepatic steatosis among individuals with Hispanic ancestry in the US. The risk is exacerbated by food insecurity, particularly for Hispanic individuals. The contribution is linked to the dietary habits in this population that lead to metabolic risk factors associated with hepatic steatosis. Considering the rising prevalence of NAFLD and food insecurity, interventions focusing on nutritional support and healthcare access among this population could mitigate these burdens.
Collapse
Affiliation(s)
- Sebastian Niezen
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA;
| | - Daniela Goyes
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Aarshi Vipani
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8900 Beverly Blvd, Los Angeles, CA 90048, USA; (A.V.); (J.D.Y.); (W.S.A.); (A.K.)
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8900 Beverly Blvd, Los Angeles, CA 90048, USA; (A.V.); (J.D.Y.); (W.S.A.); (A.K.)
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Walid S. Ayoub
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8900 Beverly Blvd, Los Angeles, CA 90048, USA; (A.V.); (J.D.Y.); (W.S.A.); (A.K.)
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander Kuo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8900 Beverly Blvd, Los Angeles, CA 90048, USA; (A.V.); (J.D.Y.); (W.S.A.); (A.K.)
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michelle T. Long
- Section of Gastroenterology, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Hirsh D. Trivedi
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8900 Beverly Blvd, Los Angeles, CA 90048, USA; (A.V.); (J.D.Y.); (W.S.A.); (A.K.)
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
2
|
Song J, Li Y, Wu K, Hu Y, Fang L. MyD88 and Its Inhibitors in Cancer: Prospects and Challenges. Biomolecules 2024; 14:562. [PMID: 38785969 PMCID: PMC11118248 DOI: 10.3390/biom14050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
The interplay between the immune system and cancer underscores the central role of immunotherapy in cancer treatment. In this context, the innate immune system plays a critical role in preventing tumor invasion. Myeloid differentiation factor 88 (MyD88) is crucial for innate immunity, and activation of MyD88 promotes the production of inflammatory cytokines and induces infiltration, polarization, and immune escape of immune cells in the tumor microenvironment. Additionally, abnormal MyD88 signaling induces tumor cell proliferation and metastasis, which are closely associated with poor prognosis. Therefore, MyD88 could serve as a novel tumor biomarker and is a promising target for cancer therapy. Current strategies targeting MyD88 including inhibition of signaling pathways and protein multimerization, have made substantial progress, especially in inflammatory diseases and chronic inflammation-induced cancers. However, the specific role of MyD88 in regulating tumor immunity and tumorigenic mechanisms remains unclear. Therefore, this review describes the involvement of MyD88 in tumor immune escape and disease therapy. In addition, classical and non-classical MyD88 inhibitors were collated to provide insights into potential cancer treatment strategies. Despite several challenges and complexities, targeting MyD88 is a promising avenue for improving cancer treatment and has the potential to revolutionize patient outcomes.
Collapse
Affiliation(s)
- Jiali Song
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Yuying Li
- Ruian People’s Hospital, Wenzhou Medical College Affiliated Third Hospital, Wenzhou 325000, China;
| | - Ke Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Yan Hu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Luo Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| |
Collapse
|
3
|
Guo B, Lin B, Huang Q, Li Z, Zhuo K, Liao J. A nematode effector inhibits plant immunity by preventing cytosolic free Ca 2+ rise. PLANT, CELL & ENVIRONMENT 2022; 45:3070-3085. [PMID: 35880644 DOI: 10.1111/pce.14406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The Meloidogyne enterolobii effector MeTCTP is a member of the translationally controlled tumour protein (TCTP) family, involved in M. enterolobii parasitism. In this study, we found that MeTCTP forms homodimers and, in this form, binds calcium ions (Ca2+ ). At the same time, Ca2+ could induce homodimerization of MeTCTP. We further identified that MeTCTP inhibits the increase of cytosolic free Ca2+ concentration ([Ca2+ ]cyt ) in plant cells and suppresses plant immune responses. This includes suppression of reactive oxygen species burst and cell necrosis, further promoting M. enterolobii parasitism. Our results have elucidated that the effector MeTCTP can directly target Ca2+ by its homodimeric form and prevent [Ca2+ ]cyt rise in plant roots, revealing a novel mechanism utilized by plant pathogens to suppress plant immunity.
Collapse
Affiliation(s)
- Bin Guo
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Borong Lin
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Qiuling Huang
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhiwen Li
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jinling Liao
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Guangdong Vocational College of Ecological Engineering, Guangzhou, China
| |
Collapse
|
4
|
Navetta-Modrov B, Yao Q. Macroglobulinemia and Autoinflammatory Disease. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:227-232. [PMID: 36467983 PMCID: PMC9524799 DOI: 10.2478/rir-2021-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 06/17/2023]
Abstract
Macroglobulinemia is associated with Schnitzler syndrome (SchS) and Waldenstrom macroglobulinemia (WM). The aim of this article was to review the above-mentioned two diseases from clinical aspects and their potential genetic links. We performed a PubMed search using the following keywords: "SchS," "WM," "autoinflammatory disease," "periodic fever syndrome," and "nucleotide-binding oligomerization domain containing protein 2 (NOD2)." A case is exemplified. Both SchS and WM share some clinical phenotypes, and SchS can evolve into WM. Though no genetic link to SchS has been established, myeloid differentiation primary response gene 88 (MyD88) mutations are detected in one-third of SchS patients and 86% WM patients. Genetic analysis of periodic fever syndrome genes has detected NOD2 mutations in 18% SchS patients and rarely NLRP3 mutations. The literature data suggest that both MyD88 and NOD2 mutations may contribute to SchS. Both MyD88 and NOD2 are known to play important roles in innate immune response, and they may be cooperative in certain autoinflammatory diseases. Molecular analysis of NOD2 mutations may be incorporated into genetic testing for patients with suspected SchS or SchS/WM.
Collapse
Affiliation(s)
- Brianne Navetta-Modrov
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
5
|
Carmy-Bennun T, Myer C, Bhattacharya SK, Hackam AS. Quantitative proteomic analysis after neuroprotective MyD88 inhibition in the retinal degeneration 10 mouse. J Cell Mol Med 2021; 25:9533-9542. [PMID: 34562309 PMCID: PMC8505828 DOI: 10.1111/jcmm.16893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
Progressive photoreceptor death occurs in blinding diseases such as retinitis pigmentosa. Myeloid differentiation primary response protein 88 (MyD88) is a central adaptor protein for innate immune system Toll-like receptors (TLR) and induces cytokine secretion during retinal disease. We recently demonstrated that inhibiting MyD88 in mouse models of retinal degeneration led to increased photoreceptor survival, which was associated with altered cytokines and increased neuroprotective microglia. However, the identity of additional molecular changes associated with MyD88 inhibitor-induced neuroprotection is not known. In this study, we used isobaric tags for relative and absolute quantification (iTRAQ) labelling followed by LC-MS/MS for quantitative proteomic analysis on the rd10 mouse model of retinal degeneration to identify protein pathways changed by MyD88 inhibition. Quantitative proteomics using iTRAQ LC-MS/MS is a high-throughput method ideal for providing insight into molecular pathways during disease and experimental treatments. Forty-two proteins were differentially expressed in retinas from mice treated with MyD88 inhibitor compared with control. Notably, increased expression of multiple crystallins and chaperones that respond to cellular stress and have anti-apoptotic properties was identified in the MyD88-inhibited mice. These data suggest that inhibiting MyD88 enhances chaperone-mediated retinal protection pathways. Therefore, this study provides insight into molecular events contributing to photoreceptor protection from modulating inflammation.
Collapse
Affiliation(s)
- Tal Carmy-Bennun
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ciara Myer
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Miami Integrative Metabolomics Research Center, Miami, FL, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Miami Integrative Metabolomics Research Center, Miami, FL, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Miami Integrative Metabolomics Research Center, Miami, FL, USA
| |
Collapse
|
6
|
Chen L, Zheng L, Chen P, Liang G. Myeloid Differentiation Primary Response Protein 88 (MyD88): The Central Hub of TLR/IL-1R Signaling. J Med Chem 2020; 63:13316-13329. [DOI: 10.1021/acs.jmedchem.0c00884] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Pengqin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
7
|
Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J Med Chem 2020; 63:13466-13513. [PMID: 32845153 DOI: 10.1021/acs.jmedchem.0c01049] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a class of proteins that recognize pathogen-associated molecular patterns (PAMPs) and damaged-associated molecular patterns (DAMPs), and they are involved in the regulation of innate immune system. These transmembrane receptors, localized at the cellular or endosomal membrane, trigger inflammatory processes through either myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling pathways. In the last decades, extensive research has been performed on TLR modulators and their therapeutic implication under several pathological conditions, spanning from infections to cancer, from metabolic disorders to neurodegeneration and autoimmune diseases. This Perspective will highlight the recent discoveries in this field, emphasizing the role of TLRs in different diseases and the therapeutic effect of their natural and synthetic modulators, and it will discuss insights for the future exploitation of TLR modulators in human health.
Collapse
Affiliation(s)
- Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
8
|
Increased Neuroprotective Microglia and Photoreceptor Survival in the Retina from a Peptide Inhibitor of Myeloid Differentiation Factor 88 (MyD88). J Mol Neurosci 2020; 70:968-980. [PMID: 32072483 DOI: 10.1007/s12031-020-01503-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/05/2020] [Indexed: 01/14/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is an adaptor protein for the Toll-like receptor (TLR) and interleukin 1 receptor (IL-1R) families of innate immunity receptors that mediate inflammatory responses to cellular injury. TLR/IL1R/MyD88 signaling is known to contribute to retinal degeneration, although how MyD88 regulates neuronal survival, and the effect of MyD88 on the inflammatory environment in the retina, is mostly unknown. In this study, we tested the hypothesis that blocking MyD88-mediated signaling early in retinal degeneration promotes transition of microglia towards a neuroprotective anti-inflammatory phenotype, resulting in enhanced photoreceptor survival. We also tested whether systemic delivery of a pharmacologic MyD88 inhibitor has therapeutic potential. The rd10 mouse model of retinal degeneration was injected intraperitoneally with increasing doses of a MyD88 blocking peptide or control peptide early in degeneration, and inflammatory responses and photoreceptor survival were measured at specific time points using flow cytometry, cytokine profiling, and electroretinograms. Our results demonstrated that rd10 mice injected with a low dose of MyD88 inhibitor peptide showed increased rod photoreceptor function and reduced apoptosis compared with control peptide and uninjected mice. MyD88 inhibition also resulted in fewer microglia/macrophage cells in the photoreceptor layer whereas total peripheral and retinal macrophage were not changed. Furthermore, increased number of cells expressing the Arg1 marker of neuroprotective microglia in the photoreceptor layer and higher MCP-1 and anti-inflammatory cytokine IL-27 were associated with photoreceptor survival. Therefore, these data suggest that the MyD88 inhibitor modified the retina environment to become less inflammatory, leading to improved photoreceptor function and survival.
Collapse
|
9
|
Noorbakhsh SM, Razavi A, Moghadam NB, Saadat P, Hoseini M, Aghazadeh Z, Mobini M, Oraei M, Mirshafiey A. Effects of guluronic acid (G2013) on gene expression of TLR2, TLR4, MyD88, TNF-α and CD52 in multiple sclerosis under in vitro conditions. Immunopharmacol Immunotoxicol 2019; 41:586-590. [DOI: 10.1080/08923973.2019.1672179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Beladi Moghadam
- Department of Neurology, Shahid Beheshti Universiry of Medical Science, Tehran, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institue, Babol University of Medical Sciences, Babol, Iran
| | - Mostafa Hoseini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Aghazadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Dishon S, Schumacher-Klinger A, Gilon C, Hoffman A, Nussbaum G. Myristoylation Confers Oral Bioavailability and Improves the Bioactivity of c(MyD 4-4), a Cyclic Peptide Inhibitor of MyD88. Mol Pharm 2019; 16:1516-1522. [PMID: 30860380 DOI: 10.1021/acs.molpharmaceut.8b01180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myeloid differentiation primary response 88 (MyD88) is an intracellular adaptor protein central to the signaling of multiple receptors involved in inflammation. Since innate immune inflammation promotes autoimmunity, MyD88 is an attractive target in autoimmune disease. We previously developed c(MyD 4-4), a novel cyclic peptide competitive inhibitor of MyD88 dimerization that is metabolically stable. Parenteral administration of c(MyD 4-4) reduces disease severity in a mouse model of the human autoimmune disease multiple sclerosis. We now show that N-terminal myristoylation of c(MyD 4-4) enhances the competitive inhibition of MyD88 dimerization in living cells, leading to improved inhibition of the Toll-like receptor and IL-1 receptor signaling. Importantly, myristoylation converts c(MyD 4-4) to an orally bioavailable inhibitor of MyD88. Oral administration of c(MyD 4-4) significantly lowered the inflammatory cytokines secreted by peripheral autoimmune T cells in mice immunized with myelin antigens and ameliorated disease severity in the mouse model of multiple sclerosis. Taken together, we show the conversion of a protein active region to a metabolically stable, selective cyclic peptide that is orally bioavailable.
Collapse
Affiliation(s)
- Shira Dishon
- The Institute of Dental Sciences , Hebrew University-Hadassah Faculty of Dental Medicine , Jerusalem 91120 , Israel
| | - Adi Schumacher-Klinger
- The Institute for Drug Research , Hebrew University-Hadassah Faculty of Medicine , Jerusalem 91120 , Israel
| | - Chaim Gilon
- The Institute of Chemistry , Hebrew University , Jerusalem 91120 , Israel
| | - Amnon Hoffman
- The Institute for Drug Research , Hebrew University-Hadassah Faculty of Medicine , Jerusalem 91120 , Israel
| | - Gabriel Nussbaum
- The Institute of Dental Sciences , Hebrew University-Hadassah Faculty of Dental Medicine , Jerusalem 91120 , Israel
| |
Collapse
|
11
|
Chen L, Chen H, Chen P, Zhang W, Wu C, Sun C, Luo W, Zheng L, Liu Z, Liang G. Development of 2-amino-4-phenylthiazole analogues to disrupt myeloid differentiation factor 88 and prevent inflammatory responses in acute lung injury. Eur J Med Chem 2019; 161:22-38. [DOI: 10.1016/j.ejmech.2018.09.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
|
12
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Orally Active Peptides: Is There a Magic Bullet? Angew Chem Int Ed Engl 2018; 57:14414-14438. [DOI: 10.1002/anie.201807298] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | | | - Shira Merzbach
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
13
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Oral aktive Peptide: Gibt es ein Patentrezept? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | | | - Shira Merzbach
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|