1
|
Inderbitzin A, Loosli T, Kouyos RD, Metzner KJ. Quantification of transgene expression in GSH AAVS1 with a novel CRISPR/Cas9-based approach reveals high transcriptional variation. Mol Ther Methods Clin Dev 2022; 26:107-118. [PMID: 35795775 PMCID: PMC9234542 DOI: 10.1016/j.omtm.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022]
Abstract
Genomic safe harbors (GSH) are defined as sites in the host genome that allow stable expression of inserted transgenes while having no adverse effects on the host cell, making them ideal for use in basic research and therapeutic applications. Silencing and fluctuations in transgene expression would be highly undesirable effects. We have previously shown that transgene expression in Jurkat T cells is not silenced for up to 160 days after CRISPR-Cas9-mediated insertion of reporter genes into the adeno-associated virus site 1 (AAVS1), a commonly used GSH. Here, we studied fluctuations in transgene expression upon targeted insertion into the GSH AAVS1. We have developed an efficient method to generate and validate highly complex barcoded plasmid libraries to study transgene expression on the single-cell level. Its applicability is demonstrated by inserting the barcoded transgene Cerulean into the AAVS1 locus in Jurkat T cells via the CRISPR-Cas9 technology followed by next-generation sequencing of the transcribed barcodes. We observed large transcriptional variations over two logs for transgene expression in the GSH AAVS1. This barcoded transgene insertion model is a powerful tool to investigate fluctuations in transgene expression at any GSH site.
Collapse
Affiliation(s)
- Anne Inderbitzin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Tom Loosli
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Deeks SG, Archin N, Cannon P, Collins S, Jones RB, de Jong MAWP, Lambotte O, Lamplough R, Ndung'u T, Sugarman J, Tiemessen CT, Vandekerckhove L, Lewin SR. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat Med 2021; 27:2085-2098. [PMID: 34848888 DOI: 10.1038/s41591-021-01590-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Despite the success of antiretroviral therapy (ART) for people living with HIV, lifelong treatment is required and there is no cure. HIV can integrate in the host genome and persist for the life span of the infected cell. These latently infected cells are not recognized as foreign because they are largely transcriptionally silent, but contain replication-competent virus that drives resurgence of the infection once ART is stopped. With a combination of immune activators, neutralizing antibodies, and therapeutic vaccines, some nonhuman primate models have been cured, providing optimism for these approaches now being evaluated in human clinical trials. In vivo delivery of gene-editing tools to either target the virus, boost immunity or protect cells from infection, also holds promise for future HIV cure strategies. In this Review, we discuss advances related to HIV cure in the last 5 years, highlight remaining knowledge gaps and identify priority areas for research for the next 5 years.
Collapse
Affiliation(s)
- Steven G Deeks
- University of California San Francisco, San Fransisco, CA, USA.
| | - Nancie Archin
- UNC HIV Cure Center, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Paula Cannon
- University of Southern California, Los Angeles, CA, USA
| | | | - R Brad Jones
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Olivier Lambotte
- University Paris Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, Paris, France
| | | | - Thumbi Ndung'u
- Africa Health Research Institute and University of KwaZulu-Natal, Durban, South Africa
- University College London, London, UK
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Jeremy Sugarman
- Berman Institute of Bioethics and Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Caroline T Tiemessen
- National Institute for Communicable Diseases and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Sharon R Lewin
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
3
|
Inderbitzin A, Kok YL, Jörimann L, Kelley A, Neumann K, Heinzer D, Cathomen T, Metzner KJ. HIV-1 promoter is gradually silenced when integrated into BACH2 in Jurkat T-cells. PeerJ 2020; 8:e10321. [PMID: 33282555 PMCID: PMC7694569 DOI: 10.7717/peerj.10321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The persistence of the latent HIV-1 reservoir is a major obstacle to curing HIV-1 infection. HIV-1 integrates into the cellular genome and some targeted genomic loci are frequently detected in clonally expanded latently HIV-1 infected cells, for instance, the gene BTB domain and CNC homology 2 (BACH2). METHODS We investigated HIV-1 promoter activity after integration into specific sites in BACH2 in Jurkat T-cells. The HIV-1-based vector LTatCL[M] contains two fluorophores: (1) Cerulean, which reports the activity of the HIV-1 promoter and (2) mCherry driven by a constitutive promotor and flanked by genetic insulators. This vector was inserted into introns 2 and 5 of BACH2 of Jurkat T-cells via CRISPR/Cas9 technology in the same and convergent transcriptional orientation of BACH2, and into the genomic safe harbour AAVS1. Single cell clones representing active (Cerulean+/mCherry+) and inactive (Cerulean-/mCherry+) HIV-1 promoters were characterised. RESULTS Upon targeted integration of the 5.3 kb vector LTatCL[M] into BACH2, the HIV-1 promoter was gradually silenced as reflected by the decrease in Cerulean expression over a period of 162 days. Silenced HIV-1 promoters could be reactivated by TNF-α and Romidepsin. This observation was independent of the targeted intron and the transcriptional orientation. BACH2 mRNA and protein expression was not impaired by mono-allelic integration of LTatCL[M]. CONCLUSION Successful targeted integration of the HIV-1-based vector LTatCL[M] allows longitudinal analyses of HIV-1 promoter activity.
Collapse
Affiliation(s)
- Anne Inderbitzin
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Yik Lim Kok
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Lisa Jörimann
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Audrey Kelley
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Kathrin Neumann
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Daniel Heinzer
- Institute for Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karin J. Metzner
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Mycobacterium tuberculosis Reactivates HIV-1 via Exosome-Mediated Resetting of Cellular Redox Potential and Bioenergetics. mBio 2020; 11:mBio.03293-19. [PMID: 32127457 PMCID: PMC7064780 DOI: 10.1128/mbio.03293-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The synergy between Mycobacterium tuberculosis and human immunodeficiency virus-1 (HIV-1) interferes with therapy and facilitates the pathogenesis of both human pathogens. Fundamental mechanisms by which M. tuberculosis exacerbates HIV-1 infection are not clear. Here, we show that exosomes secreted by macrophages infected with M. tuberculosis, including drug-resistant clinical strains, reactivated HIV-1 by inducing oxidative stress. Mechanistically, M. tuberculosis-specific exosomes realigned mitochondrial and nonmitochondrial oxygen consumption rates (OCR) and modulated the expression of host genes mediating oxidative stress response, inflammation, and HIV-1 transactivation. Proteomics analyses revealed the enrichment of several host factors (e.g., HIF-1α, galectins, and Hsp90) known to promote HIV-1 reactivation in M. tuberculosis-specific exosomes. Treatment with a known antioxidant-N-acetyl cysteine (NAC)-or with inhibitors of host factors-galectins and Hsp90-attenuated HIV-1 reactivation by M. tuberculosis -specific exosomes. Our findings uncover new paradigms for understanding the redox and bioenergetics bases of HIV-M. tuberculosis coinfection, which will enable the design of effective therapeutic strategies.IMPORTANCE Globally, individuals coinfected with the AIDS virus (HIV-1) and with M. tuberculosis (causative agent of tuberculosis [TB]) pose major obstacles in the clinical management of both diseases. At the heart of this issue is the apparent synergy between the two human pathogens. On the one hand, mechanisms induced by HIV-1 for reactivation of TB in AIDS patients are well characterized. On the other hand, while clinical findings clearly identified TB as a risk factor for HIV-1 reactivation and associated mortality, basic mechanisms by which M. tuberculosis exacerbates HIV-1 replication and infection remain poorly characterized. The significance of our research is in identifying the role of fundamental mechanisms such as redox and energy metabolism in catalyzing HIV-M. tuberculosis synergy. The quantification of redox and respiratory parameters affected by M. tuberculosis in stimulating HIV-1 will greatly enhance our understanding of HIV-M. tuberculosis coinfection, leading to a wider impact on the biomedical research community and creating new translational opportunities.
Collapse
|
5
|
Read DF, Atindaana E, Pyaram K, Yang F, Emery S, Cheong A, Nakama KR, Burnett C, Larragoite ET, Battivelli E, Verdin E, Planelles V, Chang CH, Telesnitsky A, Kidd JM. Stable integrant-specific differences in bimodal HIV-1 expression patterns revealed by high-throughput analysis. PLoS Pathog 2019; 15:e1007903. [PMID: 31584995 PMCID: PMC6795456 DOI: 10.1371/journal.ppat.1007903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/16/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
HIV-1 gene expression is regulated by host and viral factors that interact with viral motifs and is influenced by proviral integration sites. Here, expression variation among integrants was followed for hundreds of individual proviral clones within polyclonal populations throughout successive rounds of virus and cultured cell replication, with limited findings using CD4+ cells from donor blood consistent with observations in immortalized cells. Tracking clonal behavior by proviral “zip codes” indicated that mutational inactivation during reverse transcription was rare, while clonal expansion and proviral expression states varied widely. By sorting for provirus expression using a GFP reporter in the nef open reading frame, distinct clone-specific variation in on/off proportions were observed that spanned three orders of magnitude. Tracking GFP phenotypes over time revealed that as cells divided, their progeny alternated between HIV transcriptional activity and non-activity. Despite these phenotypic oscillations, the overall GFP+ population within each clone was remarkably stable, with clones maintaining clone-specific equilibrium mixtures of GFP+ and GFP- cells. Integration sites were analyzed for correlations between genomic features and the epigenetic phenomena described here. Integrants inserted in the sense orientation of genes were more frequently found to be GFP negative than those in the antisense orientation, and clones with high GFP+ proportions were more distal to repressive H3K9me3 peaks than low GFP+ clones. Clones with low frequencies of GFP positivity appeared to expand more rapidly than clones for which most cells were GFP+, even though the tested proviruses were Vpr-. Thus, much of the increase in the GFP- population in these polyclonal pools over time reflected differential clonal expansion. Together, these results underscore the temporal and quantitative variability in HIV-1 gene expression among proviral clones that are conferred in the absence of metabolic or cell-type dependent variability, and shed light on cell-intrinsic layers of regulation that affect HIV-1 population dynamics. Very few HIV-1 infected cells persist in patients for more than a couple days, but those that do pose life-long health risks. Strategies designed to eliminate these cells have been based on assumptions about what viral properties allow infected cell survival. However, such approaches for HIV-1 eradication have not yet shown therapeutic promise, possibly because many assumptions about virus persistence are based on studies involving a limited number of infected cell types, the averaged behavior of cells in diverse populations, or snapshot views. Here, we developed a high-throughput approach to study hundreds of distinct HIV-1 infected cells and their progeny over time in an unbiased way. This revealed that each virus established its own pattern of gene expression that, upon infected cell division, was stably transmitted to all progeny cells. Expression patterns consisted of alternating waves of activity and inactivity, with the extent of activity differing among infected cell families over a 1000-fold range. The dynamics and variability among infected cells and within complex populations that the work here revealed has not previously been evident, and may help establish more accurate correlates of persistent HIV-1 infection.
Collapse
Affiliation(s)
- David F. Read
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Edmond Atindaana
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Greater Accra Region, Ghana
| | - Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Feng Yang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sarah Emery
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Anna Cheong
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katherine R. Nakama
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Erin T. Larragoite
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Emilie Battivelli
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Eric Verdin
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| | - Jeffrey M. Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| |
Collapse
|
6
|
Cat and Mouse: HIV Transcription in Latency, Immune Evasion and Cure/Remission Strategies. Viruses 2019; 11:v11030269. [PMID: 30889861 PMCID: PMC6466452 DOI: 10.3390/v11030269] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
There is broad scientific and societal consensus that finding a cure for HIV infection must be pursued. The major barrier to achieving a cure for HIV/AIDS is the capacity of the HIV virus to avoid both immune surveillance and current antiretroviral therapy (ART) by rapidly establishing latently infected cell populations, termed latent reservoirs. Here, we provide an overview of the rapidly evolving field of HIV cure/remission research, highlighting recent progress and ongoing challenges in the understanding of HIV reservoirs, the role of HIV transcription in latency and immune evasion. We review the major approaches towards a cure that are currently being explored and further argue that small molecules that inhibit HIV transcription, and therefore uncouple HIV gene expression from signals sent by the host immune response, might be a particularly promising approach to attain a cure or remission. We emphasize that a better understanding of the game of "cat and mouse" between the host immune system and the HIV virus is a crucial knowledge gap to be filled in both cure and vaccine research.
Collapse
|