1
|
Gomaa F, Rogers DR, Utter DR, Powers C, Huang IT, Beaudoin DJ, Zhang Y, Cavanaugh C, Edgcomb VP, Bernhard JM. Array of metabolic pathways in a kleptoplastidic foraminiferan protist supports chemoautotrophy in dark, euxinic seafloor sediments. THE ISME JOURNAL 2025; 19:wrae248. [PMID: 39673188 PMCID: PMC11736642 DOI: 10.1093/ismejo/wrae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/09/2024] [Accepted: 12/13/2024] [Indexed: 12/16/2024]
Abstract
Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen. The full extent of foraminiferal physiological capabilities is not fully understood. To date, evidence for foraminiferal anaerobiosis was gleaned from specimens first subjected to stresses associated with removal from in situ conditions. Here, we report comprehensive gene expression analysis of benthic foraminiferal populations preserved in situ on the euxinic (anoxic and sulfidic) bathyal seafloor, thus avoiding environmental alterations associated with sample recovery, including pressure reduction, sunlight exposure, warming, and oxygenation. Metatranscriptomics, metagenome-assembled genomes, and measurements of substrate uptake were used to study the kleptoplastidic foraminifer Nonionella stella inhabiting sulfur-oxidizing bacterial mats of the Santa Barbara Basin, off California. We show N. stella energy generation under dark euxinia is unusual because it orchestrates complex metabolic pathways for ATP production and carbon fixation through the Calvin cycle. These pathways include extended glycolysis, anaerobic fermentation, sulfide oxidation, and the presence of a membrane-bound inorganic pyrophosphatase, an enzyme that hydrolyzes inorganic pyrophosphate to actively pump protons across the mitochondrial membrane.
Collapse
Affiliation(s)
- Fatma Gomaa
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - Daniel R Rogers
- Chemistry Department, Stonehill College, Easton, MA 02357 United States
| | - Daniel R Utter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, United States
| | - Christopher Powers
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - I-Ting Huang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - David J Beaudoin
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Colleen Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Joan M Bernhard
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| |
Collapse
|
2
|
Morelli L, Cartaxana P, Cruz S. Food shaped photosynthesis: Photophysiology of the sea slug Elysia viridis fed with two alternative chloroplast donors. OPEN RESEARCH EUROPE 2024; 3:107. [PMID: 38725452 PMCID: PMC11079582 DOI: 10.12688/openreseurope.16162.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/12/2024]
Abstract
Background Some Sacoglossa sea slugs steal and integrate chloroplasts derived from the algae they feed on into their cells where they continue to function photosynthetically, a process termed kleptoplasty. The stolen chloroplasts - kleptoplasts - can maintain their functionality up to several months and support animal metabolism. However, chloroplast longevity can vary depending on sea slug species and algal donor. In this study, we focused on Elysia viridis, a polyphagous species that is mostly found associated with the macroalga Codium tomentosum, but that was reported to eat other macroalgae, including Chaetomorpha sp. Methods We have investigated the changes in E. viridis physiology when provided with the two different food sources to evaluate to which extent the photosynthetic and photoprotective mechanisms of the algae chloroplasts matched those of the plastids once in the animal cells. To perform the study, we rely on the evaluation of chlorophyll a variable fluorescence to study the photophysiological state of the integrated kleptoplasts and high-performance liquid chromatography (HPLC) to study variations in the photosynthetic pigments. Results We observed that the photosynthetic efficiency of E. viridis is lower when fed with Chaetomorpha. Also, significant differences were observed in the non-photochemical quenching (NPQ) abilities of the sea slugs. While sea slugs fed with C. tomentosum react similarly to high-light stress as the alga, E. viridis hosting Chaetomorpha chloroplasts were unable to properly recover from photoinhibition or perform a functional xanthophyll cycle (XC). Conclusions Our results showed that, even if the sea slugs fed with the two algae show photosynthetic activities like the respective algal donors, not all the photoprotective mechanisms present in Chaetomorpha can be maintained in E. viridis. This indicates that the functionality of the kleptoplasts does not depend solely on their origin but also on the degree of compatibility with the animal species integrating them.
Collapse
Affiliation(s)
- Luca Morelli
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Paulo Cartaxana
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Sónia Cruz
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| |
Collapse
|
3
|
Juéry C, Auladell A, Füssy Z, Chevalier F, Yee DP, Pelletier E, Corre E, Allen AE, Richter DJ, Decelle J. Transportome remodeling of a symbiotic microalga inside a planktonic host. THE ISME JOURNAL 2024; 18:wrae239. [PMID: 39658219 PMCID: PMC11697108 DOI: 10.1093/ismejo/wrae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Metabolic exchange is one of the foundations of symbiotic associations between organisms and is a driving force in evolution. In the ocean, photosymbiosis between heterotrophic hosts and microalgae is powered by photosynthesis and relies on the transfer of organic carbon to the host (e.g. sugars). Yet, the identity of transferred carbohydrates as well as the molecular mechanisms that drive this exchange remain largely unknown, especially in unicellular photosymbioses that are widespread in the open ocean. Combining genomics, single-holobiont transcriptomics, and environmental metatranscriptomics, we revealed the transportome of the marine microalga Phaeocystis in symbiosis within acantharia, with a focus on sugar transporters. At the genomic level, the sugar transportome of Phaeocystis is comparable to non-symbiotic haptophytes. By contrast, we found significant remodeling of the expression of the transportome in symbiotic microalgae compared to the free-living stage. More particularly, 36% of sugar transporter genes were differentially expressed. Several of them, such as GLUTs, TPTs, and aquaporins, with glucose, triose-phosphate sugars, and glycerol as potential substrates, were upregulated at the holobiont and community level. We also showed that algal sugar transporter genes exhibit distinct temporal expression patterns during the day. This reprogramed transportome indicates that symbiosis has a major impact on sugar fluxes within and outside the algal cell, and highlights the complexity and the dynamics of metabolic exchanges between partners. This study improves our understanding of the molecular players of the metabolic connectivity underlying the ecological success of planktonic photosymbiosis and paves the way for more studies on transporters across photosymbiotic models.
Collapse
Affiliation(s)
- Caroline Juéry
- Cell and Plant Physiology Laboratory, Unité Mixte de Recherche (UMR) 5168 Centre de l'Energie Atomique (CEA)-Centre national de la recherche scientifique (CNRS)-University Grenoble Alpes— INRAE, 38000, Grenoble, France
| | - Adria Auladell
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| | - Zoltan Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92037 CA, United States
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, 92037 CA, United States
| | - Fabien Chevalier
- Cell and Plant Physiology Laboratory, Unité Mixte de Recherche (UMR) 5168 Centre de l'Energie Atomique (CEA)-Centre national de la recherche scientifique (CNRS)-University Grenoble Alpes— INRAE, 38000, Grenoble, France
| | - Daniel P Yee
- Cell and Plant Physiology Laboratory, Unité Mixte de Recherche (UMR) 5168 Centre de l'Energie Atomique (CEA)-Centre national de la recherche scientifique (CNRS)-University Grenoble Alpes— INRAE, 38000, Grenoble, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut de Biologie François-Jacob, CEA, CNRS, University Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOsee, 75000 Paris, France
| | - Erwan Corre
- Centre National de la Recherche Scientifique/Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92037 CA, United States
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, 92037 CA, United States
| | - Daniel J Richter
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| | - Johan Decelle
- Cell and Plant Physiology Laboratory, Unité Mixte de Recherche (UMR) 5168 Centre de l'Energie Atomique (CEA)-Centre national de la recherche scientifique (CNRS)-University Grenoble Alpes— INRAE, 38000, Grenoble, France
| |
Collapse
|
4
|
Pinko D, Abramovich S, Rahav E, Belkin N, Rubin-Blum M, Kucera M, Morard R, Holzmann M, Abdu U. Shared ancestry of algal symbiosis and chloroplast sequestration in foraminifera. SCIENCE ADVANCES 2023; 9:eadi3401. [PMID: 37824622 PMCID: PMC10569721 DOI: 10.1126/sciadv.adi3401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Foraminifera are unicellular organisms that established the most diverse algal symbioses in the marine realm. Endosymbiosis repeatedly evolved in several lineages, while some engaged in the sequestration of chloroplasts, known as kleptoplasty. So far, kleptoplasty has been documented exclusively in the rotaliid clade. Here, we report the discovery of kleptoplasty in the species Hauerina diversa that belongs to the miliolid clade. The existence of kleptoplasty in the two main clades suggests that it is more widespread than previously documented. We observed chloroplasts in clustered structures within the foraminiferal cytoplasm and confirmed their functionality. Phylogenetic analysis of 18S ribosomal RNA gene sequences showed that H. diversa branches next to symbiont-bearing Alveolinidae. This finding represents evidence of of a relationship between kleptoplastic and symbiotic foraminifera.. Analysis of ribosomal genes and metagenomics revealed that alveolinid symbionts and kleptoplasts belong to the same clade, which suggests a common ancestry.
Collapse
Affiliation(s)
- Doron Pinko
- Department of Earth and Environmental Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sigal Abramovich
- Department of Earth and Environmental Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eyal Rahav
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Natalia Belkin
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Maxim Rubin-Blum
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Michal Kucera
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Raphaël Morard
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Maria Holzmann
- Department of Genetics and Evolution, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Uri Abdu
- Department of Life Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
5
|
Bouchet VMP, Seuront L, Tsujimoto A, Richirt J, Frontalini F, Tsuchiya M, Matsuba M, Nomaki H. Foraminifera and plastic pollution: Knowledge gaps and research opportunities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121365. [PMID: 36858101 DOI: 10.1016/j.envpol.2023.121365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/19/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Plastic has become one of the most ubiquitous and environmentally threatening sources of pollution in the Anthropocene. Beyond the conspicuous visual impact and physical damages, plastics both carry and release a cocktail of harmful chemicals, such as monomers, additives and persistent organic pollutants. Here we show through a review of the scientific literature dealing with both plastic pollution and benthic foraminifera (Rhizaria), that despite their critical roles in the structure and function of benthic ecosystems, only 0.4% of studies have investigated the effects of micro- and nano-plastics on this group. Consequently, we urge to consider benthic foraminifera in plastic pollution studies via a tentative roadmap that includes (i) the use of their biological, physiological and behavioral responses that may unveil the effects of microplastics and nanoplastics and (ii) the evaluation of the indicative value of foraminiferal species to serve as proxies for the degree of pollution. This appears particularly timely in the context of the development of management strategies to restore coastal ecosystems.
Collapse
Affiliation(s)
- Vincent M P Bouchet
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, 59000, Lille, France.
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, 59000, Lille, France; Department of Marine Energy and Resource, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Akira Tsujimoto
- Faculty of Education, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane, 690-8504, Japan
| | - Julien Richirt
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, 59000, Lille, France; X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Fabrizio Frontalini
- Department of Pure and Applied Sciences, Urbino University, 61029, Urbino, Italy
| | - Masashi Tsuchiya
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Misako Matsuba
- Biodiversity Division, National Institute of Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hidetaka Nomaki
- X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| |
Collapse
|
6
|
Robinson RS, Smart SM, Cybulski JD, McMahon KW, Marcks B, Nowakowski C. Insights from Fossil-Bound Nitrogen Isotopes in Diatoms, Foraminifera, and Corals. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:407-430. [PMID: 35977410 DOI: 10.1146/annurev-marine-032122-104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrogen is a major limiting element for biological productivity, and thus understanding past variations in nitrogen cycling is central to understanding past and future ocean biogeochemical cycling, global climate cycles, and biodiversity. Organic nitrogen encapsulated in fossil biominerals is generally protected from alteration, making it an important archive of the marine nitrogen cycle on seasonal to million-year timescales. The isotopic composition of fossil-bound nitrogen reflects variations in the large-scale nitrogen inventory, local sources and processing, and ecological and physiological traits of organisms. The ability to measure trace amounts of fossil-bound nitrogen has expanded with recent method developments. In this article, we review the foundations and ground truthing for three important fossil-bound proxy types: diatoms, foraminifera, and corals. We highlight their utility with examples of high-resolution evidence for anthropogenic inputs of nitrogen to the oceans, glacial-interglacial-scale assessments of nitrogen inventory change, and evidence for enhanced CO2 drawdown in the high-latitude ocean. Future directions include expanded method development, characterization of ecological and physiological variation, and exploration of extended timescales to push reconstructions further back in Earth's history.
Collapse
Affiliation(s)
- Rebecca S Robinson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA; , , , ,
| | - Sandi M Smart
- Department of Geological Sciences, University of Alabama, Tuscaloosa, Alabama, USA;
| | - Jonathan D Cybulski
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA; , , , ,
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Kelton W McMahon
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA; , , , ,
| | - Basia Marcks
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA; , , , ,
| | - Catherine Nowakowski
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA; , , , ,
| |
Collapse
|
7
|
Abstract
Kleptoplasty, the process by which a host organism sequesters and retains algal chloroplasts, is relatively common in protists. The origin of the plastid varies, as do the length of time it is retained in the host and the functionality of the association. In metazoa, the capacity for long-term (several weeks to months) maintenance of photosynthetically active chloroplasts is a unique characteristic of a handful of sacoglossan sea slugs. This capability has earned these slugs the epithets "crawling leaves" and "solar-powered sea slugs." This Unsolved Mystery explores the basis of chloroplast maintenance and function and attempts to clarify contradictory results in the published literature. We address some of the mysteries of this remarkable association. Why are functional chloroplasts retained? And how is the function of stolen chloroplasts maintained without the support of the algal nucleus?
Collapse
|
8
|
Schweizer M, Jauffrais T, Choquel C, Méléder V, Quinchard S, Geslin E. Trophic strategies of intertidal foraminifera explored with single-cell microbiome metabarcoding and morphological methods: What is on the menu? Ecol Evol 2022; 12:e9437. [PMID: 36407902 PMCID: PMC9666909 DOI: 10.1002/ece3.9437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
In mudflats, interactions and transfers of nutrients and secondary metabolites may drive ecosystems and biodiversity. Foraminifera have complex trophic strategies as they often rely on bacteria and eukaryotes or on potential symbionts for carbon and nitrogen resources. The capacity of these protists to use a wide range of adaptive mechanisms requires clarifying the relationships between them and their microbial associates. Here, we investigate the interactions of three foraminiferal species with nearby organisms in situ, by coupling molecular (cloning/Sanger and high-throughput sequencing) and direct counting and morphological identification with microscopy. This coupling allows the identification of the organisms found in or around three foraminiferal species through molecular tools combined with a direct counting of foraminifera and diatoms present in situ through microscopy methods. Depending on foraminiferal species, and in addition to diatom biomass, diatom frustule shape, size and species are key factors driving the abundance and diversity of foraminifera in mudflat habitats. Three different trophic strategies were deduced for the foraminifera investigated in this study: Ammonia sp. T6 has an opportunistic strategy and is feeding on bacteria, nematoda, fungi, and diatoms when abundant; Elphidium oceanense is feeding mainly on diatoms, mixed with other preys when they are less abundant; and Haynesina germanica is feeding almost solely on medium-large pennate diatoms. Although there are limitations due to the lack of species coverage in DNA sequence databases and to the difficulty to compare morphological and molecular data, this study highlights the relevance of combining molecular with morphological tools to study trophic interactions and microbiome communities of protists at the single-cell scale.
Collapse
Affiliation(s)
- Magali Schweizer
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| | - Thierry Jauffrais
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
- UMR 9220 ENTROPIE, Ifremer, IRD, Univ Nouvelle‐Calédonie, Univ La RéunionCNRSNoumeaNew Caledonia
| | - Constance Choquel
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
- Department of GeologyLund UniversityLundSweden
| | - Vona Méléder
- UR 2160, ISOMer, Institut des Substances et Organismes de la MerNantes UniversitéNantesFrance
| | - Sophie Quinchard
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| | - Emmanuelle Geslin
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| |
Collapse
|
9
|
Kleptoplast distribution, photosynthetic efficiency and sequestration mechanisms in intertidal benthic foraminifera. THE ISME JOURNAL 2022; 16:822-832. [PMID: 34635793 PMCID: PMC8857221 DOI: 10.1038/s41396-021-01128-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022]
Abstract
Foraminifera are ubiquitously distributed in marine habitats, playing a major role in marine sediment carbon sequestration and the nitrogen cycle. They exhibit a wide diversity of feeding and behavioural strategies (heterotrophy, autotrophy and mixotrophy), including species with the ability of sequestering intact functional chloroplasts from their microalgal food source (kleptoplastidy), resulting in a mixotrophic lifestyle. The mechanisms by which kleptoplasts are integrated and kept functional inside foraminiferal cytosol are poorly known. In our study, we investigated relationships between feeding strategies, kleptoplast spatial distribution and photosynthetic functionality in two shallow-water benthic foraminifera (Haynesina germanica and Elphidium williamsoni), both species feeding on benthic diatoms. We used a combination of observations of foraminiferal feeding behaviour, test morphology, cytological TEM-based observations and HPLC pigment analysis, with non-destructive, single-cell level imaging of kleptoplast spatial distribution and PSII quantum efficiency. The two species showed different feeding strategies, with H. germanica removing diatom content at the foraminifer's apertural region and E. williamsoni on the dorsal site. All E. williamsoni parameters showed that this species has higher autotrophic capacity albeit both feeding on benthic diatoms. This might represent two different stages in the evolutionary process of establishing a permanent symbiotic relationship, or may reflect different trophic strategies.
Collapse
|
10
|
Decelle J, Veronesi G, LeKieffre C, Gallet B, Chevalier F, Stryhanyuk H, Marro S, Ravanel S, Tucoulou R, Schieber N, Finazzi G, Schwab Y, Musat N. Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae. Environ Microbiol 2021; 23:6569-6586. [PMID: 34499794 DOI: 10.1111/1462-2920.15766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 11/28/2022]
Abstract
Photosymbiosis is widespread and ecologically important in the oceanic plankton but remains poorly studied. Here, we used multimodal subcellular imaging to investigate the photosymbiosis between colonial Collodaria and their microalga dinoflagellate (Brandtodinium). We showed that this symbiosis is very dynamic whereby symbionts interact with different host cells via extracellular vesicles within the colony. 3D electron microscopy revealed that the photosynthetic apparatus of the microalgae was more voluminous in symbiosis compared to free-living while the mitochondria volume was similar. Stable isotope probing coupled with NanoSIMS showed that carbon and nitrogen were stored in the symbiotic microalga in starch granules and purine crystals respectively. Nitrogen was also allocated to the algal nucleolus. In the host, low 13 C transfer was detected in the Golgi. Metal mapping revealed that intracellular iron concentration was similar in free-living and symbiotic microalgae (c. 40 ppm) and twofold higher in the host, whereas copper concentration increased in symbionts and was detected in the host cell and extracellular vesicles. Sulfur concentration was around two times higher in symbionts (chromatin and pyrenoid) than their host. This study improves our understanding on the functioning of this oceanic photosymbiosis and paves the way for more studies to further assess its biogeochemical significance.
Collapse
Affiliation(s)
- Johan Decelle
- Univ. Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, Grenoble, France.,Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Giulia Veronesi
- CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), UMR 5249 CNRS-CEA-UGA, F-38054, Grenoble, France.,CEA, LCBM, F-38054, Grenoble, France.,Université Grenoble Alpes, LCBM, F-38054, Grenoble, France.,ESRF, The European Synchrotron, 71, Avenue des Martyrs, 38043, Grenoble, France
| | | | - Benoit Gallet
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France
| | - Fabien Chevalier
- Univ. Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, Grenoble, France
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sophie Marro
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), UMR 7093, Observatoire Océanologique, 06230, Villefranche-sur-Mer, France
| | - Stéphane Ravanel
- Univ. Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, Grenoble, France
| | - Rémi Tucoulou
- ESRF, The European Synchrotron, 71, Avenue des Martyrs, 38043, Grenoble, France
| | - Nicole Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, Grenoble, France
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
11
|
Gomaa F, Utter DR, Powers C, Beaudoin DJ, Edgcomb VP, Filipsson HL, Hansel CM, Wankel SD, Zhang Y, Bernhard JM. Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments. SCIENCE ADVANCES 2021; 7:7/22/eabf1586. [PMID: 34039603 PMCID: PMC8153729 DOI: 10.1126/sciadv.abf1586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/05/2021] [Indexed: 05/14/2023]
Abstract
Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom's plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among "typical" eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation.
Collapse
Affiliation(s)
- Fatma Gomaa
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel R Utter
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Powers
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - David J Beaudoin
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Colleen M Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Scott D Wankel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Joan M Bernhard
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
12
|
Bird C, LeKieffre C, Jauffrais T, Meibom A, Geslin E, Filipsson HL, Maire O, Russell AD, Fehrenbacher JS. Heterotrophic Foraminifera Capable of Inorganic Nitrogen Assimilation. Front Microbiol 2020; 11:604979. [PMID: 33343548 PMCID: PMC7744380 DOI: 10.3389/fmicb.2020.604979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Nitrogen availability often limits biological productivity in marine systems, where inorganic nitrogen, such as ammonium is assimilated into the food web by bacteria and photoautotrophic eukaryotes. Recently, ammonium assimilation was observed in kleptoplast-containing protists of the phylum foraminifera, possibly via the glutamine synthetase/glutamate synthase (GS/GOGAT) assimilation pathway imported with the kleptoplasts. However, it is not known if the ubiquitous and diverse heterotrophic protists have an innate ability for ammonium assimilation. Using stable isotope incubations (15N-ammonium and 13C-bicarbonate) and combining transmission electron microscopy (TEM) with quantitative nanoscale secondary ion mass spectrometry (NanoSIMS) imaging, we investigated the uptake and assimilation of dissolved inorganic ammonium by two heterotrophic foraminifera; a non-kleptoplastic benthic species, Ammonia sp., and a planktonic species, Globigerina bulloides. These species are heterotrophic and not capable of photosynthesis. Accordingly, they did not assimilate 13C-bicarbonate. However, both species assimilated dissolved 15N-ammonium and incorporated it into organelles of direct importance for ontogenetic growth and development of the cell. These observations demonstrate that at least some heterotrophic protists have an innate cellular mechanism for inorganic ammonium assimilation, highlighting a newly discovered pathway for dissolved inorganic nitrogen (DIN) assimilation within the marine microbial loop.
Collapse
Affiliation(s)
- Clare Bird
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom.,School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlotte LeKieffre
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,UMR CNRS 6112 LPG, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, Angers, France
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Centre for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Emmanuelle Geslin
- UMR CNRS 6112 LPG, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, Angers, France
| | | | - Olivier Maire
- Université de Bordeaux, EPOC, UMR 5805, Talence, France.,CNRS, EPOC, UMR 5805, Talence, France
| | - Ann D Russell
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, United States
| | - Jennifer S Fehrenbacher
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
13
|
Onuma R, Hirooka S, Kanesaki Y, Fujiwara T, Yoshikawa H, Miyagishima SY. Changes in the transcriptome, ploidy, and optimal light intensity of a cryptomonad upon integration into a kleptoplastic dinoflagellate. THE ISME JOURNAL 2020; 14:2407-2423. [PMID: 32514116 PMCID: PMC7490267 DOI: 10.1038/s41396-020-0693-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022]
Abstract
Endosymbiosis of unicellular eukaryotic algae into previously nonphotosynthetic eukaryotes has established chloroplasts in several eukaryotic lineages. In addition, certain unicellular organisms in several different lineages ingest algae and utilize them as temporal chloroplasts (kleptoplasts) for weeks to months before digesting them. Among these organisms, the dinoflagellate Nusuttodinium aeruginosum ingests the cryptomonad Chroomonas sp. and enlarges the kleptoplast with the aid of the cryptomonad nucleus. To understand how the cryptomonad nucleus is remodeled in the dinoflagellate, here we examined changes in the transcriptome and ploidy of the ingested nucleus. We show that, after ingestion, genes involved in metabolism, translation, and DNA replication are upregulated while those involved in sensory systems and cell motility are downregulated. In the dinoflagellate cell, the cryptomonad nucleus undergoes polyploidization that correlates with an increase in the mRNA levels of upregulated genes. In addition, the ingested nucleus almost loses transcriptional responses to light. Because polyploidization and loss of transcriptional regulation are also known to have occurred during the establishment of endosymbiotic organelles, these changes are probably a common trend in endosymbiotic evolution. Furthermore, we show that the kleptoplast and dinoflagellate are more susceptible to high light than the free-living cryptomonad but that the ingested nucleus reduces this damage.
Collapse
Affiliation(s)
- Ryo Onuma
- Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
14
|
Jauffrais T, LeKieffre C, Schweizer M, Jesus B, Metzger E, Geslin E. Response of a kleptoplastidic foraminifer to heterotrophic starvation: photosynthesis and lipid droplet biogenesis. FEMS Microbiol Ecol 2020; 95:5427914. [PMID: 30947330 DOI: 10.1093/femsec/fiz046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/02/2019] [Indexed: 01/21/2023] Open
Abstract
The aim of this work is to document the complex nutritional strategy developed by kleptoplastic intertidal foraminifera. We study the mixotrophic ability of a common intertidal foraminifer, Elphidium williamsoni, by (i) investigating the phylogenetic identity of the foraminiferal kleptoplasts, (ii) following their oxygenic photosynthetic capacity and (iii) observing the modification in cellular ultrastructural features in response to photoautotrophic conditions. This was achieved by coupling molecular phylogenetic analyses and TEM observations with non-destructive measurements of kleptoplast O2 production over a 15-day experimental study. Results show that the studied E. williamsoni actively selected kleptoplasts mainly from pennate diatoms and had the ability to produce oxygen, up to 13.4 nmol O2 cell-1 d-1, from low to relatively high irradiance over at least 15 days. Ultrastructural features and photophysiological data showed significant differences over time, the number of lipid droplets, residual bodies and the dark respiration increased; whereas, the number of kleptoplasts decreased accompanied by a minor decrease of the photosynthetic rate. These observations suggest that in E. williamsoni kleptoplasts might provide extra carbon storage through lipid droplets synthesis and highlight the complexity of E. williamsoni feeding strategy and the necessity of further dedicated studies regarding mechanisms developed by kleptoplastidic foraminifera for carbon partitioning and storage.
Collapse
Affiliation(s)
- Thierry Jauffrais
- UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France.,Ifremer, RBE/LEAD, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia, France
| | - Charlotte LeKieffre
- UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France
| | - Magali Schweizer
- UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France
| | - Bruno Jesus
- EA2160, Laboratoir Mer Molécules Santé, 2 rue de la Houssinière, Université de Nantes, 4433 Nantes Cedex 1, France
| | - Edouard Metzger
- UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France
| | - Emmanuelle Geslin
- UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France
| |
Collapse
|
15
|
Subcellular Chemical Imaging: New Avenues in Cell Biology. Trends Cell Biol 2020; 30:173-188. [DOI: 10.1016/j.tcb.2019.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022]
|
16
|
Enrichment of intracellular sulphur cycle -associated bacteria in intertidal benthic foraminifera revealed by 16S and aprA gene analysis. Sci Rep 2019; 9:11692. [PMID: 31406214 PMCID: PMC6690927 DOI: 10.1038/s41598-019-48166-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Benthic foraminifera are known to play an important role in marine carbon and nitrogen cycles. Here, we report an enrichment of sulphur cycle -associated bacteria inside intertidal benthic foraminifera (Ammonia sp. (T6), Haynesina sp. (S16) and Elphidium sp. (S5)), using a metabarcoding approach targeting the 16S rRNA and aprA -genes. The most abundant intracellular bacterial groups included the genus Sulfurovum and the order Desulfobacterales. The bacterial 16S OTUs are likely to originate from the sediment bacterial communities, as the taxa found inside the foraminifera were also present in the sediment. The fact that 16S rRNA and aprA -gene derived intracellular bacterial OTUs were species-specific and significantly different from the ambient sediment community implies that bacterivory is an unlikely scenario, as benthic foraminifera are known to digest bacteria only randomly. Furthermore, these foraminiferal species are known to prefer other food sources than bacteria. The detection of sulphur-cycle related bacterial genes in this study suggests a putative role for these bacteria in the metabolism of the foraminiferal host. Future investigation into environmental conditions under which transcription of S-cycle genes are activated would enable assessment of their role and the potential foraminiferal/endobiont contribution to the sulphur-cycle.
Collapse
|
17
|
Chronopoulou PM, Salonen I, Bird C, Reichart GJ, Koho KA. Metabarcoding Insights Into the Trophic Behavior and Identity of Intertidal Benthic Foraminifera. Front Microbiol 2019; 10:1169. [PMID: 31191490 PMCID: PMC6547873 DOI: 10.3389/fmicb.2019.01169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
Foraminifera are ubiquitous marine protists with an important role in the benthic carbon cycle. However, morphological observations often fail to resolve their exact taxonomic placement and there is a lack of field studies on their particular trophic preferences. Here, we propose the application of metabarcoding as a tool for the elucidation of the in situ feeding behavior of benthic foraminifera, while also allowing the correct taxonomic assignment of the feeder, using the V9 region of the 18S (small subunit; SSU) rRNA gene. Living foraminiferal specimens were collected from two intertidal mudflats of the Wadden Sea and DNA was extracted from foraminiferal individuals and from the surrounding sediments. Molecular analysis allowed us to confirm that our foraminiferal specimens belong to three genetic types: Ammonia sp. T6, Elphidium sp. S5 and Haynesina sp. S16. Foraminiferal intracellular eukaryote communities reflected to an extent those of the surrounding sediments but at different relative abundances. Unlike sediment eukaryote communities, which were largely determined by the sampling site, foraminiferal intracellular eukaryote communities were driven by foraminiferal species, followed by sediment depth. Our data suggests that Ammonia sp. T6 can predate on metazoan classes, whereas Elphidium sp. S5 and Haynesina sp. S16 are more likely to ingest diatoms. These observations, alongside the use of metabarcoding in similar ecological studies, significantly contribute to our overall understanding of the ecological roles of these protists in intertidal benthic environments and their position and function in the benthic food webs.
Collapse
Affiliation(s)
- Panagiota-Myrsini Chronopoulou
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Iines Salonen
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Clare Bird
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Gert-Jan Reichart
- Department of Ocean Systems, NIOZ-Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Netherlands
| | - Karoliina A Koho
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Jauffrais T, LeKieffre C, Schweizer M, Geslin E, Metzger E, Bernhard JM, Jesus B, Filipsson HL, Maire O, Meibom A. Kleptoplastidic benthic foraminifera from aphotic habitats: insights into assimilation of inorganic C, N and S studied with sub-cellular resolution. Environ Microbiol 2018; 21:125-141. [PMID: 30277305 DOI: 10.1111/1462-2920.14433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/31/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
The assimilation of inorganic compounds in foraminiferal metabolism compared to predation or organic matter assimilation is unknown. Here, we investigate possible inorganic-compound assimilation in Nonionellina labradorica, a common kleptoplastidic benthic foraminifer from Arctic and North Atlantic sublittoral regions. The objectives were to identify the source of the foraminiferal kleptoplasts, assess their photosynthetic functionality in light and darkness and investigate inorganic nitrogen and sulfate assimilation. We used DNA barcoding of a ~ 830 bp fragment from the SSU rDNA to identify the kleptoplasts and correlated transmission electron microscopy and nanometre-scale secondary ion mass spectrometry (TEM-NanoSIMS) isotopic imaging to study 13 C-bicarbonate, 15 N-ammonium and 34 S-sulfate uptake. In addition, respiration rate measurements were determined to assess the response of N. labradorica to light. The DNA sequences established that over 80% of the kleptoplasts belonged to Thalassiosira (with 96%-99% identity), a cosmopolitan planktonic diatom. TEM-NanoSIMS imaging revealed degraded cytoplasm and an absence of 13 C assimilation in foraminifera exposed to light. Oxygen measurements showed higher respiration rates under light than dark conditions, and no O2 production was detected. These results indicate that the photosynthetic pathways in N. labradorica are not functional. Furthermore, N. labradorica assimilated both 15 N-ammonium and 34 S-sulfate into its cytoplasm, which suggests that foraminifera might have several ammonium or sulfate assimilation pathways, involving either the kleptoplasts or bona fide foraminiferal pathway(s) not yet identified.
Collapse
Affiliation(s)
- Thierry Jauffrais
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France.,Ifremer, RBE/LEAD, 101 Promenade Roger Laroque, 98897, Nouméa, New Caledonia
| | - Charlotte LeKieffre
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France.,Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Magali Schweizer
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Emmanuelle Geslin
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Edouard Metzger
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Joan M Bernhard
- Woods Hole Oceanographic Institution, Geology & Geophysics Department, Woods Hole, MA, USA
| | - Bruno Jesus
- EA2160, Laboratoire Mer Molécules Santé, Université de Nantes, Nantes, France.,BioISI - Biosystems & Integrative Sciences Institute, Campo Grande University of Lisboa, Faculty of Sciences, Lisbon, Portugal
| | - Helena L Filipsson
- Department of Geology, Lund University, Sölvegatan 12, 223 62, Lund, Sweden
| | - Olivier Maire
- Univ. Bordeaux, EPOC, UMR 5805, 33400, Talence, France.,CNRS, EPOC, UMR 5805, 33400, Talence, France
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|