1
|
Brenman-Suttner D, Zayed A. An integrative genomic toolkit for studying the genetic, evolutionary, and molecular underpinnings of eusociality in insects. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101231. [PMID: 38977215 DOI: 10.1016/j.cois.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
While genomic resources for social insects have vastly increased over the past two decades, we are still far from understanding the genetic and molecular basis of eusociality. Here, we briefly review three scientific advancements that, when integrated, can be highly synergistic for advancing our knowledge of the genetics and evolution of eusocial traits. Population genomics provides a natural way to quantify the strength of natural selection on coding and regulatory sequences, highlighting genes that have undergone adaptive evolution during the evolution or maintenance of eusociality. Genome-wide association studies (GWAS) can be used to characterize the complex genetic architecture underlying eusocial traits and identify candidate causal variants. Concurrently, CRISPR/Cas9 enables the precise manipulation of gene function to both validate genotype-phenotype associations and study the molecular biology underlying interesting traits. While each approach has its own advantages and disadvantages, which we discuss herein, we argue that their combination will ultimately help us better understand the genetics and evolution of eusocial behavior. Specifically, by triangulating across these three different approaches, researchers can directly identify and study loci that have a causal association with key phenotypes and have evidence of positive selection over the relevant timescales associated with the evolution and maintenance of eusociality in insects.
Collapse
Affiliation(s)
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Favreau E, Cini A, Taylor D, Câmara Ferreira F, Bentley MA, Cappa F, Cervo R, Privman E, Schneider J, Thiéry D, Mashoodh R, Wyatt CDR, Brown RL, Bodrug-Schepers A, Stralis-Pavese N, Dohm JC, Mead D, Himmelbauer H, Guigo R, Sumner S. Putting hornets on the genomic map. Sci Rep 2023; 13:6232. [PMID: 37085574 PMCID: PMC10121689 DOI: 10.1038/s41598-023-31932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/20/2023] [Indexed: 04/23/2023] Open
Abstract
Hornets are the largest of the social wasps, and are important regulators of insect populations in their native ranges. Hornets are also very successful as invasive species, with often devastating economic, ecological and societal effects. Understanding why these wasps are such successful invaders is critical to managing future introductions and minimising impact on native biodiversity. Critical to the management toolkit is a comprehensive genomic resource for these insects. Here we provide the annotated genomes for two hornets, Vespa crabro and Vespa velutina. We compare their genomes with those of other social Hymenoptera, including the northern giant hornet Vespa mandarinia. The three hornet genomes show evidence of selection pressure on genes associated with reproduction, which might facilitate the transition into invasive ranges. Vespa crabro has experienced positive selection on the highest number of genes, including those putatively associated with molecular binding and olfactory systems. Caste-specific brain transcriptomic analysis also revealed 133 differentially expressed genes, some of which are associated with olfactory functions. This report provides a spring-board for advancing our understanding of the evolution and ecology of hornets, and opens up opportunities for using molecular methods in the future management of both native and invasive populations of these over-looked insects.
Collapse
Affiliation(s)
- Emeline Favreau
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Alessandro Cini
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Biology, Università di Pisa, Via Volta 6, 56126, Pisa, Italy
| | - Daisy Taylor
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Michael A Bentley
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Abba Hushi 199, 3498838, Haifa, Israel
| | - Jadesada Schneider
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Denis Thiéry
- INRAe, UMR 1065 Santé et Agroécologie du Vignoble, Bordeaux Sciences Agro, ISVV, Université de Bordeaux, 33883, Villenave d'Ornon, France
| | - Rahia Mashoodh
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher D R Wyatt
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Robert L Brown
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Alexandrina Bodrug-Schepers
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Nancy Stralis-Pavese
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Daniel Mead
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Roderic Guigo
- Centre for Genomic Regulation, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Seirian Sumner
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Sumner S, Favreau E, Geist K, Toth AL, Rehan SM. Molecular patterns and processes in evolving sociality: lessons from insects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220076. [PMID: 36802779 PMCID: PMC9939270 DOI: 10.1098/rstb.2022.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 02/21/2023] Open
Abstract
Social insects have provided some of the clearest insights into the origins and evolution of collective behaviour. Over 20 years ago, Maynard Smith and Szathmáry defined the most complex form of insect social behaviour-superorganismality-among the eight major transitions in evolution that explain the emergence of biological complexity. However, the mechanistic processes underlying the transition from solitary life to superorganismal living in insects remain rather elusive. An overlooked question is whether this major transition arose via incremental or step-wise modes of evolution. We suggest that examination of the molecular processes underpinning different levels of social complexity represented across the major transition from solitary to complex sociality can help address this question. We present a framework for using molecular data to assess to what extent the mechanistic processes that take place in the major transition to complex sociality and superorganismality involve nonlinear (implying step-wise evolution) or linear (implying incremental evolution) changes in the underlying molecular mechanisms. We assess the evidence for these two modes using data from social insects and discuss how this framework can be used to test the generality of molecular patterns and processes across other major transitions. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Seirian Sumner
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Emeline Favreau
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Katherine Geist
- Department of Ecology, Evolution and Organismal Biology, and Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Amy L. Toth
- Department of Ecology, Evolution and Organismal Biology, and Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Sandra M. Rehan
- Department of Biology, York University, Toronto, Canada M3J 1P3
| |
Collapse
|
4
|
Wyatt CDR, Bentley MA, Taylor D, Favreau E, Brock RE, Taylor BA, Bell E, Leadbeater E, Sumner S. Social complexity, life-history and lineage influence the molecular basis of castes in vespid wasps. Nat Commun 2023; 14:1046. [PMID: 36828829 PMCID: PMC9958023 DOI: 10.1038/s41467-023-36456-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
A key mechanistic hypothesis for the evolution of division of labour in social insects is that a shared set of genes co-opted from a common solitary ancestral ground plan (a genetic toolkit for sociality) regulates caste differentiation across levels of social complexity. Using brain transcriptome data from nine species of vespid wasps, we test for overlap in differentially expressed caste genes and use machine learning models to predict castes using different gene sets. We find evidence of a shared genetic toolkit across species representing different levels of social complexity. We also find evidence of additional fine-scale differences in predictive gene sets, functional enrichment and rates of gene evolution that are related to level of social complexity, lineage and of colony founding. These results suggest that the concept of a shared genetic toolkit for sociality may be too simplistic to fully describe the process of the major transition to sociality.
Collapse
Affiliation(s)
- Christopher Douglas Robert Wyatt
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK.
| | - Michael Andrew Bentley
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Daisy Taylor
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Emeline Favreau
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Ryan Edward Brock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Benjamin Aaron Taylor
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Emily Bell
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Ellouise Leadbeater
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Seirian Sumner
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
Tong C, Avilés L, Rayor LS, Mikheyev AS, Linksvayer TA. Genomic signatures of recent convergent transitions to social life in spiders. Nat Commun 2022; 13:6967. [PMID: 36414623 PMCID: PMC9681848 DOI: 10.1038/s41467-022-34446-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The transition from solitary to social life is a major phenotypic innovation, but its genetic underpinnings are largely unknown. To identify genomic changes associated with this transition, we compare the genomes of 22 spider species representing eight recent and independent origins of sociality. Hundreds of genes tend to experience shifts in selection during the repeated transition to social life. These genes are associated with several key functions, such as neurogenesis, behavior, and metabolism, and include genes that previously have been implicated in animal social behavior and human behavioral disorders. In addition, social species have elevated genome-wide rates of molecular evolution associated with relaxed selection caused by reduced effective population size. Altogether, our study provides unprecedented insights into the genomic signatures of social evolution and the specific genetic changes that repeatedly underpin the evolution of sociality. Our study also highlights the heretofore unappreciated potential of transcriptomics using ethanol-preserved specimens for comparative genomics and phylotranscriptomics.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Leticia Avilés
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Linda S Rayor
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander S Mikheyev
- Evolutionary Genomics Group, Research School of Biology, Australian National University, Canberra, 0200, Australia
| | - Timothy A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
6
|
Weise C, Ortiz CC, Tibbetts EA. Paper wasps form abstract concept of 'same and different'. Proc Biol Sci 2022; 289:20221156. [PMID: 35855600 PMCID: PMC9297017 DOI: 10.1098/rspb.2022.1156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Concept formation requires animals to learn and use abstract rules that transcend the characteristics of specific stimuli. Abstract concepts are often associated with high levels of cognitive sophistication, so there has been much interest in which species can form and use concepts. A key abstract concept is that of sameness and difference, where stimuli are classified as either the same as or different than an original stimulus. Here, we used a simultaneous two-item same-different task to test whether paper wasps (Polistes fuscatus) can learn and apply a same-different concept. We trained wasps by simultaneously presenting pairs of same or different stimuli (e.g. colours). Then, we tested whether wasps could apply the concept to new stimuli of the same type (e.g. new colours) and to new stimulus types (e.g. odours). We show that wasps learned a general concept of sameness or difference and applied it to new samples and types of stimuli. Notably, wasps were able to transfer the learned rules to new stimuli in a different sensory modality. Therefore, P. fuscatus can classify stimuli based on their relationships and apply abstract concepts to novel stimulus types. These results indicate that abstract concept learning may be more widespread than previously thought.
Collapse
Affiliation(s)
- Chloe Weise
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| | - Christian Cely Ortiz
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| | - Elizabeth A. Tibbetts
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| |
Collapse
|
7
|
Abstract
Many species have separate haploid and diploid phases. Theory predicts that each phase should experience the effects of evolutionary forces (like selection) differently. In the haploid phase, all fitness-affecting alleles are exposed to selection, whereas in the diploid phase, those same alleles can be masked by homologous alleles. This predicts that selection acting on genes expressed in haploids should be more effective than diploid-biased genes. Unfortunately, in arrhenotokous species, this prediction can be confounded with the effects of sex-specific expression, as haploids are usually reproductive males. Theory posits that, when accounting for ploidal- and sex-specific expression, selection should be equally efficient on haploid- and diploid-biased genes relative to constitutive genes. Here, we used a multiomic approach in honey bees to quantify the evolutionary rates of haploid-biased genes and test the relative effects of sexual- and haploid-expression on molecular evolution. We found that 16% of the honey bee’s protein-coding genome is highly expressed in haploid tissue. When accounting for ploidy and sex, haploid- and diploid-biased genes evolve at a lower rate than expected, indicating that they experience strong negative selection. However, the rate of molecular evolution of haploid-biased genes was higher than diploid-based genes. Genes associated with sperm storage are a clear exception to this trend with evidence of strong positive selection. Our results provide an important empirical test of theory outlining how selection acts on genes expressed in arrhenotokous species. We propose the haploid life history stage affects genome-wide patterns of diversity and divergence because of both sexual and haploid selection.
Collapse
Affiliation(s)
| | - Amy L. Dapper
- Department of Biological Sciences, Mississippi State University, 219 Harned Hall, 295 Lee Blvd, Mississippi State, Mississippi 39762, USA
| | | |
Collapse
|
8
|
Dogantzis KA, Tiwari T, Conflitti IM, Dey A, Patch HM, Muli EM, Garnery L, Whitfield CW, Stolle E, Alqarni AS, Allsopp MH, Zayed A. Thrice out of Asia and the adaptive radiation of the western honey bee. SCIENCE ADVANCES 2021; 7:eabj2151. [PMID: 34860547 PMCID: PMC8641936 DOI: 10.1126/sciadv.abj2151] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The origin of the western honey bee Apis mellifera has been intensely debated. Addressing this knowledge gap is essential for understanding the evolution and genetics of one of the world’s most important pollinators. By analyzing 251 genomes from 18 native subspecies, we found support for an Asian origin of honey bees with at least three expansions leading to African and European lineages. The adaptive radiation of honey bees involved selection on a few genomic “hotspots.” We found 145 genes with independent signatures of selection across all bee lineages, and these genes were highly associated with worker traits. Our results indicate that a core set of genes associated with worker and colony traits facilitated the adaptive radiation of honey bees across their vast distribution.
Collapse
Affiliation(s)
- Kathleen A. Dogantzis
- Department of Biology, York University, 4700 Keele Street, Toronto, M3J 1P3 Ontario, Canada
| | - Tanushree Tiwari
- Department of Biology, York University, 4700 Keele Street, Toronto, M3J 1P3 Ontario, Canada
| | - Ida M. Conflitti
- Department of Biology, York University, 4700 Keele Street, Toronto, M3J 1P3 Ontario, Canada
| | - Alivia Dey
- Department of Biology, York University, 4700 Keele Street, Toronto, M3J 1P3 Ontario, Canada
| | - Harland M. Patch
- Department of Entomology, The Pennsylvania State University, State College, PA, USA
| | - Elliud M. Muli
- Department of Life Science, South Eastern Kenya University (SEKU), P.O. Box 170-90200, Kitui, Kenya
| | - Lionel Garnery
- Laboratoire Evolution Génome Comportement Ecologie (EGCE) UMR 9191, Gif sur-Yvette, France
| | - Charles W. Whitfield
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eckart Stolle
- LIB–Leibniz Institute for the Analysis of Biodiversity Change Museum Koenig, Center of Molecular Biodiversity Research Adenauerallee 160, 53113 Bonn, Germany
| | - Abdulaziz S. Alqarni
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Michael H. Allsopp
- Plant Protection Research Institute, Agricultural Research Council, Stellenbosch, South Africa
| | - Amro Zayed
- Department of Biology, York University, 4700 Keele Street, Toronto, M3J 1P3 Ontario, Canada
- Corresponding author.
| |
Collapse
|
9
|
Paula DP. Next-Generation Sequencing and Its Impacts on Entomological Research in Ecology and Evolution. NEOTROPICAL ENTOMOLOGY 2021; 50:679-696. [PMID: 34374956 DOI: 10.1007/s13744-021-00895-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The advent of NGS-based methods has been profoundly transforming entomological research. Through continual development and improvement of different methods and sequencing platforms, NGS has promoted mass elucidation of partial or whole genetic materials associated with beneficial insects, pests (of agriculture, forestry and animal, and human health), and species of conservation concern, helping to unravel ecological and evolutionary mechanisms and characterizing survival, trophic interactions, and dispersal. It is shifting the scale of biodiversity and environmental analyses from individuals and biodiversity indicator species to the large-scale study of communities and ecosystems using bulk samples of species or a mixed "soup" of environmental DNA. As the NGS-based methods have become more affordable, complexity demystified, and specificity and sensitivity proven, their use in entomological research has spread widely. This article presents several examples on how NGS-based methods have been used in entomology to provide incentives to apply them when appropriate and to open our minds to the expected advances in entomology that are yet to come.
Collapse
|
10
|
Sociality sculpts similar patterns of molecular evolution in two independently evolved lineages of eusocial bees. Commun Biol 2021; 4:253. [PMID: 33637860 PMCID: PMC7977082 DOI: 10.1038/s42003-021-01770-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
While it is well known that the genome can affect social behavior, recent models posit that social lifestyles can, in turn, influence genome evolution. Here, we perform the most phylogenetically comprehensive comparative analysis of 16 bee genomes to date: incorporating two published and four new carpenter bee genomes (Apidae: Xylocopinae) for a first-ever genomic comparison with a monophyletic clade containing solitary through advanced eusocial taxa. We find that eusocial lineages have undergone more gene family expansions, feature more signatures of positive selection, and have higher counts of taxonomically restricted genes than solitary and weakly social lineages. Transcriptomic data reveal that caste-affiliated genes are deeply-conserved; gene regulatory and functional elements are more closely tied to social phenotype than phylogenetic lineage; and regulatory complexity increases steadily with social complexity. Overall, our study provides robust empirical evidence that social evolution can act as a major and surprisingly consistent driver of macroevolutionary genomic change.
Collapse
|
11
|
Araujo NDS, Arias MC. Gene expression and epigenetics reveal species-specific mechanisms acting upon common molecular pathways in the evolution of task division in bees. Sci Rep 2021; 11:3654. [PMID: 33574391 PMCID: PMC7878513 DOI: 10.1038/s41598-020-75432-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/05/2020] [Indexed: 01/30/2023] Open
Abstract
A striking feature of advanced insect societies is the existence of workers that forgo reproduction. Two broad types of workers exist in eusocial bees: nurses who care for their young siblings and the queen, and foragers who guard the nest and forage for food. Comparisons between these two worker subcastes have been performed in honeybees, but data from other bees are scarce. To understand whether similar molecular mechanisms are involved in nurse-forager differences across distinct species, we compared gene expression and DNA methylation profiles between nurses and foragers of the buff-tailed bumblebee Bombus terrestris and the stingless bee Tetragonisca angustula. These datasets were then compared to previous findings from honeybees. Our analyses revealed that although the expression pattern of genes is often species-specific, many of the biological processes and molecular pathways involved are common. Moreover, the correlation between gene expression and DNA methylation was dependent on the nucleotide context, and non-CG methylation appeared to be a relevant factor in the behavioral changes of the workers. In summary, task specialization in worker bees is characterized by a plastic and mosaic molecular pattern, with species-specific mechanisms acting upon broad common pathways across species.
Collapse
Affiliation(s)
- Natalia de Souza Araujo
- Department of Genetics and Evolutionary Biology, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, SP, 05508-090, Brazil.
- Department of Evolutionary Biology and Ecology, Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50, 1050, Brussels, Belgium.
| | - Maria Cristina Arias
- Department of Genetics and Evolutionary Biology, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
12
|
Imrit MA, Dogantzis KA, Harpur BA, Zayed A. Eusociality influences the strength of negative selection on insect genomes. Proc Biol Sci 2020; 287:20201512. [PMID: 32811314 PMCID: PMC7482261 DOI: 10.1098/rspb.2020.1512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
While much of the focus of sociobiology concerns identifying genomic changes that influence social behaviour, we know little about the consequences of social behaviour on genome evolution. It has been hypothesized that social evolution can influence the strength of negative selection via two mechanisms. First, division of labour can influence the efficiency of negative selection in a caste-specific manner; indirect negative selection on worker traits is theoretically expected to be weaker than direct selection on queen traits. Second, increasing social complexity is expected to lead to relaxed negative selection because of its influence on effective population size. We tested these two hypotheses by estimating the strength of negative selection in honeybees, bumblebees, paper wasps, fire ants and six other insects that span the range of social complexity. We found no consistent evidence that negative selection was significantly stronger on queen-biased genes relative to worker-biased genes. However, we found strong evidence that increased social complexity reduced the efficiency of negative selection. Our study clearly illustrates how changes in behaviour can influence patterns of genome evolution by modulating the strength of natural selection.
Collapse
Affiliation(s)
- Mohammad A. Imrit
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3 J 1P3
| | - Kathleen A. Dogantzis
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3 J 1P3
| | - Brock A. Harpur
- Department of Entomology, Purdue University, 901 W State Street, West Lafayette, IN 47907, USA
| | - Amro Zayed
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3 J 1P3
| |
Collapse
|
13
|
Developmental plasticity shapes social traits and selection in a facultatively eusocial bee. Proc Natl Acad Sci U S A 2020; 117:13615-13625. [PMID: 32471944 PMCID: PMC7306772 DOI: 10.1073/pnas.2000344117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Developmental processes are an important source of phenotypic variation, but the extent to which this variation contributes to evolutionary change is unknown. We used integrative genomic analyses to explore the relationship between developmental and social plasticity in a bee species that can adopt either a social or solitary lifestyle. We find genes regulating this social flexibility also regulate development, and positive selection on these genes is influenced by their function during development. This suggests that developmental plasticity may influence the evolution of sociality. Our additional finding of genetic variants linked to differences in social behavior sheds light on how phenotypic variation derived from development may become encoded into the genome, and thus contribute to evolutionary change. Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species (Megalopta genalis) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality.
Collapse
|
14
|
Costa CP, Duennes MA, Fisher K, Der JP, Watrous KM, Okamoto N, Yamanaka N, Woodard SH. Transcriptome analysis reveals nutrition‐ and age‐related patterns of gene expression in the fat body of pre‐overwintering bumble bee queens. Mol Ecol 2020; 29:720-737. [DOI: 10.1111/mec.15361] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Kaleigh Fisher
- Department of Entomology University of California Riverside CA USA
| | - Joshua P. Der
- Department of Biological Science California State University Fullerton CA USA
| | | | - Naoki Okamoto
- Department of Entomology University of California Riverside CA USA
| | - Naoki Yamanaka
- Department of Entomology University of California Riverside CA USA
| | | |
Collapse
|
15
|
Shell WA, Rehan SM. Social modularity: conserved genes and regulatory elements underlie caste-antecedent behavioural states in an incipiently social bee. Proc Biol Sci 2019; 286:20191815. [PMID: 31771475 PMCID: PMC6939254 DOI: 10.1098/rspb.2019.1815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
The evolutionary origins of advanced eusociality, one of the most complex forms of phenotypic plasticity in nature, have long been a focus within the field of sociobiology. Although eusocial insects are known to have evolved from solitary ancestors, sociogenomic research among incipiently social taxa has only recently provided empirical evidence supporting theories that modular regulation and deeply conserved genes may play important roles in both the evolutionary emergence and elaboration of insect sociality. There remains, however, a paucity of data to further test the biological reality of these and other evolutionary theories among taxa in the earliest stages of social evolution. Here, we present brain transcriptomic data from the incipiently social small carpenter bee, Ceratina calcarata, which captures patterns of cis-regulation and gene expression associated with female maturation, and underlying two well-defined behavioural states, foraging and guarding, concurrently demonstrated by mothers and daughters during early autumn. We find that an incipiently social nest environment may dramatically affect gene expression. We further reveal foraging and guarding behaviours to be putatively caste-antecedent states in C. calcarata, and offer strong empirical support for the operation of modular regulation, involving deeply conserved and differentially expressed genes in the expression of early social forms.
Collapse
Affiliation(s)
- Wyatt A. Shell
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
| | - Sandra M. Rehan
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, CanadaM3 J 1P3
| |
Collapse
|
16
|
Linksvayer TA, Johnson BR. Re-thinking the social ladder approach for elucidating the evolution and molecular basis of insect societies. CURRENT OPINION IN INSECT SCIENCE 2019; 34:123-129. [PMID: 31401545 DOI: 10.1016/j.cois.2019.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The evolution of large insect societies is a major evolutionary transition that occurred in the long-extinct ancestors of termites, ants, corbiculate bees, and vespid wasps. Researchers have long used 'social ladder thinking': assuming progressive stepwise phenotypic evolution and asserting that extant species with simple societies (e.g. some halictid bees) represent the ancestors of species with complex societies, and thus provide insight into general early steps of eusocial evolution. We discuss how this is inconsistent with data and modern evolutionary 'tree thinking'. Phylogenetic comparative methods with broad sampling provide the best means to make rigorous inferences about ancestral traits and evolutionary transitions that occurred within each lineage, and to determine whether consistent phenotypic and genomic changes occurred across independent lineages.
Collapse
Affiliation(s)
| | - Brian R Johnson
- Department of Entomology and Nematology, University of California Davis, United States
| |
Collapse
|
17
|
|