1
|
Chen L, Tian Z, Hu J, Wang XY, Wang MQ, Lu W, Wang XP, Zheng XL. Molecular Characterization and Expression Patterns of Two Pheromone-Binding Proteins from the Diurnal Moth Phauda flammans (Walker) (Lepidoptera: Zygaenoidea: Phaudidae). Int J Mol Sci 2022; 24:ijms24010385. [PMID: 36613830 PMCID: PMC9820377 DOI: 10.3390/ijms24010385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Sex pheromone-binding proteins (PBPs) play an important role in sex pheromone recognition in Lepidoptera. However, the mechanisms of chemical communication mediating the response to sex pheromones remain unclear in the diurnal moths of the superfamily Zygaenoidea. In this study, Phauda flammans (Walker) (Lepidoptera: Zygaenoidea: Phaudidae) was used as a model insect to explore the molecular mechanism of sex pheromone perception in the superfamily Zygaenoidea. Two novel pheromone-binding proteins (PflaPBP1 and PflaPBP2) from P. flammans were identified. The two pheromone-binding proteins were predominantly expressed in the antennae of P. flammans male and female moths, in which PflaPBP1 had stronger binding affinity to the female sex pheromones Z-9-hexadecenal and (Z, Z, Z)-9, 12, 15-octadecatrienal, PflaPBP2 had stronger binding affinity only for (Z, Z, Z)-9, 12, 15-octadecatrienal, and no apparent binding affinity to Z-9-hexadecenal. The molecular docking results indicated that Ile 170 and Leu 169 are predicted to be important in the binding of the sex pheromone to PflaPBP1 and PflaPBP2. We concluded that PflaPBP1 and PflaPBP2 may be responsible for the recognition of two sex pheromone components and may function differently in female and male P. flammans. These results provide a foundation for the development of pest control by exploring sex pheromone blocking agents and the application of sex pheromones and their analogs for insect pests in the superfamily Zygaenoidea.
Collapse
Affiliation(s)
- Lian Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Xianning Academy of Agricultural Sciences, Xianning 437000, China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Man-Qun Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: or ; Tel.: +86-0771-3235-612
| |
Collapse
|
2
|
Yang HH, Xu JW, Zhang XQ, Huang JR, Li LL, Yao WC, Zhao PP, Zhang D, Liu JY, Dewer Y, Zhu XY, Li XM, Zhang YN. AlepPBP2, but not AlepPBP3, may involve in the recognition of sex pheromones and maize volatiles in Athetis lepigone. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:536-545. [PMID: 35199636 DOI: 10.1017/s0007485321001127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Athetis lepigone Möschler (Lepidoptera, Noctuidae) is a common maize pest in Europe and Asia. However, there is no long-term effective management strategy is available yet to suppress its population. Adults rely heavily on olfactory cues to locate their optimal host plants and oviposition sites. Pheromone-binding proteins (PBPs) are believed to be responsible for recognizing and transporting different odorant molecules to interact with receptor membrane proteins. In this study, the ligand-binding specificities of two AlepPBPs (AlepPBP2 and AlepPBP3) for sex pheromone components and host plant (maize) volatiles were measured by fluorescence ligand-binding assay. The results demonstrated that AlepPBP2 had a high affinity with two pheromones [(Z)-7-dodecenyl acetate, Ki = 1.11 ± 0.1 μM, (Z)-9-tetradecenyl acetate, Ki = 1.32 ± 0.15 μM] and ten plant volatiles, including (-)-limonene, α-pinene, myrcene, linalool, benzaldehyde, nonanal, 2-hexanone, 3-hexanone, 2-heptanone and 6-methyl-5-hepten-2-one. In contrast, we found that none of these chemicals could bind to AlepPBP3. Our results clearly show no significant differences in the functional characterization of the binding properties between AlepPBP2 and AlepPBP3 to sex pheromones and host plant volatiles. Furthermore, molecular docking was employed for further detail on some crucial amino acid residues involved in the ligand-binding of AlepPBP2. These findings will provide valuable information about the potential protein binding sites necessary for protein-ligand interactions which appear as attractive targets for the development of novel technologies and management strategies for insect pests.
Collapse
Affiliation(s)
- Hui-Hui Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiao-Qing Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Rong Huang
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Pan-Pan Zhao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Dong Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jia-Yi Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
- College of Information, Huaibei Normal University, Huaibei, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiao-Ming Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
3
|
Wang Q, Li Y, Wang Q, Sun L, Zhang Y. The Adelphocoris lineolatus OBP4: Support for evolutionary and functional divergence of a mirid pheromone-binding protein from that found in lepidopteran moths. INSECT SCIENCE 2022; 29:151-161. [PMID: 33890408 DOI: 10.1111/1744-7917.12919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Pheromone-binding proteins (PBPs) have been extensively investigated in lepidopteran moths, but their evolution and function in hemipteran species remain unclear. Our previous study demonstrated that an odorant-binding protein, OBP4, of the mirid bug Adelphocoris lineolatus functions as a candidate hemipteran PBP but clustered with lepidopteran antennae-binding proteins (ABPs) rather than in the PBP/general odorant-binding protein (GOBP) clade. In this study, we hypothesized that origin and function of PBPs in hemipteran bugs may differ from those of lepidopteran moths. To test this hypothesis, we first constructed a phylogenetic tree using insect OBPs from sister hemipteran and holometabolous lineages, and the results indicated that neither OBP4 nor other types of candidate PBPs of mirid bugs clustered with the lepidopteran PBP/GOBP clade. Then, a fluorescence competitive binding assay was employed to determine binding affinities of recombinant OBP4 protein to host plant volatiles, with functional groups different from A. lineolatus sex pheromone components. The results revealed that OBP4 highly bound the female adult attractant 3-hexanone and 15 other mirid bug biologically active plant volatiles. Finally, we examined cellular expression profiles of OBP4 in putative antennal sensilla that are related to female A. lineolatus host plant location. The fluorescence in situ hybridization and immunocytochemical labeling assay showed that the OBP4 gene was highly expressed in the multiporous olfactory sensilla medium-long sensilla basiconica rather than in the short sensilla basiconica or uniporous sensilla chaetica. These results, together with those of our previous studies, indicate that OBP4 not only functions in recognition of bug-produced sex pheromones in males, but is probably involved in detection of host plant volatiles in both A. lineolatus sexes. Our findings support the hypothesis that the origin and function of PBPs in hemipteran bugs differ from those of well-known PBPs in lepidopteran moths, which provides a novel perspective on evolutionary mechanisms of sex pheromone communication across insect orders.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- College of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, 311300, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yujie Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Sun
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
4
|
Liu Y, Hu Y, Bi J, Kong X, Long G, Zheng Y, Liu K, Wang Y, Xu H, Guan C, Ai H. Odorant-binding proteins involved in sex pheromone and host-plant recognition of the sugarcane borer Chilo infuscatellus (Lepidoptera: Crambidae). PEST MANAGEMENT SCIENCE 2020; 76:4064-4076. [PMID: 32542949 DOI: 10.1002/ps.5961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/23/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pheromone-binding proteins (PBPs) are responsible for transporting sex pheromones and general odorant-binding proteins (GOBPs) have been proposed to transport host-plant volatiles. A large number of OBPs have been identified from Lepidoptera species. However, olfactory molecular biology and physiology studies on PBP and GOBP in sugarcane pests are limited. Chilo infuscatellus is one of the most widely distributed pests in sugarcane-producing areas. RESULTS Three PBPs (CinfPBP1, CinfPBP2 and CinfPBP3) and two GOBPs (CinfGOBP1 and CinfGOBP2) were identified, and five olfactory gene transcripts were abundantly expressed in antennae of C. infuscatellus. Binding assays showed that CinfPBP1-3 exhibited strong binding affinity for the sex pheromone components Z11-16:OH and 16:OH of C. infuscatellus. Meanwhile, CinfGOBP1-2 had high binding affinity with host-plant volatiles from sugarcane (Saccharum officinarum). Field-trapping results suggested that four volatile components, octadecane, (Z)-3-hexen-1-ol, α-terpineol and hexadecane from host plants and sex pheromone mixed baits have synergistic roles in attracting C. infuscatellus adult moths. CONCLUSION Functional characterization of CinfPBPs and CinfGOBPs in C. infuscatellus could help us find new environmentally friendly alternatives to conventional pest control using pesticides in sugarcane fields. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuying Liu
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yuwei Hu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - Jie Bi
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaotong Kong
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guangyan Long
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ya Zheng
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kaiyu Liu
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yufeng Wang
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hanliang Xu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - Chuxiong Guan
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - Hui Ai
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
5
|
Field evaluation of sex pheromones and binding specificity of pheromone binding protein 4 in Tryporyza intacta (Lepidoptera: Crambidae). Sci Rep 2020; 10:5464. [PMID: 32214117 PMCID: PMC7096405 DOI: 10.1038/s41598-020-62092-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
The recognition of chemical signal including volatile odorants and pheromones is very important in the olfactory physiological behaviors of insects, such as avoiding predators, seeking food and mating partners. The sugarcane borer, Tryporyza intacta is the most harmful insect in sugarcane region in Southeast Asia and Southern China, however, the study of their molecular biology and physiology was limited. Here we demonstrated that the sex pheromone (E11-16:Ald: Z11-16:Ald = 7:3) were most effective to T. intacta. In addition, compared the traditional rubber lure, a new microsphere formulation lure can optimize the trapping effect and might be widely used in the sugarcane growing area. To obtain a better understanding of the olfactory molecular mechanism of pheromone-based mate recognition system, we have cloned the full-length gene of the TintPBP4 and expressed in Escherichia coli. Our phylogenetic analysis highlighted that the TintPBP4 was highly conserved among diverse species of Lepidoptera. Furthermore, the results of QRT-PCR demonstrated that TintPBP4 transcripts were abundantly expressed in the antennae of T. intacta, especially in the male adults. The fluorescence binding experiments showed the TintPBP4 exhibited strong binding capacities to the sex pheromone components. These results will not only provide more understanding for the functional analysis of olfactory proteins from T. intacta, but also assist in the exploitation and development of sex pheromones in the integrated biological control of this pest.
Collapse
|